SlideShare a Scribd company logo
VertexAI
PipelinesforyourMLOpsworkflows
Márton Kodok
Software Architect at REEA.net
July 3-5, Barcelona
1. What is Vertex AI?
2. Build, train and deploy ML solutions
3. What is MLOps?
4. Using Pipelines throughout your ML workflow
5. Adapting to changes of data
6. Conclusions
Agenda
Vertex AI: Pipelines for your MLOps workflows @martonkodok
● Among the Top 3 romanians on Stackoverflow 204k reputation
● Google Developer Expert on Cloud technologies (2016→)
● Champion of Google Cloud Innovators program (2021→)
● Crafting Cloud Architecture+ML backends at REEA.net
Articles: martonkodok.medium.com
Twitter: @martonkodok
Slideshare: martonkodok
StackOverflow: pentium10
GitHub: pentium10
Vertex AI: Pipelines for your MLOps workflows @martonkodok
About me
@martonkodok
What is
Vertex AI?
Part #1
“ VertexAI is a managed ML platform for developers
@martonkodok
1. Build generative AI apps quickly and responsibly by easily accessing a variety of foundation
models with Model Garden and Generative AI Studio
2. Accelerate ML with tooling for pre-trained and custom models
3. Implement MLOps practices to efficiently scale, manage and govern your ML workloads
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Vertex AI: One AI platform, every ML tool you need
What’s included in VertexAI?
@martonkodok
Data Labeling
AutoML models
DL Environment (DL VM + DL Container)
Prediction
Feature Store Training
Experiments
Data Readiness
Feature
Engineering
Training/
HP-Tuning
Model
Monitoring
Model serving
Understanding/
Tuning
Edge
Model
Management
Notebooks
Pipelines (Orchestration)
Explainable AI
Hybrid AI
Model
Monitoring
Metadata
Vision-Video-NLP-Translate
Models
Datasets
Custom Models
Containers
Python
Endpoints
BigQuery ML
BigQuery Models
Publisher
Pre-trained
models
Model Garden GenAI Studio
Foundation -> LLM Palm 2 API
Where does VertexAI fit in?
Application Servers
Vertex AI
Desktop client
Mobile client
End-to-end platform for
ML model development
and deployment
Backend
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Application Logic
VertexAI is a serverless MLOps platform
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Operational
Model
Programming
Model
No Infra Management Managed Security Pay only for usage
Model-as-a-service
oriented
Streamlined model
development
Open SDKs,
integrates with ML frameworks
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Model Garden
Open Source
Models
Task Specific
AutoML and APIs
Foundation
Models
Now in GA
Model Garden
The PaLM 2 is available only in the US. @martonkodok
Foundation Models
Embeddings API for
Text and Image
Extract semantic information
from unstructured data
PaLM for Text
Custom language tasks
PaLM for Chat
Multi-turn conversations with
session context
Codey for
Code Generation
Improve coding and debugging
Now in GA
Now in GA
Preview
Preview
The PaLM 2 is available only in the US. @martonkodok
Sample code for GenAI on Google Cloud
goo.gle/gen-ai-github
Vertex AI: Pipelines for your MLOps workflows @martonkodok
VertexAI:Managed unified ML platform
Fine-tuning *
“ VertexAI autoML use cases
Vertex AI: Pipelines for your MLOps workflows @martonkodok
What’s included in VertexAI?
@martonkodok
Data Labeling
AutoML models
DL Environment (DL VM + DL Container)
Prediction
Feature Store Training
Experiments
Data Readiness
Feature
Engineering
Training/
HP-Tuning
Model
Monitoring
Model serving
Understanding/
Tuning
Edge
Model
Management
Notebooks
Pipelines (Orchestration)
Explainable AI
Hybrid AI
Model
Monitoring
Metadata
Vision-Video-NLP-Translate
Models
Datasets
Custom Models
Containers
Python
Endpoints
BigQuery ML
BigQuery Models
Publisher
Pre-trained
models
Model Garden GenAI Studio
Foundation -> LLM Palm 2 API
- Regression/classification
- Forecasting
- Single-label classification
- Multi-label classification
- Text entity extraction
- Text sentiment analysis
- Video action recognition
- Video classifications
for entire video, shots, frames
- Video object tracking
AutoML: Managed datasets + objectives
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Image Tabular Text Video
- Single-label classification
- Multi-label classification
- Image object detection
- Image segmentation
Vertex AI: Managed dataset + objectives
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Image
Create an image classification prediction model
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Create an image classification prediction model
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Create an image object detection model
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Vertex AI: Managed dataset + objectives
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Tabular
Vertex AI: Managed dataset + objectives
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Text
Vertex AI: Managed dataset + objectives
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Video
Train models
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Build dataset Train model
Scalably
deploy
model
Evaluate,
monitor,
retrain
1. AutoML out-of-the box training integration
No-code solution. You must target one of the AutoML’s predefined objectives.
2. Custom Training - run your own training applications in the cloud
Train with one of the Google’s pre-builtcontainers or useyourown.
Training
@martonkodok
Pre-built containers for custom training
https://cloud.google.com/vertex-ai/docs/training/pre-built-containers @martonkodok
Tensorflow
ML Framework version 1.15-2.9
use with Cuda 11.x GPU
scikit-learn
ML Framework version 0.23
No GPUs
PyTorch
ML Framework version 1.4 - 1.11
use with Cuda 11.x GPU
XGBoost
ML Framework version 1.1
No GPUs
Deploying models
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Build dataset Train model
Scalably
deploy
model
Evaluate,
monitor,
retrain
“ You can deploy models on VertexAI
and get a HTTPs Endpointsto serve
predictions rapidly and reliably.
Vertex AI: Pipelines for your MLOps workflows @martonkodok
1. Deploy a model and get aREST endpointto serve predictions realtime or batched
2. You can use models whetherornotthemodelwastrained on Vertex AI.
3. Specify a prediction traffic split in your endpoint.
4. VPC Private Network option for custom-trained models/tabular models
Vertex AI: Endpoints
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Vertex AI Endpoints Backend Prediction
