SlideShare a Scribd company logo
2 0 1 9
#AWSCLOUDEXPERIENCE
Democratizing Artificial
Intelligence with AWS
María Gaska
AI/ML Solution Architect
Amazon Web Services
Machine Learning at Amazon: A long heritage
Voice driven
interactions
Fulfillment automation
& inventory management
Personalized
recommendations
Drones
Inventing entirely new
customer experiences
Our mission at AWS
Put machine learning in the
hands of every developer
More machine learning happens on AWS
The Amazon Machine Learning stack
A I S E R V I C E S
(App developers with
little knowledge of ML)
A m a z o n
R e k o g n i t i o n
I m a g e
A m a z o n
P o l l y
A m a z o n
T r a n s c r i b e
A m a z o n
T r a n s l a t e
A m a z o n
C o m p r e h e n dA m a z o n
L e x
A m a z o n
R e k o g n i t i o n
V i d e o
Vision Speech LanguageChatbots
A m a z o n
F o r e c a s t
Forecasting
A m a z o n
T e x t r a c t
A m a z o n
P e r s o n a l i z e
RecommendationsDocuments
M L S E R V I C E S
(ML developers
and data scientists)
A m a z o n
S a g e M a k e r
G r o u n d T r u t h A l g o r i t h m s
N o t e b o o k s
M a r k e t p l a c e
U n s u p e r v i s e d
L e a r n i n g
S u p e r v i s e d
L e a r n i n g
R e i n f o r c e m e n t
L e a r n i n g
O p t i m i z a t i o n
( N e o )
T r a i n i n g
M L F R A M E W O R K S &
I N F R A S T R U C T U R E
(ML researchers
and academics)
Infrastructure
A m a z o n
E C 2 P 3
& P 3 D N
A m a z o n
E C 2 C 5
F P G A s A W S G r e e n g r a s s A m a z o n
E l a s t i c
I n f e r e n c e
A m a z o n
I n f e r e n t i a
The Amazon Machine Learning stack
M L S E R V I C E S
(ML developers
and data scientists)
A m a z o n
S a g e M a k e r
G r o u n d T r u t h A l g o r i t h m s
N o t e b o o k s
M a r k e t p l a c e
U n s u p e r v i s e d
L e a r n i n g
S u p e r v i s e d
L e a r n i n g
R e i n f o r c e m e n t
L e a r n i n g
O p t i m i z a t i o n
( N e o )
T r a i n i n g
Amazon SageMaker
Bringing machine learning to all developers
C o l l e c t a n d
p r e p a r e t r a i n i n g
d a t a
C h o o s e a n d
o p t i m i z e y o u r M L
a l g o r i t h m
S e t u p a n d
m a n a g e
e n v i r o n m e n t s f o r
t r a i n i n g
Train and tune model
(trial and error)
Deploy model
in production
S c a l e a n d m a n a g e
t h e p r o d u c t i o n
e n v i r o n m e n t
Pre-built
notebooks for
common problems
C o l l e c t a n d
p r e p a r e
t r a i n i n g d a t a
C h o o s e a n d
o p t i m i z e y o u r M L
a l g o r i t h m
S e t u p a n d
m a n a g e
e n v i r o n m e n t s f o r
t r a i n i n g
Train and tune model
(trial and error)
Deploy model
in production
S c a l e a n d m a n a g e
t h e p r o d u c t i o n
e n v i r o n m e n t
Amazon SageMaker
Bringing machine learning to all developers
Pre-built
notebooks for
common problems
C o l l e c t a n d
p r e p a r e
t r a i n i n g d a t a
Train and tune model
(trial and error)
Deploy model
in production
S c a l e a n d m a n a g e
t h e p r o d u c t i o n
e n v i r o n m e n t
B u i l t - i n , h i g h
p e r f o r m a n c e
a l g o r i t h m s
C h o o s e a n d
o p t i m i z e y o u r
M L a l g o r i t h m
K-Means Clustering
Principal Component Analysis
Neural Topic Modelling
Factorization Machines
Linear Learner (Regression)
BlazingText
Reinforcement learning
XGBoost
Topic Modeling (LDA)
Image Classification
Seq2Seq
Linear Learner (Classification)
DeepAR Forecasting
Amazon SageMaker
Bringing machine learning to all
developers
Pre-built
notebooks for
common problems
C o l l e c t a n d
p r e p a r e
t r a i n i n g d a t a
Train and tune model
(trial and error)
Deploy model
in production
S c a l e a n d m a n a g e
t h e p r o d u c t i o n
e n v i r o n m e n t
B u i l t - i n , h i g h
p e r f o r m a n c e
a l g o r i t h m s
C h o o s e a n d
o p t i m i z e y o u r
M L a l g o r i t h m
One-click
training
Set up and manage
environments
for training
Amazon SageMaker
