SlideShare a Scribd company logo
3
Most read
4
Most read
7
Most read
Defect Removal Effectiveness
Defect Removal Effectiveness
     Software Quality Management 
     Software Quality Management
                Unit 3

                         G. Roy Antony Arnold
                         G R A          A ld
                          Asst. Professor / CSE




                GRAA
• Defect removal i one of the top expenses i
     f            l is    f h                in
  any software project and it greatly affects
  schedules.
• Effective defect removal can lead to
  reductions in the development cycle time and
  g
  good product quality.
        p        q     y
• It is important for all development
  organizations to measure the effectiveness of
  their defect removal processes.

                      GRAA
• Fagan (1976) defined error detection efficiency as:
        Errors found by an Inspection
                                                          X 100%
        Total errors in the product before inspection

• Jones's definition (1986), stated here, is very similar to Fagan's:
    – Removal Efficiency =  Defects found by removal  operation
                                           y           p
                                                                        X 100%
                            Defects present at removal operation

                                          Defects found
                                                                        X 100%
                            Defects found + Defects not found (found later)

• IBM Houston received the first NASA Excellence Award for Quality 
  and Productivity in 1987

                                   GRAA
• One of the four metrics IBM used to manage quality is
  One of the four metrics IBM used to manage quality is 
  the early detection percentage, which is actually 
  inspection defect removal effectiveness
  Early Detection Percentage =
                 Number of major inspection errors
                 Number of major inspection errors
                                                     X 100%
                       Total number of errors
• where total number of errors is the sum of major 
  inspection errors and valid discrepancy reports 
  (discrepancy report is the mechanism for tracking test 
  (di                t i th      h i f t ki t t
  defects).

                             GRAA
GRAA
• The effectiveness measure by Dunn (1987) differs little from
  The effectiveness measure by Dunn (1987) differs little from 
  Fagan's and from Jones's second definition. 
• Dunn‘s definition is:
  Effectiveness of activity (development phase ) =
           Number of defects found by activity
           Number of defects found by activity
                                                          X 100%
           Number of defects found by subsequent activities

• This metric can be tuned by selecting only defects present at 
  the time of the activity and susceptible to detection by the 
                         y          p                    y
  activity.


                              GRAA
• Daskalantonakis (1992) describes the metrics used at Motorola for 
  software development.
  software development
    Total Defect Containment Effectiveness (TDCE) =
                             Number of pre‐release defects
                             Number of pre‐release defects
            Number of pre‐release defects + Number of post‐release defects

  Phase Containment Effectiveness (PCEi) =
                              Number of Phase i errors
                Number of Phase i errors + Number of phase i defects

• Where phase i errors are problems found during that development
  Where phase i errors are problems found during that development 
  phase in which they were introduced, and 
• Phase i defects are problems found later than the development 
  phase in which they were introduced.
  phase in which they were introduced.

                                   GRAA
Defects removed (at the step)
                                  (           )
                                                                        X 100%
Defects existing on step entry + Defects injected during development of the step




                                    GRAA
GRAA
• B d on a special study commissioned b th D
  Based           i l t d        i i    d by the Department
                                                      t    t
  of Defence, Jones estimates the defect removal
  effectiveness for organizations at different levels of the
  development process capability maturity model ( (CMM):)
   –   Level 1: 85%
   –   Level 2: 89%
   –   Level 3: 91%
   –   Level 4: 93%
   –   Level 5: 95%
           l
• These values can be used as comparison baselines for
  organizations to evaluate their relative capability with
  regard to this important parameter.


                            GRAA
• Based on historical and recent data from three
  software engineering organizations at General
  Dynamics Decision Systems, Diaz and King (2002)
  report that the phase containment effectiveness by
  CMM level as follows:
  –   Level 2: 25.5%
  –   Level 3: 41.5%
  –   Level 4: 62.3%
  –   Level 5: 87.3%


                        GRAA
Phase Inserted
       Phase Inserted        Cumulative % of Defects 
                             Cumulative % of Defects
                           removed through Acceptance 
                                      Test
Requirements                          94%
Top Level Design 
Top‐Level Design                      95%
Detailed Design                       96%
Code and  Unit
Code and Unit Test                    94%
Integration Test                      75%
System Test
System Test                           70%
Acceptance Test                       70%

                        GRAA

More Related Content

What's hot (20)