deploy REST
@martonkodok
What is
ML Ops?
Part #2
Elements for ML systems
Adapted from Hidden Technical Debt in Machine Learning Systems. @martonkodok
“ DevOpsprinciples to MLsystems
Vertex AI: Pipelines for your MLOps workflows @martonkodok
What is MLOps?
“Continuousdelivery and automationpipelines
for machinelearning systems.
Vertex AI: Pipelines for your MLOps workflows @martonkodok
What is MLOps?
MLOpslevels
@martonkodok
🖐
Level 0:
Manual process
Level 1:
ML pipeline automation
Level 2:
CI/CD pipeline automation
Levelsofautomation defines maturity of theMLprocess
Process
Release cycle
Development
principle
Trigger action
MLOps level 0:
Manual process
Build & deploy is
entirely manual
Infrequent release
iterations
No CI/ CD
None. Disconnection
between ML and
operations.
MLOps level 1:
ML pipeline automation
MLOps level 2:
CI/CD pipeline automation
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Continuous training by
automating the ML pipeline
Achieve continuous delivery
of model prediction
Automate the
build/train/deploy pipeline
New pipelines mostly based
on new data.
Iteratively try out new ML
algorithms, orchestrated
experiment steps
Continuous source code
packaging. Build source.
Build source, run test, output is
pipeline. Trigger pipeline.
New CI/CD pipeline based on
source code/orchestrated
experiments.
MLOps level 2: CI/CDpipelineautomation
@martonkodok
Levelsofautomation defines maturity of theMLprocess
Levelsofautomation defines maturity of theMLprocess
Levelsofautomation defines maturity of theMLprocess
Using Pipelines
throughout your
ML workflow
Part #3
What’s included in VertexAI?
* in Preview @martonkodok
Data Labeling
AutoML models
DL Environment (DL VM + DL Container)
Prediction
Feature Store Training
Experiments
Data Readiness
Feature
Engineering
Training/
HP-Tuning
Model
Monitoring
Model serving
Understanding/
Tuning
Edge
Model
Management
Notebooks
Pipelines (Orchestration)
Explainable AI
Hybrid AI
Model
Monitoring
Metadata
Vision-Video-NLP-Translate
Models
Datasets
Custom Models
Containers
Python
Endpoints
BigQuery ML
BigQuery Models
Publisher
Pre-trained
models
Model Garden GenAI Studio
Foundation -> LLM Palm 2 API
“ Why are MLpipelines useful?
Vertex AI: Pipelines for your MLOps workflows @martonkodok
1. Orchestrate ML workflow steps as a process.
We no longer handle all data gathering, model training, tuning, evaluation, deployment as a monolith.
2. Adopt MLOps for production models. We need a repeatable, verifiable, and automatic process for
making any change to a production model.
3. Develop steps independently -as you scale out, enables you to share your ML workflow with others on
your team, so they can run it, and contribute code. Enablesyoutotracktheinputandoutputfromeach
stepinareproducibleway.
Why are ML pipelines useful?
@martonkodok
Vertex AI: Pipelines
Vertex AI: Pipelines for your MLOps workflows
Source: Piero Esposito
https://github.com/piEsposito/vertex-ai-tutorials
Using Pipelines throughout your ML workflow
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Gather data Train model
Deploy
model
Pipeline Components
Vertex AI: Pipelines for your MLOps workflows
pipeline_components_automl_images.ipynb
github.com/GoogleCloudPlatform/vertex-ai-samples
Pipeline Components
Vertex AI: Pipelines for your MLOps workflows
Using Pipelines throughout your ML workflow
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Gather data Train model
Evaluate
model
Scalably
deploy
model
Pipeline SDK: Condition
Vertex AI: Pipelines for your MLOps workflows
automl_tabular_classification_beans.ipynb
github.com/GoogleCloudPlatform/vertex-ai-samples
1. Use of the Google Cloud Pipeline Components, which support easy access to Vertex AI services
2. Custom Components - function that compiles to a task ‘factory’ function that can be used by pipelines
3. No more Kubeflow Pipelines that must be deployed on a Kubernetes Cluster.
4. Sharing component specifications - the YAML format allows the component to be put under version
control and shared with others, or be used by other pipelines by calling the load_from_url function.
5. Leveraging Pipeline step caching to develop and debug
Developer friendly components
@martonkodok
What’s included in VertexAI?
* in Preview @martonkodok
Data Labeling
AutoML models
DL Environment (DL VM + DL Container)
Prediction
Feature Store Training
Experiments
Data Readiness
Feature
Engineering
Training/
HP-Tuning
Model
Monitoring
Model serving
Understanding/
Tuning
Edge
Model
Management
Notebooks
Pipelines (Orchestration)
Explainable AI
Hybrid AI
Model
Monitoring
Metadata
Vision-Video-NLP-Translate
Models
Datasets
Custom Models
Containers
Python
Endpoints
BigQuery ML
BigQuery Models
Publisher
Pre-trained
models
Model Garden GenAI Studio
Foundation -> LLM Palm 2 API
Part #4
Adapting to
changes of data
Automatic CI / CD Perspective with GCP Services
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Eventarc
• Detect changes on data
• React to events from Cloud services
• Handle events on Cloud Workflows,
Cloud Functions, Cloud Run
• Reuse pipeline spec.json from GCS
• Trigger Vertex AI pipeline
• Detect changes in codebase
• Build pipeline
• Pipeline spec.json to Cloud Storage
• Image to Cloud Registry
• Trigger Vertex AI pipeline
Cloud Build
Cloud Scheduler
• Poll for changes of any data
• Launch based on schedule
• In tandem with Cloud Workflows
• Trigger Vertex AI pipeline
Conclusion
Vertex AI: Pipelines for your MLOps workflows @martonkodok
1. Build with the groundbreaking ML tools that power Google
2. Approachable from the non-ML developer perspective (AutoML, managed models, training)
3. Ease the life of a data scientist/ML (has feature store, managed datasets, endpoints, notebooks)
4. End-to-end integration for data and AI with build pipelines that outperform and solve complex ML tasks
5. GitOps-style continuous delivery with Cloud Build
6. Explainable AI and TensorBoard to visualize and track ML experiments
Vertex AI: Enhanced developer experience
Vertex AI: Pipelines for your MLOps workflows @martonkodok
slideshare.net/martonkodok
Vertex AI: Pipelines for your MLOps workflows @martonkodok
Twitter: @martonkodok
Thank you. Q&A.
Reea.net - Integrated web solutions driven by creativity
to deliver projects.
Follow for articles:
martonkodok.medium.com
Slides available on:
slideshare.net/martonkodok