Bringing machine learning to all developers
Pre-built
notebooks for
common problems
C o l l e c t a n d
p r e p a r e
t r a i n i n g d a t a
Deploy model
in production
S c a l e a n d m a n a g e
t h e p r o d u c t i o n
e n v i r o n m e n t
B u i l t - i n , h i g h
p e r f o r m a n c e
a l g o r i t h m s
C h o o s e a n d
o p t i m i z e y o u r
M L a l g o r i t h m
One-click
training
Set up and manage
environments
for training
O p t i m i z a t i o n
Amazon SageMaker
Bringing machine learning to all developers
Train and tune
model
(trial and error)
Pre-built
notebooks for
common problems
C o l l e c t a n d
p r e p a r e
t r a i n i n g d a t a
S c a l e a n d m a n a g e
t h e p r o d u c t i o n
e n v i r o n m e n t
B u i l t - i n , h i g h
p e r f o r m a n c e
a l g o r i t h m s
C h o o s e a n d
o p t i m i z e y o u r
M L a l g o r i t h m
One-click
training
Set up and manage
environments
for training
O p t i m i z a t i o n One-click
deployment
Deploy model
in production
Amazon SageMaker
Bringing machine learning to all developers
Train and tune
model
(trial and error)
Amazon SageMaker
Bringing machine learning to all developers
Pre-built
notebooks for
common problems
C o l l e c t a n d
p r e p a r e
t r a i n i n g d a t a
B u i l t - i n , h i g h
p e r f o r m a n c e
a l g o r i t h m s
C h o o s e a n d
o p t i m i z e y o u r
M L a l g o r i t h m
One-click
training
Set up and manage
environments
for training
O p t i m i z a t i o n
F u l l y m a n a g e d w i t h
a u t o - s c a l i n g , h e a l t h
c h e c k s , a u t o m a t i c
h a n d l i n g o f n o d e
f a i l u r e s , a n d s e c u r i t y
c h e c k s
S c a l e a n d
m a n a g e t h e
p r o d u c t i o n
e n v i r o n m e n t
Train and tune
model
(trial and error)
One-click
deployment
Deploy model
in production
More than ten thousand customers using Amazon SageMaker
The Amazon Machine Learning stack
A I S E R V I C E S
(App developers with
little knowledge of ML)
A m a z o n
R e k o g n i t i o n
I m a g e
A m a z o n
P o l l y
A m a z o n
T r a n s c r i b e
A m a z o n
T r a n s l a t e
A m a z o n
C o m p r e h e n dA m a z o n
L e x
A m a z o n
R e k o g n i t i o n
V i d e o
Vision Speech LanguageChatbots
A m a z o n
F o r e c a s t
Forecasting
A m a z o n
T e x t r a c t
A m a z o n
P e r s o n a l i z e
RecommendationsDocuments
M L S E R V I C E S
(ML developers
and data scientists)
A m a z o n
S a g e M a k e r
G r o u n d T r u t h A l g o r i t h m s
N o t e b o o k s
M a r k e t p l a c e
U n s u p e r v i s e d
L e a r n i n g
S u p e r v i s e d
L e a r n i n g
R e i n f o r c e m e n t
L e a r n i n g
O p t i m i z a t i o n
( N e o )
T r a i n i n g
M L F R A M E W O R K S &
I N F R A S T R U C T U R E
(ML researchers
and academics)
Infrastructure
A m a z o n
E C 2 P 3
& P 3 D N
A m a z o n
E C 2 C 5
F P G A s A W S G r e e n g r a s s A m a z o n
E l a s t i c
I n f e r e n c e
A m a z o n
I n f e r e n t i a
The Amazon Machine Learning stack
A I S E R V I C E S
(App developers with
little knowledge of ML)
A m a z o n
R e k o g n i t i o n
I m a g e
A m a z o n
P o l l y
A m a z o n
T r a n s c r i b e
A m a z o n
T r a n s l a t e
A m a z o n
C o m p r e h e n dA m a z o n
L e x
A m a z o n
R e k o g n i t i o n
V i d e o
Vision Speech LanguageChatbots
A m a z o n
F o r e c a s t
Forecasting
A m a z o n
T e x t r a c t
A m a z o n
P e r s o n a l i z e
RecommendationsDocuments
How is Artificial Intelligence
changing the world?
MATÍAS BATTAGLIA
SOLUTIONS ARCHITECT
@_MattBattaglia mbattagliaromano matt@nubiral.com
About Me
@_MattBattaglia mbattagliaromano matt@nubiral.com
About Us
Nubiral is a boutique technology company, that
focuses on product development and professional
services for enterprises by adopting public, private
and hybrid cloud methodologies.
@_MattBattaglia mbattagliaromano matt@nubiral.com
@_MattBattaglia mbattagliaromano matt@nubiral.com
