SlideShare a Scribd company logo
COUNTERS
BY‫׃‬
GARGI KHANNA
ECE DEPTT., NIT HAMIRPUR
FLIP-FLOP APPLICATIONS
• Applications of Flip-Flop:-
• Counters
• Asynchronous Counter
• Synchronous Counter
• Register
2
COUNTERS
• A counter is a register that goes through a predetermined
sequence of states upon the application of clock pulses.
• Asynchronous counters
• Synchronous counters
• Async. counters (or ripple counters)
• the clock signal (CLK) is only used to clock the first FF.
• Each FF (except the first FF) is clocked by the preceding FF.
• Sync. counters,
• the clock signal (CLK) is applied to all FF, which means that all FF
shares the same clock signal,
• thus the output will change at the same time.
3
ASYNCHRONOUS COUNTERS
• Modulus (MOD) – the number of states it counts in a complete cycle before it goes
back to the initial state.
• Thus, the number of flip-flops used depends on the MOD of the counter (ie; MOD-4
use 2 FF (2-bit), MOD-8 use 3 FF (3-bit), etc..)
• Example: MOD-4 ripple/asynchronous up-counter.
4
ASYNCHRONOUS COUNTERS (CONTINUE)
• The asynchronous counter that counts 4 number starts from 00→01→10→11 and
back to 00 is called MOD-4 ripple (asynchronous) up-counter.
• Next state table and state diagram
5
Present State Next State
Q1Q0 Q1Q0
00 01
01 10
10 11
11 00
00
01
10
11
ASYNCHRONOUS COUNTERS (CONTINUE)
• MOD-4 Asynchronous up-counter
6
J Q
K Q
CLK
1 J Q
K Q
CLK
1
Q0 (LSB) Q1 (MSB)
CLK
Q1 0 0 1 1 0 0 1 1 0
Q0 0 1 0 1 0 1 0 1 0
Binary 0 → 1 → 2 → 3 → 0 → 1 → 2 → 3 → 0
CLK
ASYNCHRONOUS COUNTERS (CONTINUE)
• MOD-8 Asynchronous up-counter
7
J Q
K Q
CLK
1 J Q
K Q
CLK
1 J Q
K Q
CLK
1
C B A
A 0
B 0
C 0
CLK
ASYNCHRONOUS COUNTERS (CONTINUE)
• Next state table and state diagram
8
Present State Next State
ABC ABC
000 001
001 010
010 011
011 100
100 101
101 110
110 111
111 000
0
1
2
3
7
6
5
4
ASYNCHRONOUS COUNTERS (CONTINUE)
• 2-bit Asynchronous down counter
9
J Q
K Q
CLK
1 J Q
K Q
CLK
1
B (LSB) A (MSB)
CLK
B 0 1 0 1 0 1 0 1 0
A 0 1 1 0 0 1 1 0 0
Binary 0 → 3 → 2 → 1 → 0 → 3 → 2 → 1 → 0
CLK
ASYNCHRONOUS COUNTERS (CONTINUE)
• So far, we have design the counters with MOD number equal to
2N, where N is the number of bit (N = 1,2,3,4….) (also
correspond to number of FF)
• Thus, the counters are limited on for counting MOD-2, MOD4,
MOD-8, MOD-16 etc..
• The question is how to design a MOD-5, MOD-6, MOD-7,
MOD-9 which is not a MOD-2N (MOD  2N) ?
• MOD-6 counters will count from 010 (0002) to 510(1012) and
after that will recount back to 010 (0002) continuously.
10
ASYNCHRONOUS COUNTERS
• MOD-6 ripple up-counter (MOD  2N)
11
Present St. Next St.
ABC ABC
000 001
001 010
010 011
011 100
100 101
101 000(110)
0
1
2
3
5
4
Reset the state to 0002
when 1102 is detected
ASYNCHRONOUS COUNTERS (CONTINUE)
• Circuit diagram for MOD-6 ripple up-counter (MOD  2N)
12
J Q
K
CLR
Q
CLK
1 1 1
C B A
J Q
K
CLR
Q
CLK
J Q
K
CLR
Q
CLK
Detect the output at
ABC=110 to activate
CLR. NAND gate is used
to detect outputs that generates ‘1’!
CLK
MOD-4 ASYNCHRONOUS COUNTER
D FLIP FLOP
13
CHIP FOR ASYNCHRONOUS COUNTERS
• 74293 IC for Asynchronous counter with Reset (MR1 and MR2)
14
MR1
MR2
Q0
Q1
Q2
Q3 CP0
CP1
74293
J Q
K
CLR
Q
CLK
1 1 1
Q0 Q1 Q2
J Q
K
CLR
Q
CLK
J Q
K
CLR
Q
CLK
1 J Q
K
CLR
Q
CLK
Q3
MR1
MR2