More Related Content

What's hot (20)

PDF
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Márton Kodok
 
PPTX
230208 MLOps Getting from Good to Great.pptx
Arthur240715
 
PDF
Ml ops intro session
Avinash Patil
 
PDF
Accelerate Application Innovation Journey with Azure Kubernetes Service
WinWire Technologies Inc
 
PPTX
Overview on Azure Machine Learning
James Serra
 
PPTX
Power BI Overview, Deployment and Governance
James Serra
 
PPTX
Salesforce integration best practices columbus meetup
MuleSoft Meetup
 
PDF
Learn to Use Databricks for Data Science
Databricks
 
PDF
Simplifying Model Management with MLflow
Databricks
 
PPTX
Azure data factory
David Giard
 
PPTX
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
PDF
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Databricks
 
PDF
Power Platform Architecture Corrections
Yusuke Ohira
 
PPTX
From Data Science to MLOps
Carl W. Handlin
 
PDF
MLFlow: Platform for Complete Machine Learning Lifecycle
Databricks
 
PPTX
Microsoft Azure - Introduction
Pranav Ainavolu
 
PDF
Introduction to MLflow
Databricks
 
PDF
MLOps by Sasha Rosenbaum
Sasha Rosenbaum
 
PDF
Getting Started & Driving Success With Power Platform At Scale
Richard Harbridge
 