How can we help you…
DevOps
Cloud
BigData Analytics
AI Optimization
@_MattBattaglia mbattagliaromano matt@nubiral.com
How is Artificial Intelligence
changing the world?
@_MattBattaglia mbattagliaromano matt@nubiral.com
“The number of enterprises implementing
artificial intelligence grew 270 percent in
the past four years and tripled in the past year.”
-- Gartner
@_MattBattaglia mbattagliaromano matt@nubiral.com
How can Artificial Intelligence
help your business
@_MattBattaglia mbattagliaromano matt@nubiral.com
+ A.I. =
Smart Doorbell
Digital Assistant
Recommendation Engine
Fraud Detection
https://aws.amazon.com/es/solutions/fraud-detection-using-machine-learning/
@_MattBattaglia mbattagliaromano matt@nubiral.com
Closing Thoughts
@_MattBattaglia mbattagliaromano matt@nubiral.com
A.I. is changing the world
A.I. adoption is on the rise
Innovation should be a priority
A.I. enhances existing products
KEY TAKEAWAYS…
THANK YOU!
MATÍAS BATTAGLIA
SOLUTIONS ARCHITECT
@_MattBattaglia mbattagliaromano matt@nubiral.com
N o M L e x p e r i e n c e r e q u i r e d
NEW!
R e a l - t i m e p e r s o n a l i z a t i o n a n d
r e c o m m e n d a t i o n s e r v i c e , b a s e d o n
t h e s a m e t e c h n o l o g y u s e d a t
A m a z o n . c o m
A V A I L A B L E I N P R E V I E W T O D A Y
Amazon Personalize
Activity stream
from app
Views, signups,
conversion, etc.
Inventory
Articles, products,
videos, etc.
Demographics
(optional)
LOAD DATA
(EMR Cluster)
INSPECT
DATA
IDENTIFY
FEATURES
SELECT
ALGORITHMS
SELECT
HYPERPARAMETERS
TRAIN
MODELS
OPTIMIZE
MODELS
HOST
MODELS
BUILD FEATURE
STORE
CREATE
REAL-TIME
CACHES
Customized
personalization &
recommendation
API
Fully managed by Amazon Personalize
Amazon Personalize
Amazon Personalize: machine learning personalization and recommendations
Age, location, etc.
NEW!
A c c u r a t e t i m e - s e r i e s f o r e c a s t i n g
s e r v i c e , b a s e d o n t h e s a m e
t e c h n o l o g y u s e d a t A m a z o n . c o m
A V A I L A B L E I N P R E V I E W T O D A Y
Amazon Forecast
N o M L e x p e r i e n c e r e q u i r e d
Historical data
Supply chain,
inventory, etc.
Customized
forecasting API
Inspect
data
Identify
features
Select
from 8
algorithms
Select
hyperparameters
Host
models
Load
data
Train
models
Optimize
models
Related “causal” data
Weather, special offers, product
details
F u l l y m a n a g e d b y A m a z o n
F o r e c a s t
Amazon Forecast
Amazon Forecast: machine learning time-series forecasting
Using Amazon Forecast for time-series forecasts
Any historical
time-series
Integrates with SAP and
Oracle Supply Chain
Custom forecasts
with 3 clicks
50% more
accurate
1/10th
the cost
Integrates with
Amazon Timestream
Retail demand Travel demand AWS usage
Revenue forecasts Web traffic Advertising demand
Generate forecasts for:
The Amazon Machine Learning stack
A I S E R V I C E S
(App developers with
little knowledge of ML)
A m a z o n
R e k o g n i t i o n
I m a g e
A m a z o n
P o l l y
A m a z o n
T r a n s c r i b e
A m a z o n
T r a n s l a t e
A m a z o n
C o m p r e h e n dA m a z o n
L e x
A m a z o n
R e k o g n i t i o n
V i d e o
Vision Speech LanguageChatbots
A m a z o n
F o r e c a s t
Forecasting
A m a z o n
T e x t r a c t
A m a z o n
P e r s o n a l i z e
RecommendationsDocuments
M L S E R V I C E S
(ML developers
and data scientists)
A m a z o n
S a g e M a k e r
G r o u n d T r u t h A l g o r i t h m s
N o t e b o o k s
M a r k e t p l a c e
U n s u p e r v i s e d
L e a r n i n g
S u p e r v i s e d
L e a r n i n g
R e i n f o r c e m e n t
L e a r n i n g
O p t i m i z a t i o n
( N e o )
T r a i n i n g
M L F R A M E W O R K S &
I N F R A S T R U C T U R E
(ML researchers
and academics)
Infrastructure
A m a z o n
E C 2 P 3
& P 3 D N
A m a z o n
E C 2 C 5
F P G A s A W S G r e e n g r a s s A m a z o n
E l a s t i c
I n f e r e n c e
A m a z o n
I n f e r e n t i a
Zona Demo: Face detection architecture