CP0
CP1
CHIP FOR ASYNCHRONOUS
COUNTERS (CONTINUE)
• Using 74293 IC to design MOD  16 asynchronous up-
counter!
• Exercise:
• use 74293 IC to design MOD-10 ripple up-counter
15
MR1
MR2
Q0
Q1
Q2
Q3
CP0
CP1
74293
1 0 1 0
CHIP FOR ASYNCHRONOUS
COUNTERS
(CONTINUE)
• Exercise:
• Determine the MOD for each configuration shown below?
16
MR1
MR2
Q0
Q1
Q2
Q3
CP0
CP1
74293
MR1
MR2
Q0
Q1
Q2
Q3
CP0
CP1
74293
1 0 1
3 2 1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
CHIP FOR ASYNCHRONOUS
COUNTERS
(CONTINUE)
• Determine the MOD for each configuration shown below?
17
MR1
MR2
Q0
Q1
Q2
Q3
CP0
CP1
74293
ASYNCHRONOUS COUNTERS
• Disadvantages of Asynchronous Counters:-
• Propagation delay is severe for larger MOD of counters, especially at the MSB.
• Existence of ‘glitch’ is inevitable for MOD  2N counters.
• Difficult to design random counters (i.e:- to design circuit that counts numbers
in the random sequence 6→4→7→2→1→6→4→7→2→1→6→4….)
• Disadvantages can be overcome by:::::
SYNCHRONOUS COUNTERS.
18
SYNCHRONOUS COUNTERS
• For synchronous counters, all the flip-flops are using the same
CLOCK signal.Thus, the output would change synchronously.
• Procedure to design synchronous counter are as follows:-
STEP 1: Obtain the State Diagram.
STEP 2: Obtain the Excitation Table using state transition table for any particular FF (JK or D).
Determine number of FF used.
STEP 3: Obtain and simplify the function of each FF input using K-Map.
STEP 4: Draw the circuit.
19
SYNCHRONOUS COUNTERS
• Design a MOD-4 synchronous up-counter, using JK FF.
STEP 1: Obtain the State transition Diagram
20
0
1
2
3
00
01
10
11
Binary
SYNCHRONOUS COUNTERS
STEP 2: Obtain the Excitation table.Two JK FF are used.
21
Present State Next State
A B A B JA KA JB KB
0 0 0 1 0 X 1 X
0 1 1 0 1 X X 1
1 0 1 1 X 0 1 X
1 1 0 0 X 1 X 1
OUTPUT TRANSITION
QN QN+1
FF INPUT
J K
0 → 0 0 X
0 → 1 1 X
1 → 0 X 1
1 → 1 X 0
Excitation table
SYNCHRONOUS COUNTERS
STEP 3: Obtain the simplified function using K-Map
22
B
A 0 1
0 0 1
1 X X
JA = B
B
A 0 1
0 X X
1 0 1
KA = B
B
A 0 1
0 1 X
1 1 X JB = 1
B
A 0 1
0 X 1
1 X 1 KB = 1
SYNCHRONOUS COUNTERS
STEP 4: Draw the circuit diagram
23
JB Q
KB
Q
CLK
1
JA Q
KA
Q
CLK
B (LSB) A (MSB)
SYNCHRONOUS COUNTERS
• Design a MOD-4 synchronous down-counter, using JK FF?
STEP 1: Obtain the State transition Diagram
24
0
3
2
1
00
11
10
01
Binary
SYNCHRONOUS COUNTERS
• Obtain the Excitation table.Two JK FF are used.
25
Present St. Next St.
A B A B JA KA JB KB
0 0 1 1 1 X 1 X
0 1 0 0 0 X X 1
1 0 0 1 X 1 1 X
1 1 1 0 X 0 X 1
OUTPUT TRANSITION
QN QN+1
FF INPUT
J K
0 → 0 0 X
0 → 1 1 X
1 → 0 X 1
1 → 1 X 0
SYNCHRONOUS COUNTERS
• Obtain the simplified function using K-Map
26
B
A 0 1
0 1 0
1 X X
JA =B’
B
A 0 1
0 X X
1 1 0
KA =B’
B
A 0 1
0 1 X
1 1 X
JB = 1
B
A 0 1
0 X 1
1 X 1
KB =1
SYNCHRONOUS COUNTERS
• Draw the circuit diagram
27
JB Q
KB
Q
CLK
JA Q
KA
Q
CLK
B
A
28
3-Bit Synchronous Counter using JK F/F
29
K-map for Inputs
30
MOD-8
31
32
33
}
MODULO-10 UP/DOWN COUNTER USINGT
FFS
• Step 1: The number of flip flops:A modulo-10 counter has 10 states and so it
requires 4 FFs.
• 4-FFs can have 16 states. So out of 16, six states (1010 through 1111) are invalid.
The entries for excitations corresponding to invalid states are don’t cares. For