PPTX
Data Lakehouse Symposium | Day 4
Databricks
 
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Márton Kodok
 
230208 MLOps Getting from Good to Great.pptx
Arthur240715
 
Ml ops intro session
Avinash Patil
 
Accelerate Application Innovation Journey with Azure Kubernetes Service
WinWire Technologies Inc
 
Overview on Azure Machine Learning
James Serra
 
Power BI Overview, Deployment and Governance
James Serra
 
Salesforce integration best practices columbus meetup
MuleSoft Meetup
 
Learn to Use Databricks for Data Science
Databricks
 
Simplifying Model Management with MLflow
Databricks
 
Azure data factory
David Giard
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Databricks
 
Power Platform Architecture Corrections
Yusuke Ohira
 
From Data Science to MLOps
Carl W. Handlin
 
MLFlow: Platform for Complete Machine Learning Lifecycle
Databricks
 
Microsoft Azure - Introduction
Pranav Ainavolu
 
Introduction to MLflow
Databricks
 
MLOps by Sasha Rosenbaum
Sasha Rosenbaum
 
Getting Started & Driving Success With Power Platform At Scale
Richard Harbridge
 
Data Lakehouse Symposium | Day 4
Databricks
 

Similar to DevBCN Vertex AI - Pipelines for your MLOps workflows (20)

PDF
Gen Apps on Google Cloud PaLM2 and Codey APIs in Action
Márton Kodok
 
PPTX
MLops on Vertex AI Presentation (AI/ML).pptx
Knoldus Inc.
 
PPTX
Creating Your First ML Model with Google Cloud AutoML
gdgoncampuscityengin
 
PPTX
Build with AI Event master deck final final
DiyaVerma14
 
PDF
Vertex AI by Raju Dawadi GDG Kathmandu Build With AI Nepal Pre Event 2024
GDG Kathmandu
 
PDF
MLOps pipelines using MLFlow - From training to production
Fabian Hadiji
 
PDF
How to Build an MLOps Pipeline - SoluLab
SoluLab1231
 
PDF
Robust MLOps with Open-Source: ModelDB, Docker, Jenkins, and Prometheus
Manasi Vartak
 
PDF
Training and deploying ML models with Google Cloud Platform
Sotrender
 
PDF
Enterprise Trends for Gen AI - Berkeley LLM AI Agents MOOC
VincentLui15
 
PDF
How To Build Efficient ML Pipelines From The Startup Perspective (GTC Silicon...
Jaeman An
 
PPTX
Getting Started with TensorFlow on Google Cloud
Mariam Aslam
 
PDF
T-GCPMLE-A-m1-l1-en-bxbnzmmafile-1.en.pdf
MohitKumar202076
 
PDF
Track2 02. machine intelligence at google scale google, kaz sato, staff devel...
양 한빛
 
PPTX
GCP Deployment- Vertex AI
Triloki Gupta
 
PPTX
Production ML Systems and Computer Vision with Google Cloud
gdgsurrey
 
PDF
“Houston, we have a model...” Introduction to MLOps
Rui Quintino
 
PPTX
Belgian NLP meetup Dec 2023
HyperledgerIndiaChap
 
PPTX
3 blades webinar dec 12 deploying deep learning models to production
Greg Werner
 
PPTX
Nasscom ml ops webinar
Sameer Mahajan
 
Gen Apps on Google Cloud PaLM2 and Codey APIs in Action
Márton Kodok
 
MLops on Vertex AI Presentation (AI/ML).pptx
Knoldus Inc.
 
Creating Your First ML Model with Google Cloud AutoML
gdgoncampuscityengin
 
Build with AI Event master deck final final
DiyaVerma14
 
Vertex AI by Raju Dawadi GDG Kathmandu Build With AI Nepal Pre Event 2024
GDG Kathmandu
 
MLOps pipelines using MLFlow - From training to production
Fabian Hadiji
 
How to Build an MLOps Pipeline - SoluLab
SoluLab1231
 
Robust MLOps with Open-Source: ModelDB, Docker, Jenkins, and Prometheus
Manasi Vartak
 
Training and deploying ML models with Google Cloud Platform
Sotrender
 
Enterprise Trends for Gen AI - Berkeley LLM AI Agents MOOC
VincentLui15
 
How To Build Efficient ML Pipelines From The Startup Perspective (GTC Silicon...
Jaeman An
 