More Related Content

Similar to Innovation Track AWS Cloud Experience Argentina - Democratizing Artificial Intelligence with AWS (10)

PDF
Building smart applications with AWS AI services (October 2019)
Julien SIMON
 
PPTX
Deep Learning with TensorFlow and Apache MXNet on Amazon SageMaker (March 2019)
Julien SIMON
 
PDF
Amir sadoughi developing large-scale machine learning algorithms on amazon ...
MLconf
 
PPTX
What it Means to be a Next-Generation Managed Service Provider
Datadog
 
PDF
GDSC Machine Learning Session Presentation
gdsclavasa
 
PPTX
GDSC BPIT ML Campaign.pptx
khushbooGupta928250
 
PDF
San Francisco Hacker News - Machine Learning for Hackers
Adam Gibson
 
PDF
Webinar: Ask the Experts - AIML (Español)
Amazon Web Services LATAM
 
PDF
Introduction to AI/ML with AWS
Suman Debnath
 
PPTX
Machine learning For Smarter Manufacturing & its Fundamentals
SuchitGaikwad
 
Building smart applications with AWS AI services (October 2019)
Julien SIMON
 
Deep Learning with TensorFlow and Apache MXNet on Amazon SageMaker (March 2019)
Julien SIMON
 
Amir sadoughi developing large-scale machine learning algorithms on amazon ...
MLconf
 
What it Means to be a Next-Generation Managed Service Provider
Datadog
 
GDSC Machine Learning Session Presentation
gdsclavasa
 
GDSC BPIT ML Campaign.pptx
khushbooGupta928250
 
San Francisco Hacker News - Machine Learning for Hackers
Adam Gibson
 
Webinar: Ask the Experts - AIML (Español)
Amazon Web Services LATAM
 
Introduction to AI/ML with AWS
Suman Debnath
 
Machine learning For Smarter Manufacturing & its Fundamentals
SuchitGaikwad
 

More from Amazon Web Services LATAM (20)

PPTX
AWS para terceiro setor - Sessão 1 - Introdução à nuvem
Amazon Web Services LATAM
 
PPTX
AWS para terceiro setor - Sessão 2 - Armazenamento e Backup
Amazon Web Services LATAM
 
PPTX
AWS para terceiro setor - Sessão 3 - Protegendo seus dados.
Amazon Web Services LATAM
 
PPTX
AWS para terceiro setor - Sessão 1 - Introdução à nuvem
Amazon Web Services LATAM
 
PPTX
AWS para terceiro setor - Sessão 2 - Armazenamento e Backup
Amazon Web Services LATAM
 
PPTX
AWS para terceiro setor - Sessão 3 - Protegendo seus dados.
Amazon Web Services LATAM
 