selecting up and down modes a control or mode signal is required. Let us say it
counts up when the mode signal M=1 and counts down when M=0.The clock signal
is applied to all the FFs simultaneously.
• Step 2: The state diagram:The state diagram of the mod-10 up/down counter is
drawn.
• Step 3: The type of flip flops and the excitation table:T flip flops are selected
and the excitation table of the modulo-10 up/down counter usingT FFs
34
STATE DIAGRAM
35
36
PS MOD
E
NS Required excitations
Q4 Q3 Q2 Q1 M Q4 Q3 Q2 Q1 T4 T3 T2 T1
0 0 0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1 1 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 0 1
0 0 1 1 1 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 1 1 0 0 1 1
0 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 0 1 0 0 0 0 0 1
0 1 0 1 1 0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 0 1 0 0 1 1
0 1 1 0 1 0 1 1 1 0 0 0 1
0 1 1 1 0 0 1 1 0 0 0 0 1
0 1 1 1 1 1 0 0 0 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 0 1
1 0 0 1 1 0 0 0 0 1 0 0 1
37
38
MODULO-9 SYNCHRONOUS
COUNTER USINGT FFS
• Step 1: The number of flip flops: counting sequence for a modulo-9
counter is 0000,0001,0010,0011,0100,0101,0110,0111,1000,0000,…
• It has 9 states. So it requires 4 FFs
• (9<=24). 4 flip flops can have 16 states. 7 states 1001, 1010, 1100, 1101,
1110, and 1111 are invalid.The entries for excitation corresponding to
invalid states are don’t cares.
• Step 2: The states diagram:The states diagram for the mod-9 counter
is drawn
• Step 3: The type of flip flops and the excitation table:T flip flops
are selected and the excitation table of a mod-9 counter using T FFs is
drawn.
39
PS NS Required Excitations
Q4 Q3 Q2 Q1 Q4 Q3 Q2 Q1 T4 T3 T2 T1
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 1
0 0 1 0 0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 0 1
0 1 0 1 0 1 1 0 0 0 1 1
0 1 1 0 0 1 1 1 0 0 0 1
0 1 1 1 1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 1 0 0 0
40
41
Step 4: The minimal expressions: The K-maps for excitation
T4,T3,T2, and T1 in term of the outputs of the FFs Q4,Q3,Q3 and Q1,
their minimization and the minimal expression for excitation
obtained
42
 A shift register counter is a shift register whose output
being fed back (connected back) to the serial input. This
shift register would count the state in a unique sequence!
 Two types of shift register counter:-
 The ring counter
 The Johnson counter
Shift Register Counters
43
Ring Counter
Q3 Q2 Q1 Q0
44
Ring Counter (continue)
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
45
Ring Counter (continue)
46
Ring Counter (continue)
❑Ring counters are used to
construct “One-Hot” counters
❑It can be constructed for any
desired MOD number
❑A MOD-N ring counter uses
N flip-flops connected in the
arrangement as shown in fig.
In general ring-counter will
require more flip-flops than a
binary counter for the same
MOD number
47
Ring Counter (continue)
48
Johnson Counter
Or Twisted-ring counter
❑Johnson counter constructed exactly like a normal ring counter
except that the inverted output of the last flip-flop is fed back to
first flip-flop
49
Johnson Counter (Continue)
A
B
C
0 1 1 1
0 0 1 1
0 0 0 1
50
Johnson Counter (Continue)
Thankyou