Getting Started with TensorFlow on Google Cloud
Mariam Aslam
 
T-GCPMLE-A-m1-l1-en-bxbnzmmafile-1.en.pdf
MohitKumar202076
 
Track2 02. machine intelligence at google scale google, kaz sato, staff devel...
양 한빛
 
GCP Deployment- Vertex AI
Triloki Gupta
 
Production ML Systems and Computer Vision with Google Cloud
gdgsurrey
 
“Houston, we have a model...” Introduction to MLOps
Rui Quintino
 
Belgian NLP meetup Dec 2023
HyperledgerIndiaChap
 
3 blades webinar dec 12 deploying deep learning models to production
Greg Werner
 
Nasscom ml ops webinar
Sameer Mahajan
 
Ad

More from Márton Kodok (20)

PDF
AI Agents with Gemini 2.0 - Beyond the Chatbot
Márton Kodok
 
PDF
Gemini 2.0 and Vertex AI for Innovation Workshop
Márton Kodok
 
PDF
Function Calling with the Vertex AI Gemini API
Márton Kodok
 
PDF
Vector search and multimodal embeddings in BigQuery
Márton Kodok
 
PDF
BigQuery Remote Functions for Dynamic Mapping of E-mobility Charging Networks
Márton Kodok
 
PDF
Build applications with generative AI on Google Cloud
Márton Kodok
 
PDF
Discover BigQuery ML, build your own CREATE MODEL statement
Márton Kodok
 
PDF
Cloud Run - the rise of serverless and containerization
Márton Kodok
 
PDF
BigQuery best practices and recommendations to reduce costs with BI Engine, S...
Márton Kodok
 
PDF
Cloud Workflows What's new in serverless orchestration and automation
Márton Kodok
 
PDF
Serverless orchestration and automation with Cloud Workflows
Márton Kodok
 
PDF
Serverless orchestration and automation with Cloud Workflows
Márton Kodok
 
PDF
Serverless orchestration and automation with Cloud Workflows
Márton Kodok
 
PDF
BigdataConference Europe - BigQuery ML
Márton Kodok
 
PDF
DevFest Romania 2020 Keynote: Bringing the Cloud to you.
Márton Kodok
 
PDF
BigQuery ML - Machine learning at scale using SQL
Márton Kodok
 
PDF
Applying BigQuery ML on e-commerce data analytics
Márton Kodok
 
PDF
Supercharge your data analytics with BigQuery
Márton Kodok
 
PDF
Vibe Koli 2019 - Utazás az egyetem padjaitól a Google Developer Expertig
Márton Kodok
 
PDF
BigQuery ML - Machine learning at scale using SQL
Márton Kodok
 
AI Agents with Gemini 2.0 - Beyond the Chatbot
Márton Kodok
 
Gemini 2.0 and Vertex AI for Innovation Workshop
Márton Kodok
 
Function Calling with the Vertex AI Gemini API
Márton Kodok
 
Vector search and multimodal embeddings in BigQuery
Márton Kodok
 
BigQuery Remote Functions for Dynamic Mapping of E-mobility Charging Networks
Márton Kodok
 
Build applications with generative AI on Google Cloud
Márton Kodok
 
Discover BigQuery ML, build your own CREATE MODEL statement
Márton Kodok
 
Cloud Run - the rise of serverless and containerization
Márton Kodok
 
BigQuery best practices and recommendations to reduce costs with BI Engine, S...
Márton Kodok
 
Cloud Workflows What's new in serverless orchestration and automation
Márton Kodok
 
Serverless orchestration and automation with Cloud Workflows
Márton Kodok
 
Serverless orchestration and automation with Cloud Workflows
Márton Kodok
 
Serverless orchestration and automation with Cloud Workflows
Márton Kodok
 
BigdataConference Europe - BigQuery ML
Márton Kodok
 
DevFest Romania 2020 Keynote: Bringing the Cloud to you.
Márton Kodok
 
BigQuery ML - Machine learning at scale using SQL
Márton Kodok
 
Applying BigQuery ML on e-commerce data analytics
Márton Kodok
 
Supercharge your data analytics with BigQuery
Márton Kodok
 
Vibe Koli 2019 - Utazás az egyetem padjaitól a Google Developer Expertig
Márton Kodok
 
BigQuery ML - Machine learning at scale using SQL
Márton Kodok
 
Ad

Recently uploaded (20)

PDF
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
PDF
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
PDF
Generic or Specific? Making sensible software design decisions
Bert Jan Schrijver
 
PDF
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 
PDF
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
PDF
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
PDF
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
PPTX
In From the Cold: Open Source as Part of Mainstream Software Asset Management
Shane Coughlan
 