PPTX
Automatice el proceso de entrega con CI/CD en AWS
Amazon Web Services LATAM
 
PPTX
Automatize seu processo de entrega de software com CI/CD na AWS
Amazon Web Services LATAM
 
PPTX
Cómo empezar con Amazon EKS
Amazon Web Services LATAM
 
PPTX
Como começar com Amazon EKS
Amazon Web Services LATAM
 
PPTX
Ransomware: como recuperar os seus dados na nuvem AWS
Amazon Web Services LATAM
 
PPTX
Ransomware: cómo recuperar sus datos en la nube de AWS
Amazon Web Services LATAM
 
PPTX
Ransomware: Estratégias de Mitigação
Amazon Web Services LATAM
 
PPTX
Ransomware: Estratégias de Mitigación
Amazon Web Services LATAM
 
PPTX
Aprenda a migrar y transferir datos al usar la nube de AWS
Amazon Web Services LATAM
 
PPTX
Aprenda como migrar e transferir dados ao utilizar a nuvem da AWS
Amazon Web Services LATAM
 
PPTX
Cómo mover a un almacenamiento de archivos administrados
Amazon Web Services LATAM
 
PPTX
Simplifique su BI con AWS
Amazon Web Services LATAM
 
PPTX
Simplifique o seu BI com a AWS
Amazon Web Services LATAM
 
PPTX
Os benefícios de migrar seus workloads de Big Data para a AWS
Amazon Web Services LATAM
 
AWS para terceiro setor - Sessão 1 - Introdução à nuvem
Amazon Web Services LATAM
 
AWS para terceiro setor - Sessão 2 - Armazenamento e Backup
Amazon Web Services LATAM
 
AWS para terceiro setor - Sessão 3 - Protegendo seus dados.
Amazon Web Services LATAM
 
AWS para terceiro setor - Sessão 1 - Introdução à nuvem
Amazon Web Services LATAM
 
AWS para terceiro setor - Sessão 2 - Armazenamento e Backup
Amazon Web Services LATAM
 
AWS para terceiro setor - Sessão 3 - Protegendo seus dados.
Amazon Web Services LATAM
 
Automatice el proceso de entrega con CI/CD en AWS
Amazon Web Services LATAM
 
Automatize seu processo de entrega de software com CI/CD na AWS
Amazon Web Services LATAM
 
Cómo empezar con Amazon EKS
Amazon Web Services LATAM
 
Como começar com Amazon EKS
Amazon Web Services LATAM
 
Ransomware: como recuperar os seus dados na nuvem AWS
Amazon Web Services LATAM
 
Ransomware: cómo recuperar sus datos en la nube de AWS
Amazon Web Services LATAM
 
Ransomware: Estratégias de Mitigação
Amazon Web Services LATAM
 
Ransomware: Estratégias de Mitigación
Amazon Web Services LATAM
 
Aprenda a migrar y transferir datos al usar la nube de AWS
Amazon Web Services LATAM
 
Aprenda como migrar e transferir dados ao utilizar a nuvem da AWS
Amazon Web Services LATAM
 
Cómo mover a un almacenamiento de archivos administrados
Amazon Web Services LATAM
 
Simplifique su BI con AWS
Amazon Web Services LATAM
 
Simplifique o seu BI com a AWS
Amazon Web Services LATAM
 
Os benefícios de migrar seus workloads de Big Data para a AWS
Amazon Web Services LATAM
 
Ad

Recently uploaded (20)

PPT
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 
PDF
Smart Air Quality Monitoring with Serrax AQM190 LITE
SERRAX TECHNOLOGIES LLP
 
PDF
Predicting the unpredictable: re-engineering recommendation algorithms for fr...
Speck&Tech
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PPTX
MSP360 Backup Scheduling and Retention Best Practices.pptx
MSP360
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
July Patch Tuesday
Ivanti
 
PDF
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 
Smart Air Quality Monitoring with Serrax AQM190 LITE
SERRAX TECHNOLOGIES LLP
 
Predicting the unpredictable: re-engineering recommendation algorithms for fr...
Speck&Tech
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
MSP360 Backup Scheduling and Retention Best Practices.pptx
MSP360
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
July Patch Tuesday
Ivanti
 
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
Ad

Innovation Track AWS Cloud Experience Argentina - Democratizing Artificial Intelligence with AWS