PPTX
Activation function
Astha Jain
 
PPTX
Software engineering 23 software reliability
Vaibhav Khanna
 
PPTX
Image Sampling and Quantization.pptx
RUBIN (A) JEBIN
 
PPTX
Histogram Processing
Amnaakhaan
 
PDF
operating system structure
Waseem Ud Din Farooqui
 
PDF
Digital Image Processing: Image Segmentation
Mostafa G. M. Mostafa
 
PPTX
Software quality
Sara Mehmood
 
PPTX
Multimedia:Multimedia compression
St Mary's College,Thrissur,Kerala
 
PPTX
Data cube computation
Rashmi Sheikh
 
DOCX
VIRTUALIZATION STRUCTURES TOOLS.docx
kumari36
 
PPTX
Component Based Software Engineering
SatishDabhi1
 
PPTX
Interface specification
maliksiddique1
 
PPT
Huffman Coding
anithabalaprabhu
 
PPTX
Staffing level estimation
kavitha muneeshwaran
 
PPTX
Noise
Astha Jain
 
PDF
Computer Vision: Correlation, Convolution, and Gradient
Ahmed Gad
 
PPT
Image Restoration
Poonam Seth
 
PPTX
Image processing second unit Notes
AAKANKSHA JAIN
 
PPTX
Chapter 9 morphological image processing
Ahmed Daoud
 
PPTX
1.arithmetic & logical operations
mukesh bhardwaj
 
Activation function
Astha Jain
 
Software engineering 23 software reliability
Vaibhav Khanna
 
Image Sampling and Quantization.pptx
RUBIN (A) JEBIN
 
Histogram Processing
Amnaakhaan
 
operating system structure
Waseem Ud Din Farooqui
 
Digital Image Processing: Image Segmentation
Mostafa G. M. Mostafa
 
Software quality
Sara Mehmood
 
Multimedia:Multimedia compression
St Mary's College,Thrissur,Kerala
 
Data cube computation
Rashmi Sheikh
 
VIRTUALIZATION STRUCTURES TOOLS.docx
kumari36
 
Component Based Software Engineering
SatishDabhi1
 
Interface specification
maliksiddique1
 
Huffman Coding
anithabalaprabhu
 
Staffing level estimation
kavitha muneeshwaran
 
Noise
Astha Jain
 
Computer Vision: Correlation, Convolution, and Gradient
Ahmed Gad
 
Image Restoration
Poonam Seth
 
Image processing second unit Notes
AAKANKSHA JAIN
 
Chapter 9 morphological image processing
Ahmed Daoud
 
1.arithmetic & logical operations
mukesh bhardwaj
 

Viewers also liked (11)

PDF
Rayleigh model
Roy Antony Arnold G
 
PDF
Higher Order Testing
Donovan Mulder
 
PPTX
Quality management
Dr. Uday Saikia
 
PPT
Test automationslides
UMA MAHESWARI
 
PDF
Rayleigh model
Roy Antony Arnold G
 
PDF
Testing the technology
Hamza Bhamla
 
DOCX
Notes of Software engineering and Project Management
NANDINI SHARMA
 
PDF
Importance of software quality metrics
Piyush Sohaney
 
PPT
Verification & Validation
Dhanasekaran Nagarajan
 
PDF
Introduction to Test Automation - Technology and Tools
KMS Technology
 
PDF
Automated Testing
John Paulett
 
Rayleigh model
Roy Antony Arnold G
 
Higher Order Testing
Donovan Mulder
 
Quality management
Dr. Uday Saikia
 
Test automationslides
UMA MAHESWARI
 
Rayleigh model
Roy Antony Arnold G
 
Testing the technology
Hamza Bhamla
 
Notes of Software engineering and Project Management
NANDINI SHARMA
 
Importance of software quality metrics
Piyush Sohaney
 
Verification & Validation
Dhanasekaran Nagarajan
 
Introduction to Test Automation - Technology and Tools
KMS Technology
 
Automated Testing
John Paulett
 
Ad

Similar to Defect removal effectiveness (20)

DOC
Defect Age
jyoti1925
 
PDF
Quality management models
Roy Antony Arnold G
 
PPT
Software Quality and Testing_Se lect18 btech
IIITA
 
PDF
Software Defects and SW Reliability Assessment
Kristine Hejna
 
PPTX
SE-Lecture-7.pptx
vishal choudhary
 
PPTX
Manual testing1
Raghu Sirka
 
PDF
Software Quality Management
ECC International
 
PPT
Sw quality metrics
Sruthi Balaji
 
PDF
Testing metrics
prats12345
 
PPT
Key Measurements For Testers
QA Programmer
 
PPT
02 processraison
Saul Fernando Godinez Cruz
 
PPTX
Quality & Reliability in Software Engineering
SivaRamaSundar Devasubramaniam
 