PDF
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
PPTX
Help for Correlations in IBM SPSS Statistics.pptx
Version 1 Analytics
 
PDF
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
PPTX
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
PPTX
Tally software_Introduction_Presentation
AditiBansal54083
 
PPTX
Change Common Properties in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
PPTX
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
PPTX
Tally_Basic_Operations_Presentation.pptx
AditiBansal54083
 
PDF
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
PDF
Top Agile Project Management Tools for Teams in 2025
Orangescrum
 
PPTX
Agentic Automation: Build & Deploy Your First UiPath Agent
klpathrudu
 
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
Generic or Specific? Making sensible software design decisions
Bert Jan Schrijver
 
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
In From the Cold: Open Source as Part of Mainstream Software Asset Management
Shane Coughlan
 
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
Help for Correlations in IBM SPSS Statistics.pptx
Version 1 Analytics
 
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
Tally software_Introduction_Presentation
AditiBansal54083
 
Change Common Properties in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
Tally_Basic_Operations_Presentation.pptx
AditiBansal54083
 
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
Top Agile Project Management Tools for Teams in 2025
Orangescrum
 
Agentic Automation: Build & Deploy Your First UiPath Agent
klpathrudu
 

DevBCN Vertex AI - Pipelines for your MLOps workflows

  • 2. 1. What is Vertex AI? 2. Build, train and deploy ML solutions 3. What is MLOps? 4. Using Pipelines throughout your ML workflow 5. Adapting to changes of data 6. Conclusions Agenda Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 3. ● Among the Top 3 romanians on Stackoverflow 204k reputation ● Google Developer Expert on Cloud technologies (2016→) ● Champion of Google Cloud Innovators program (2021→) ● Crafting Cloud Architecture+ML backends at REEA.net Articles: martonkodok.medium.com Twitter: @martonkodok Slideshare: martonkodok StackOverflow: pentium10 GitHub: pentium10 Vertex AI: Pipelines for your MLOps workflows @martonkodok About me
  • 5. “ VertexAI is a managed ML platform for developers @martonkodok
  • 6. 1. Build generative AI apps quickly and responsibly by easily accessing a variety of foundation models with Model Garden and Generative AI Studio 2. Accelerate ML with tooling for pre-trained and custom models 3. Implement MLOps practices to efficiently scale, manage and govern your ML workloads Vertex AI: Pipelines for your MLOps workflows @martonkodok Vertex AI: One AI platform, every ML tool you need
  • 7. What’s included in VertexAI? @martonkodok Data Labeling AutoML models DL Environment (DL VM + DL Container) Prediction Feature Store Training Experiments Data Readiness Feature Engineering Training/ HP-Tuning Model Monitoring Model serving Understanding/ Tuning Edge Model Management Notebooks Pipelines (Orchestration) Explainable AI Hybrid AI Model Monitoring Metadata Vision-Video-NLP-Translate Models Datasets Custom Models Containers Python Endpoints BigQuery ML BigQuery Models Publisher Pre-trained models Model Garden GenAI Studio Foundation -> LLM Palm 2 API
  • 8. Where does VertexAI fit in? Application Servers Vertex AI Desktop client Mobile client End-to-end platform for ML model development and deployment Backend Vertex AI: Pipelines for your MLOps workflows @martonkodok Application Logic
  • 9. VertexAI is a serverless MLOps platform Vertex AI: Pipelines for your MLOps workflows @martonkodok Operational Model Programming Model No Infra Management Managed Security Pay only for usage Model-as-a-service oriented Streamlined model development Open SDKs, integrates with ML frameworks
  • 10. Vertex AI: Pipelines for your MLOps workflows @martonkodok Model Garden Open Source Models Task Specific AutoML and APIs Foundation Models Now in GA Model Garden
  • 11. The PaLM 2 is available only in the US. @martonkodok Foundation Models Embeddings API for Text and Image Extract semantic information from unstructured data PaLM for Text Custom language tasks PaLM for Chat Multi-turn conversations with session context Codey for Code Generation Improve coding and debugging Now in GA Now in GA Preview Preview
  • 12. The PaLM 2 is available only in the US. @martonkodok Sample code for GenAI on Google Cloud goo.gle/gen-ai-github
  • 13. Vertex AI: Pipelines for your MLOps workflows @martonkodok VertexAI:Managed unified ML platform Fine-tuning *