  • 1. 2 0 1 9 #AWSCLOUDEXPERIENCE
  • 2. Democratizing Artificial Intelligence with AWS María Gaska AI/ML Solution Architect Amazon Web Services
  • 3. Machine Learning at Amazon: A long heritage Voice driven interactions Fulfillment automation & inventory management Personalized recommendations Drones Inventing entirely new customer experiences
  • 4. Our mission at AWS Put machine learning in the hands of every developer
  • 5. More machine learning happens on AWS
  • 6. The Amazon Machine Learning stack A I S E R V I C E S (App developers with little knowledge of ML) A m a z o n R e k o g n i t i o n I m a g e A m a z o n P o l l y A m a z o n T r a n s c r i b e A m a z o n T r a n s l a t e A m a z o n C o m p r e h e n dA m a z o n L e x A m a z o n R e k o g n i t i o n V i d e o Vision Speech LanguageChatbots A m a z o n F o r e c a s t Forecasting A m a z o n T e x t r a c t A m a z o n P e r s o n a l i z e RecommendationsDocuments M L S E R V I C E S (ML developers and data scientists) A m a z o n S a g e M a k e r G r o u n d T r u t h A l g o r i t h m s N o t e b o o k s M a r k e t p l a c e U n s u p e r v i s e d L e a r n i n g S u p e r v i s e d L e a r n i n g R e i n f o r c e m e n t L e a r n i n g O p t i m i z a t i o n ( N e o ) T r a i n i n g M L F R A M E W O R K S & I N F R A S T R U C T U R E (ML researchers and academics) Infrastructure A m a z o n E C 2 P 3 & P 3 D N A m a z o n E C 2 C 5 F P G A s A W S G r e e n g r a s s A m a z o n E l a s t i c I n f e r e n c e A m a z o n I n f e r e n t i a
  • 7. The Amazon Machine Learning stack M L S E R V I C E S (ML developers and data scientists) A m a z o n S a g e M a k e r G r o u n d T r u t h A l g o r i t h m s N o t e b o o k s M a r k e t p l a c e U n s u p e r v i s e d L e a r n i n g S u p e r v i s e d L e a r n i n g R e i n f o r c e m e n t L e a r n i n g O p t i m i z a t i o n ( N e o ) T r a i n i n g
  • 8. Amazon SageMaker Bringing machine learning to all developers C o l l e c t a n d p r e p a r e t r a i n i n g d a t a C h o o s e a n d o p t i m i z e y o u r M L a l g o r i t h m S e t u p a n d m a n a g e e n v i r o n m e n t s f o r t r a i n i n g Train and tune model (trial and error) Deploy model in production S c a l e a n d m a n a g e t h e p r o d u c t i o n e n v i r o n m e n t
  • 9. Pre-built notebooks for common problems C o l l e c t a n d p r e p a r e t r a i n i n g d a t a C h o o s e a n d o p t i m i z e y o u r M L a l g o r i t h m S e t u p a n d m a n a g e e n v i r o n m e n t s f o r t r a i n i n g Train and tune model (trial and error) Deploy model in production S c a l e a n d m a n a g e t h e p r o d u c t i o n e n v i r o n m e n t Amazon SageMaker Bringing machine learning to all developers
  • 10. Pre-built notebooks for common problems C o l l e c t a n d p r e p a r e t r a i n i n g d a t a Train and tune model (trial and error) Deploy model in production S c a l e a n d m a n a g e t h e p r o d u c t i o n e n v i r o n m e n t B u i l t - i n , h i g h p e r f o r m a n c e a l g o r i t h m s C h o o s e a n d o p t i m i z e y o u r M L a l g o r i t h m K-Means Clustering Principal Component Analysis Neural Topic Modelling Factorization Machines Linear Learner (Regression) BlazingText Reinforcement learning XGBoost Topic Modeling (LDA) Image Classification Seq2Seq Linear Learner (Classification) DeepAR Forecasting Amazon SageMaker Bringing machine learning to all developers
  • 11. Pre-built notebooks for common problems C o l l e c t a n d p r e p a r e t r a i n i n g d a t a Train and tune model (trial and error) Deploy model in production S c a l e a n d m a n a g e t h e p r o d u c t i o n e n v i r o n m e n t B u i l t - i n , h i g h p e r f o r m a n c e a l g o r i t h m s C h o o s e a n d o p t i m i z e y o u r M L a l g o r i t h m One-click training Set up and manage environments for training Amazon SageMaker Bringing machine learning to all developers