More Related Content

PDF
Sequential circuits in Digital Electronics
Vinoth Loganathan
 
PPTX
Modulo n counter
Manoj Guha
 
PPT
Interfacing 8255
Anuja Bhakuni
 
PPTX
Digital Electronics - Counters
Jayakrishnan J
 
PPT
Counters
Bilal Mirza
 
PPT
BCD,GRAY and EXCESS 3 codes
student
 
PPTX
Registers siso, sipo
DEPARTMENT OF PHYSICS
 
PPT
Counters
Abhilash Nair
 
Sequential circuits in Digital Electronics
Vinoth Loganathan
 
Modulo n counter
Manoj Guha
 
Interfacing 8255
Anuja Bhakuni
 
Digital Electronics - Counters
Jayakrishnan J
 
Counters
Bilal Mirza
 
BCD,GRAY and EXCESS 3 codes
student
 
Registers siso, sipo
DEPARTMENT OF PHYSICS
 
Counters
Abhilash Nair
 

What's hot (20)

PPTX
Successive Approximation ADC
AbhayDhupar
 
PPT
Adc interfacing
Monica Gunjal
 
PPTX
Types of flip flops ppt
Viraj Shah
 
PPT
Shift Registers
Abhilash Nair
 
PDF
Counters
Ravi Maurya
 
PPTX
Mod 10 synchronous counter updated
DANISHAMIN950
 
PPTX
COUNTERS(Synchronous & Asynchronous)
Sairam Adithya
 
PPTX
digital Counter
shamshad alam
 
PPTX
Encoder and decoder
Then Murugeshwari
 
PPTX
Synchronous Counter
Akhilesh Kushwaha
 
PPT
multiplexers and demultiplexers
Unsa Shakir
 
PPTX
Counters
Randaqra
 
PPTX
J - K & MASTERSLAVE FLIPFLOPS
Krishma Parekh
 
PPTX
TMS320C5x
DeekshithaReddy23
 
PPTX
Ring Counter.pptx
hepzijustin
 
PPT
encoder and decoder in digital electronics
vikram rajpurohit
 
PDF
2 bit comparator, 4 1 Multiplexer, 1 4 Demultiplexer, Flip Flops and Register...
MaryJacob24
 
PPTX
MASTER SLAVE JK FLIP FLOP & T FLIP FLOP
Smit Shah
 
PPT
Sequential Logic Circuit
Ramasubbu .P
 
PDF
JK flip flops
Zakariae EL IDRISSI
 
Successive Approximation ADC
AbhayDhupar
 
Adc interfacing
Monica Gunjal
 
Types of flip flops ppt
Viraj Shah
 
Shift Registers
Abhilash Nair
 
Counters
Ravi Maurya
 
Mod 10 synchronous counter updated
DANISHAMIN950
 
COUNTERS(Synchronous & Asynchronous)
Sairam Adithya
 
digital Counter
shamshad alam
 
Encoder and decoder
Then Murugeshwari
 
Synchronous Counter
Akhilesh Kushwaha
 
multiplexers and demultiplexers
Unsa Shakir
 
Counters
Randaqra
 
J - K & MASTERSLAVE FLIPFLOPS
Krishma Parekh
 
Ring Counter.pptx
hepzijustin
 
encoder and decoder in digital electronics
vikram rajpurohit
 
2 bit comparator, 4 1 Multiplexer, 1 4 Demultiplexer, Flip Flops and Register...
MaryJacob24
 
MASTER SLAVE JK FLIP FLOP & T FLIP FLOP
Smit Shah
 
Sequential Logic Circuit
Ramasubbu .P
 
JK flip flops
Zakariae EL IDRISSI
 
Ad

Similar to Digital Counter Design (20)

PPTX
COUNTERS.pptx
SaifURehmanSidhu
 
PPTX
Basics Counters
Danial Mirza
 
PPTX
Counters
Ketaki_Pattani
 
PDF
Chapter 5 counter1
CT Sabariah Salihin
 
PDF
Chapter 7_Counters (EEEg4302).pdf
TamiratDejene1
 
PPTX
Counters_pptx.pptx
YeHtetAung35
 
PDF
DigitalLogic_Counters.pdfDigitalLogic_Counters.pdfDigitalLogic_Counters.pdfDi...
studyspport8
 