  • 14. “ VertexAI autoML use cases Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 15. What’s included in VertexAI? @martonkodok Data Labeling AutoML models DL Environment (DL VM + DL Container) Prediction Feature Store Training Experiments Data Readiness Feature Engineering Training/ HP-Tuning Model Monitoring Model serving Understanding/ Tuning Edge Model Management Notebooks Pipelines (Orchestration) Explainable AI Hybrid AI Model Monitoring Metadata Vision-Video-NLP-Translate Models Datasets Custom Models Containers Python Endpoints BigQuery ML BigQuery Models Publisher Pre-trained models Model Garden GenAI Studio Foundation -> LLM Palm 2 API
  • 16. - Regression/classification - Forecasting - Single-label classification - Multi-label classification - Text entity extraction - Text sentiment analysis - Video action recognition - Video classifications for entire video, shots, frames - Video object tracking AutoML: Managed datasets + objectives Vertex AI: Pipelines for your MLOps workflows @martonkodok Image Tabular Text Video - Single-label classification - Multi-label classification - Image object detection - Image segmentation
  • 17. Vertex AI: Managed dataset + objectives Vertex AI: Pipelines for your MLOps workflows @martonkodok Image
  • 18. Create an image classification prediction model Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 19. Create an image classification prediction model Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 20. Create an image object detection model Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 21. Vertex AI: Managed dataset + objectives Vertex AI: Pipelines for your MLOps workflows @martonkodok Tabular
  • 22. Vertex AI: Managed dataset + objectives Vertex AI: Pipelines for your MLOps workflows @martonkodok Text
  • 23. Vertex AI: Managed dataset + objectives Vertex AI: Pipelines for your MLOps workflows @martonkodok Video
  • 24. Train models Vertex AI: Pipelines for your MLOps workflows @martonkodok Build dataset Train model Scalably deploy model Evaluate, monitor, retrain
  • 25. 1. AutoML out-of-the box training integration No-code solution. You must target one of the AutoML’s predefined objectives. 2. Custom Training - run your own training applications in the cloud Train with one of the Google’s pre-builtcontainers or useyourown. Training @martonkodok
  • 26. Pre-built containers for custom training https://cloud.google.com/vertex-ai/docs/training/pre-built-containers @martonkodok Tensorflow ML Framework version 1.15-2.9 use with Cuda 11.x GPU scikit-learn ML Framework version 0.23 No GPUs PyTorch ML Framework version 1.4 - 1.11 use with Cuda 11.x GPU XGBoost ML Framework version 1.1 No GPUs
  • 27. Deploying models Vertex AI: Pipelines for your MLOps workflows @martonkodok Build dataset Train model Scalably deploy model Evaluate, monitor, retrain
  • 28. “ You can deploy models on VertexAI and get a HTTPs Endpointsto serve predictions rapidly and reliably. Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 29. 1. Deploy a model and get aREST endpointto serve predictions realtime or batched 2. You can use models whetherornotthemodelwastrained on Vertex AI. 3. Specify a prediction traffic split in your endpoint. 4. VPC Private Network option for custom-trained models/tabular models Vertex AI: Endpoints Vertex AI: Pipelines for your MLOps workflows @martonkodok Vertex AI Endpoints Backend Prediction deploy REST
  • 31. Elements for ML systems Adapted from Hidden Technical Debt in Machine Learning Systems. @martonkodok
  • 32. “ DevOpsprinciples to MLsystems Vertex AI: Pipelines for your MLOps workflows @martonkodok What is MLOps?
  • 33. “Continuousdelivery and automationpipelines for machinelearning systems. Vertex AI: Pipelines for your MLOps workflows @martonkodok What is MLOps?
  • 34. MLOpslevels @martonkodok 🖐 Level 0: Manual process Level 1: ML pipeline automation Level 2: CI/CD pipeline automation
  • 35. Levelsofautomation defines maturity of theMLprocess Process Release cycle Development principle Trigger action MLOps level 0: Manual process Build & deploy is entirely manual Infrequent release iterations No CI/ CD None. Disconnection between ML and operations. MLOps level 1: ML pipeline automation MLOps level 2: CI/CD pipeline automation Vertex AI: Pipelines for your MLOps workflows @martonkodok Continuous training by automating the ML pipeline Achieve continuous delivery of model prediction Automate the build/train/deploy pipeline New pipelines mostly based on new data. Iteratively try out new ML algorithms, orchestrated experiment steps Continuous source code packaging. Build source. Build source, run test, output is pipeline. Trigger pipeline. New CI/CD pipeline based on source code/orchestrated experiments.
  • 36. MLOps level 2: CI/CDpipelineautomation @martonkodok