PPT
Ch13 system testexecution
abcxyz_abc
 
PPT
Key Measurements For Testers
Gopi Raghavendra
 
PPT
Metrics for manual testing
Anup Panigrahi
 
PPTX
SQA Lec_4.ppt learn sqa knowledge using this pptx
tk71577
 
PPT
Quality planning
Rahul Hada
 
PPT
Softwaretesting
Shahid Alam
 
PDF
testing.pdf
kumari36
 
Defect Age
jyoti1925
 
Quality management models
Roy Antony Arnold G
 
Software Quality and Testing_Se lect18 btech
IIITA
 
Software Defects and SW Reliability Assessment
Kristine Hejna
 
SE-Lecture-7.pptx
vishal choudhary
 
Manual testing1
Raghu Sirka
 
Software Quality Management
ECC International
 
Sw quality metrics
Sruthi Balaji
 
Testing metrics
prats12345
 
Key Measurements For Testers
QA Programmer
 
02 processraison
Saul Fernando Godinez Cruz
 
Quality & Reliability in Software Engineering
SivaRamaSundar Devasubramaniam
 
Ch13 system testexecution
abcxyz_abc
 
Key Measurements For Testers
Gopi Raghavendra
 
Metrics for manual testing
Anup Panigrahi
 
SQA Lec_4.ppt learn sqa knowledge using this pptx
tk71577
 
Quality planning
Rahul Hada
 
Softwaretesting
Shahid Alam
 
testing.pdf
kumari36
 
Ad

More from Roy Antony Arnold G (20)

PDF
Run chart
Roy Antony Arnold G
 
PDF
Reliability growth models for quality management
Roy Antony Arnold G
 
PDF
Pareto diagram
Roy Antony Arnold G
 
PDF
Ishikawa diagram
Roy Antony Arnold G
 
PDF
Histogram
Roy Antony Arnold G
 
PDF
Customer satisfaction
Roy Antony Arnold G
 
PDF
Complexity metrics and models
Roy Antony Arnold G
 
PDF
Check lists
Roy Antony Arnold G
 
PDF
Capability maturity model
Roy Antony Arnold G
 
PDF
Structure chart
Roy Antony Arnold G
 
PDF
Seven new tools
Roy Antony Arnold G
 
PDF
Scatter diagram
Roy Antony Arnold G
 
PDF
Relations diagram
Roy Antony Arnold G
 
PDF
Customer satisfaction
Roy Antony Arnold G
 
PDF
Complexity metrics and models
Roy Antony Arnold G
 
PDF
Case tools
Roy Antony Arnold G
 
PDF
Seven basic tools of quality
Roy Antony Arnold G
 
Reliability growth models for quality management
Roy Antony Arnold G
 
Pareto diagram
Roy Antony Arnold G
 
Ishikawa diagram
Roy Antony Arnold G
 
Customer satisfaction
Roy Antony Arnold G
 
Complexity metrics and models
Roy Antony Arnold G
 
Check lists
Roy Antony Arnold G
 
Capability maturity model
Roy Antony Arnold G
 
Structure chart
Roy Antony Arnold G
 
Seven new tools
Roy Antony Arnold G
 
Scatter diagram
Roy Antony Arnold G
 
Relations diagram
Roy Antony Arnold G
 
Customer satisfaction
Roy Antony Arnold G
 
Complexity metrics and models
Roy Antony Arnold G
 
Seven basic tools of quality
Roy Antony Arnold G
 

Recently uploaded (20)

PDF
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
PPTX
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
PPSX
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
PPTX
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
PPTX
How to Set Maximum Difference Odoo 18 POS
Celine George
 
PDF
Dimensions of Societal Planning in Commonism
StefanMz
 
PPT
Talk on Critical Theory, Part II, Philosophy of Social Sciences
Soraj Hongladarom
 
PDF
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
PDF
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
PDF
Isharyanti-2025-Cross Language Communication in Indonesian Language
Neny Isharyanti
 