  • 12. Pre-built notebooks for common problems C o l l e c t a n d p r e p a r e t r a i n i n g d a t a Deploy model in production S c a l e a n d m a n a g e t h e p r o d u c t i o n e n v i r o n m e n t B u i l t - i n , h i g h p e r f o r m a n c e a l g o r i t h m s C h o o s e a n d o p t i m i z e y o u r M L a l g o r i t h m One-click training Set up and manage environments for training O p t i m i z a t i o n Amazon SageMaker Bringing machine learning to all developers Train and tune model (trial and error)
  • 13. Pre-built notebooks for common problems C o l l e c t a n d p r e p a r e t r a i n i n g d a t a S c a l e a n d m a n a g e t h e p r o d u c t i o n e n v i r o n m e n t B u i l t - i n , h i g h p e r f o r m a n c e a l g o r i t h m s C h o o s e a n d o p t i m i z e y o u r M L a l g o r i t h m One-click training Set up and manage environments for training O p t i m i z a t i o n One-click deployment Deploy model in production Amazon SageMaker Bringing machine learning to all developers Train and tune model (trial and error)
  • 14. Amazon SageMaker Bringing machine learning to all developers Pre-built notebooks for common problems C o l l e c t a n d p r e p a r e t r a i n i n g d a t a B u i l t - i n , h i g h p e r f o r m a n c e a l g o r i t h m s C h o o s e a n d o p t i m i z e y o u r M L a l g o r i t h m One-click training Set up and manage environments for training O p t i m i z a t i o n F u l l y m a n a g e d w i t h a u t o - s c a l i n g , h e a l t h c h e c k s , a u t o m a t i c h a n d l i n g o f n o d e f a i l u r e s , a n d s e c u r i t y c h e c k s S c a l e a n d m a n a g e t h e p r o d u c t i o n e n v i r o n m e n t Train and tune model (trial and error) One-click deployment Deploy model in production
  • 15. More than ten thousand customers using Amazon SageMaker
  • 16. The Amazon Machine Learning stack A I S E R V I C E S (App developers with little knowledge of ML) A m a z o n R e k o g n i t i o n I m a g e A m a z o n P o l l y A m a z o n T r a n s c r i b e A m a z o n T r a n s l a t e A m a z o n C o m p r e h e n dA m a z o n L e x A m a z o n R e k o g n i t i o n V i d e o Vision Speech LanguageChatbots A m a z o n F o r e c a s t Forecasting A m a z o n T e x t r a c t A m a z o n P e r s o n a l i z e RecommendationsDocuments M L S E R V I C E S (ML developers and data scientists) A m a z o n S a g e M a k e r G r o u n d T r u t h A l g o r i t h m s N o t e b o o k s M a r k e t p l a c e U n s u p e r v i s e d L e a r n i n g S u p e r v i s e d L e a r n i n g R e i n f o r c e m e n t L e a r n i n g O p t i m i z a t i o n ( N e o ) T r a i n i n g M L F R A M E W O R K S & I N F R A S T R U C T U R E (ML researchers and academics) Infrastructure A m a z o n E C 2 P 3 & P 3 D N A m a z o n E C 2 C 5 F P G A s A W S G r e e n g r a s s A m a z o n E l a s t i c I n f e r e n c e A m a z o n I n f e r e n t i a
  • 17. The Amazon Machine Learning stack A I S E R V I C E S (App developers with little knowledge of ML) A m a z o n R e k o g n i t i o n I m a g e A m a z o n P o l l y A m a z o n T r a n s c r i b e A m a z o n T r a n s l a t e A m a z o n C o m p r e h e n dA m a z o n L e x A m a z o n R e k o g n i t i o n V i d e o Vision Speech LanguageChatbots A m a z o n F o r e c a s t Forecasting A m a z o n T e x t r a c t A m a z o n P e r s o n a l i z e RecommendationsDocuments
  • 18. How is Artificial Intelligence changing the world? MATÍAS BATTAGLIA SOLUTIONS ARCHITECT @_MattBattaglia mbattagliaromano [email protected]
  • 20. About Us Nubiral is a boutique technology company, that focuses on product development and professional services for enterprises by adopting public, private and hybrid cloud methodologies. @_MattBattaglia mbattagliaromano [email protected]