  • 41. What’s included in VertexAI? * in Preview @martonkodok Data Labeling AutoML models DL Environment (DL VM + DL Container) Prediction Feature Store Training Experiments Data Readiness Feature Engineering Training/ HP-Tuning Model Monitoring Model serving Understanding/ Tuning Edge Model Management Notebooks Pipelines (Orchestration) Explainable AI Hybrid AI Model Monitoring Metadata Vision-Video-NLP-Translate Models Datasets Custom Models Containers Python Endpoints BigQuery ML BigQuery Models Publisher Pre-trained models Model Garden GenAI Studio Foundation -> LLM Palm 2 API
  • 42. “ Why are MLpipelines useful? Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 43. 1. Orchestrate ML workflow steps as a process. We no longer handle all data gathering, model training, tuning, evaluation, deployment as a monolith. 2. Adopt MLOps for production models. We need a repeatable, verifiable, and automatic process for making any change to a production model. 3. Develop steps independently -as you scale out, enables you to share your ML workflow with others on your team, so they can run it, and contribute code. Enablesyoutotracktheinputandoutputfromeach stepinareproducibleway. Why are ML pipelines useful? @martonkodok
  • 44. Vertex AI: Pipelines Vertex AI: Pipelines for your MLOps workflows Source: Piero Esposito https://github.com/piEsposito/vertex-ai-tutorials
  • 45. Using Pipelines throughout your ML workflow Vertex AI: Pipelines for your MLOps workflows @martonkodok Gather data Train model Deploy model
  • 46. Pipeline Components Vertex AI: Pipelines for your MLOps workflows pipeline_components_automl_images.ipynb github.com/GoogleCloudPlatform/vertex-ai-samples
  • 47. Pipeline Components Vertex AI: Pipelines for your MLOps workflows
  • 48. Using Pipelines throughout your ML workflow Vertex AI: Pipelines for your MLOps workflows @martonkodok Gather data Train model Evaluate model Scalably deploy model
  • 49. Pipeline SDK: Condition Vertex AI: Pipelines for your MLOps workflows automl_tabular_classification_beans.ipynb github.com/GoogleCloudPlatform/vertex-ai-samples
  • 50. 1. Use of the Google Cloud Pipeline Components, which support easy access to Vertex AI services 2. Custom Components - function that compiles to a task ‘factory’ function that can be used by pipelines 3. No more Kubeflow Pipelines that must be deployed on a Kubernetes Cluster. 4. Sharing component specifications - the YAML format allows the component to be put under version control and shared with others, or be used by other pipelines by calling the load_from_url function. 5. Leveraging Pipeline step caching to develop and debug Developer friendly components @martonkodok
  • 51. What’s included in VertexAI? * in Preview @martonkodok Data Labeling AutoML models DL Environment (DL VM + DL Container) Prediction Feature Store Training Experiments Data Readiness Feature Engineering Training/ HP-Tuning Model Monitoring Model serving Understanding/ Tuning Edge Model Management Notebooks Pipelines (Orchestration) Explainable AI Hybrid AI Model Monitoring Metadata Vision-Video-NLP-Translate Models Datasets Custom Models Containers Python Endpoints BigQuery ML BigQuery Models Publisher Pre-trained models Model Garden GenAI Studio Foundation -> LLM Palm 2 API
  • 53. Automatic CI / CD Perspective with GCP Services Vertex AI: Pipelines for your MLOps workflows @martonkodok Eventarc • Detect changes on data • React to events from Cloud services • Handle events on Cloud Workflows, Cloud Functions, Cloud Run • Reuse pipeline spec.json from GCS • Trigger Vertex AI pipeline • Detect changes in codebase • Build pipeline • Pipeline spec.json to Cloud Storage • Image to Cloud Registry • Trigger Vertex AI pipeline Cloud Build Cloud Scheduler • Poll for changes of any data • Launch based on schedule • In tandem with Cloud Workflows • Trigger Vertex AI pipeline
  • 54. Conclusion Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 55. 1. Build with the groundbreaking ML tools that power Google 2. Approachable from the non-ML developer perspective (AutoML, managed models, training) 3. Ease the life of a data scientist/ML (has feature store, managed datasets, endpoints, notebooks) 4. End-to-end integration for data and AI with build pipelines that outperform and solve complex ML tasks 5. GitOps-style continuous delivery with Cloud Build 6. Explainable AI and TensorBoard to visualize and track ML experiments Vertex AI: Enhanced developer experience Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 56. slideshare.net/martonkodok Vertex AI: Pipelines for your MLOps workflows @martonkodok
  • 57. Twitter: @martonkodok Thank you. Q&A. Reea.net - Integrated web solutions driven by creativity to deliver projects. Follow for articles: martonkodok.medium.com Slides available on: slideshare.net/martonkodok