PPTX
COUNTERS(Synchronous & Asynchronous)
SUBHA SHREE
 
PPTX
COUNTERS [Synchronous and Asynchronous]
Electronics for Biomedical
 
PDF
Chapter 5 counter
CT Sabariah Salihin
 
PDF
Ripple counter
chandkec
 
PPT
Logic Design - Chapter 8: counters
Gouda Mando
 
PPTX
Synchronous Sequential Logic Unit 4
Asif Iqbal
 
PPTX
Chapter 6 Register and countedfsdfr.pptx
SamanArshad11
 
PPSX
Dee2034 chapter 5 counter
SITI SABARIAH SALIHIN
 
PPTX
Presentation on Counters for (Digital Systems Design).pptx
Aniruddh70
 
PPT
16148_counterrss2unit 2 computer arithamatic
anushachalla14
 
PPT
16148_counterrss2_Counters _under sequential circuits.ppt
anushachalla14
 
PPT
Counters.pptv,gg,l,flf,llggfb ldgmkgmlrm
srishanth8085
 
PPTX
presentationforcountersin digitalelectronics
coolnanu1
 
COUNTERS.pptx
SaifURehmanSidhu
 
Basics Counters
Danial Mirza
 
Counters
Ketaki_Pattani
 
Chapter 5 counter1
CT Sabariah Salihin
 
Chapter 7_Counters (EEEg4302).pdf
TamiratDejene1
 
Counters_pptx.pptx
YeHtetAung35
 
DigitalLogic_Counters.pdfDigitalLogic_Counters.pdfDigitalLogic_Counters.pdfDi...
studyspport8
 
COUNTERS(Synchronous & Asynchronous)
SUBHA SHREE
 
COUNTERS [Synchronous and Asynchronous]
Electronics for Biomedical
 
Chapter 5 counter
CT Sabariah Salihin
 
Ripple counter
chandkec
 
Logic Design - Chapter 8: counters
Gouda Mando
 
Synchronous Sequential Logic Unit 4
Asif Iqbal
 
Chapter 6 Register and countedfsdfr.pptx
SamanArshad11
 
Dee2034 chapter 5 counter
SITI SABARIAH SALIHIN
 
Presentation on Counters for (Digital Systems Design).pptx
Aniruddh70
 
16148_counterrss2unit 2 computer arithamatic
anushachalla14
 
16148_counterrss2_Counters _under sequential circuits.ppt
anushachalla14
 
Counters.pptv,gg,l,flf,llggfb ldgmkgmlrm
srishanth8085
 
presentationforcountersin digitalelectronics
coolnanu1
 
Ad

More from GargiKhanna1 (18)

PPTX
Latch & Flip-Flop.pptx
GargiKhanna1
 
PDF
MOS logic family
GargiKhanna1
 
PPTX
Latch and flip flop
GargiKhanna1
 
PPT
Multiplexers and Demultiplexers
GargiKhanna1
 
PPTX
Combinational Logic Circuit
GargiKhanna1
 
PPTX
Karnaugh Map
GargiKhanna1
 
PPT
Error detection and correction codes
GargiKhanna1
 
PDF
Number system
GargiKhanna1
 
PDF
Logic Level Techniques for Power Reduction
GargiKhanna1
 
PDF
Architectural Level Techniques
GargiKhanna1
 
PPTX
Probabilistic Power Analysis
GargiKhanna1
 
PPTX
Monte carlo analysis
GargiKhanna1
 
PPTX
Simulation power analysis low power vlsi
GargiKhanna1
 
PPTX
Boolean Function SOP & POS
GargiKhanna1
 
PPTX
Logic gate
GargiKhanna1
 
PPTX
Logic Gates
GargiKhanna1
 
PDF
Binary codes
GargiKhanna1
 
PDF
Binary Arithmetic
GargiKhanna1
 
Latch & Flip-Flop.pptx
GargiKhanna1
 
MOS logic family
GargiKhanna1
 
Latch and flip flop
GargiKhanna1
 
Multiplexers and Demultiplexers
GargiKhanna1
 
Combinational Logic Circuit
GargiKhanna1
 
Karnaugh Map
GargiKhanna1
 
Error detection and correction codes
GargiKhanna1
 
Number system
GargiKhanna1
 
Logic Level Techniques for Power Reduction
GargiKhanna1
 
Architectural Level Techniques
GargiKhanna1
 
Probabilistic Power Analysis
GargiKhanna1
 
Monte carlo analysis
GargiKhanna1
 
Simulation power analysis low power vlsi
GargiKhanna1
 
Boolean Function SOP & POS
GargiKhanna1
 
Logic gate
GargiKhanna1
 
Logic Gates
GargiKhanna1
 
Binary codes
GargiKhanna1
 
Binary Arithmetic
GargiKhanna1
 

Recently uploaded (20)