PPTX
How to Convert an Opportunity into a Quotation in Odoo 18 CRM
Celine George
 
PDF
The Different Types of Non-Experimental Research
Thelma Villaflores
 
PPTX
Soil and agriculture microbiology .pptx
Keerthana Ramesh
 
PDF
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
PPTX
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
PPTX
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 
PPTX
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PPTX
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
PDF
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
PPTX
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
How to Set Maximum Difference Odoo 18 POS
Celine George
 
Dimensions of Societal Planning in Commonism
StefanMz
 
Talk on Critical Theory, Part II, Philosophy of Social Sciences
Soraj Hongladarom
 
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
Isharyanti-2025-Cross Language Communication in Indonesian Language
Neny Isharyanti
 
How to Convert an Opportunity into a Quotation in Odoo 18 CRM
Celine George
 
The Different Types of Non-Experimental Research
Thelma Villaflores
 
Soil and agriculture microbiology .pptx
Keerthana Ramesh
 
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 

Defect removal effectiveness

  • 1. Defect Removal Effectiveness Defect Removal Effectiveness Software Quality Management  Software Quality Management Unit 3 G. Roy Antony Arnold G R A A ld Asst. Professor / CSE GRAA
  • 2. • Defect removal i one of the top expenses i f l is f h in any software project and it greatly affects schedules. • Effective defect removal can lead to reductions in the development cycle time and g good product quality. p q y • It is important for all development organizations to measure the effectiveness of their defect removal processes. GRAA
  • 3. • Fagan (1976) defined error detection efficiency as: Errors found by an Inspection X 100% Total errors in the product before inspection • Jones's definition (1986), stated here, is very similar to Fagan's: – Removal Efficiency =  Defects found by removal  operation y p X 100% Defects present at removal operation Defects found X 100% Defects found + Defects not found (found later) • IBM Houston received the first NASA Excellence Award for Quality  and Productivity in 1987 GRAA
  • 4. • One of the four metrics IBM used to manage quality is One of the four metrics IBM used to manage quality is  the early detection percentage, which is actually  inspection defect removal effectiveness Early Detection Percentage = Number of major inspection errors Number of major inspection errors X 100% Total number of errors • where total number of errors is the sum of major  inspection errors and valid discrepancy reports  (discrepancy report is the mechanism for tracking test  (di t i th h i f t ki t t defects). GRAA
  • 6. • The effectiveness measure by Dunn (1987) differs little from The effectiveness measure by Dunn (1987) differs little from  Fagan's and from Jones's second definition.  • Dunn‘s definition is: Effectiveness of activity (development phase ) = Number of defects found by activity Number of defects found by activity X 100% Number of defects found by subsequent activities • This metric can be tuned by selecting only defects present at  the time of the activity and susceptible to detection by the  y p y activity. GRAA
  • 7. • Daskalantonakis (1992) describes the metrics used at Motorola for  software development. software development Total Defect Containment Effectiveness (TDCE) = Number of pre‐release defects Number of pre‐release defects Number of pre‐release defects + Number of post‐release defects Phase Containment Effectiveness (PCEi) = Number of Phase i errors Number of Phase i errors + Number of phase i defects • Where phase i errors are problems found during that development Where phase i errors are problems found during that development  phase in which they were introduced, and  • Phase i defects are problems found later than the development  phase in which they were introduced. phase in which they were introduced. GRAA
  • 8. Defects removed (at the step) ( ) X 100% Defects existing on step entry + Defects injected during development of the step GRAA
  • 10. • B d on a special study commissioned b th D Based i l t d i i d by the Department t t of Defence, Jones estimates the defect removal effectiveness for organizations at different levels of the development process capability maturity model ( (CMM):) – Level 1: 85% – Level 2: 89% – Level 3: 91% – Level 4: 93% – Level 5: 95% l • These values can be used as comparison baselines for organizations to evaluate their relative capability with regard to this important parameter. GRAA
  • 11. • Based on historical and recent data from three software engineering organizations at General Dynamics Decision Systems, Diaz and King (2002) report that the phase containment effectiveness by CMM level as follows: – Level 2: 25.5% – Level 3: 41.5% – Level 4: 62.3% – Level 5: 87.3% GRAA
  • 12. Phase Inserted Phase Inserted Cumulative % of Defects  Cumulative % of Defects removed through Acceptance  Test Requirements 94% Top Level Design  Top‐Level Design 95% Detailed Design 96% Code and  Unit Code and Unit Test 94% Integration Test  75% System Test System Test 70% Acceptance Test 70% GRAA