  • 21. @_MattBattaglia mbattagliaromano [email protected] How can we help you… DevOps Cloud BigData Analytics AI Optimization
  • 22. @_MattBattaglia mbattagliaromano [email protected] How is Artificial Intelligence changing the world?
  • 23. @_MattBattaglia mbattagliaromano [email protected] “The number of enterprises implementing artificial intelligence grew 270 percent in the past four years and tripled in the past year.” -- Gartner
  • 24. @_MattBattaglia mbattagliaromano [email protected] How can Artificial Intelligence help your business
  • 31. @_MattBattaglia mbattagliaromano [email protected] A.I. is changing the world A.I. adoption is on the rise Innovation should be a priority A.I. enhances existing products KEY TAKEAWAYS…
  • 32. THANK YOU! MATÍAS BATTAGLIA SOLUTIONS ARCHITECT @_MattBattaglia mbattagliaromano [email protected]
  • 33. N o M L e x p e r i e n c e r e q u i r e d NEW! R e a l - t i m e p e r s o n a l i z a t i o n a n d r e c o m m e n d a t i o n s e r v i c e , b a s e d o n t h e s a m e t e c h n o l o g y u s e d a t A m a z o n . c o m A V A I L A B L E I N P R E V I E W T O D A Y Amazon Personalize
  • 34. Activity stream from app Views, signups, conversion, etc. Inventory Articles, products, videos, etc. Demographics (optional) LOAD DATA (EMR Cluster) INSPECT DATA IDENTIFY FEATURES SELECT ALGORITHMS SELECT HYPERPARAMETERS TRAIN MODELS OPTIMIZE MODELS HOST MODELS BUILD FEATURE STORE CREATE REAL-TIME CACHES Customized personalization & recommendation API Fully managed by Amazon Personalize Amazon Personalize Amazon Personalize: machine learning personalization and recommendations Age, location, etc.
  • 35. NEW! A c c u r a t e t i m e - s e r i e s f o r e c a s t i n g s e r v i c e , b a s e d o n t h e s a m e t e c h n o l o g y u s e d a t A m a z o n . c o m A V A I L A B L E I N P R E V I E W T O D A Y Amazon Forecast N o M L e x p e r i e n c e r e q u i r e d
  • 36. Historical data Supply chain, inventory, etc. Customized forecasting API Inspect data Identify features Select from 8 algorithms Select hyperparameters Host models Load data Train models Optimize models Related “causal” data Weather, special offers, product details F u l l y m a n a g e d b y A m a z o n F o r e c a s t Amazon Forecast Amazon Forecast: machine learning time-series forecasting
  • 37. Using Amazon Forecast for time-series forecasts Any historical time-series Integrates with SAP and Oracle Supply Chain Custom forecasts with 3 clicks 50% more accurate 1/10th the cost Integrates with Amazon Timestream Retail demand Travel demand AWS usage Revenue forecasts Web traffic Advertising demand Generate forecasts for:
  • 38. The Amazon Machine Learning stack A I S E R V I C E S (App developers with little knowledge of ML) A m a z o n R e k o g n i t i o n I m a g e A m a z o n P o l l y A m a z o n T r a n s c r i b e A m a z o n T r a n s l a t e A m a z o n C o m p r e h e n dA m a z o n L e x A m a z o n R e k o g n i t i o n V i d e o Vision Speech LanguageChatbots A m a z o n F o r e c a s t Forecasting A m a z o n T e x t r a c t A m a z o n P e r s o n a l i z e RecommendationsDocuments M L S E R V I C E S (ML developers and data scientists) A m a z o n S a g e M a k e r G r o u n d T r u t h A l g o r i t h m s N o t e b o o k s M a r k e t p l a c e U n s u p e r v i s e d L e a r n i n g S u p e r v i s e d L e a r n i n g R e i n f o r c e m e n t L e a r n i n g O p t i m i z a t i o n ( N e o ) T r a i n i n g M L F R A M E W O R K S & I N F R A S T R U C T U R E (ML researchers and academics) Infrastructure A m a z o n E C 2 P 3 & P 3 D N A m a z o n E C 2 C 5 F P G A s A W S G r e e n g r a s s A m a z o n E l a s t i c I n f e r e n c e A m a z o n I n f e r e n t i a
  • 39. Zona Demo: Face detection architecture