PDF
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
PDF
2010_Book_EnvironmentalBioengineering (1).pdf
EmilianoRodriguezTll
 
PPTX
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
PDF
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PPTX
database slide on modern techniques for optimizing database queries.pptx
aky52024
 
PDF
Machine Learning All topics Covers In This Single Slides
AmritTiwari19
 
PDF
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
PPTX
22PCOAM21 Session 2 Understanding Data Source.pptx
Guru Nanak Technical Institutions
 
PPTX
Online Cab Booking and Management System.pptx
diptipaneri80
 
PPTX
MSME 4.0 Template idea hackathon pdf to understand
alaudeenaarish
 
PDF
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
ijcncjournal019
 
PDF
Cryptography and Information :Security Fundamentals
Dr. Madhuri Jawale
 
PDF
The Effect of Artifact Removal from EEG Signals on the Detection of Epileptic...
Partho Prosad
 
PPTX
Chapter_Seven_Construction_Reliability_Elective_III_Msc CM
SubashKumarBhattarai
 
PDF
STUDY OF NOVEL CHANNEL MATERIALS USING III-V COMPOUNDS WITH VARIOUS GATE DIEL...
ijoejnl
 
PDF
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
PDF
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 
PDF
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
2010_Book_EnvironmentalBioengineering (1).pdf
EmilianoRodriguezTll
 
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
database slide on modern techniques for optimizing database queries.pptx
aky52024
 
Machine Learning All topics Covers In This Single Slides
AmritTiwari19
 
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
22PCOAM21 Session 2 Understanding Data Source.pptx
Guru Nanak Technical Institutions
 
Online Cab Booking and Management System.pptx
diptipaneri80
 
MSME 4.0 Template idea hackathon pdf to understand
alaudeenaarish
 
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
ijcncjournal019
 
Cryptography and Information :Security Fundamentals
Dr. Madhuri Jawale
 
The Effect of Artifact Removal from EEG Signals on the Detection of Epileptic...
Partho Prosad
 
Chapter_Seven_Construction_Reliability_Elective_III_Msc CM
SubashKumarBhattarai
 
STUDY OF NOVEL CHANNEL MATERIALS USING III-V COMPOUNDS WITH VARIOUS GATE DIEL...
ijoejnl
 
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 

Digital Counter Design

  • 2. FLIP-FLOP APPLICATIONS • Applications of Flip-Flop:- • Counters • Asynchronous Counter • Synchronous Counter • Register 2
  • 3. COUNTERS • A counter is a register that goes through a predetermined sequence of states upon the application of clock pulses. • Asynchronous counters • Synchronous counters • Async. counters (or ripple counters) • the clock signal (CLK) is only used to clock the first FF. • Each FF (except the first FF) is clocked by the preceding FF. • Sync. counters, • the clock signal (CLK) is applied to all FF, which means that all FF shares the same clock signal, • thus the output will change at the same time. 3
  • 4. ASYNCHRONOUS COUNTERS • Modulus (MOD) – the number of states it counts in a complete cycle before it goes back to the initial state. • Thus, the number of flip-flops used depends on the MOD of the counter (ie; MOD-4 use 2 FF (2-bit), MOD-8 use 3 FF (3-bit), etc..) • Example: MOD-4 ripple/asynchronous up-counter. 4
  • 5. ASYNCHRONOUS COUNTERS (CONTINUE) • The asynchronous counter that counts 4 number starts from 00→01→10→11 and back to 00 is called MOD-4 ripple (asynchronous) up-counter. • Next state table and state diagram 5 Present State Next State Q1Q0 Q1Q0 00 01 01 10 10 11 11 00 00 01 10 11
  • 6. ASYNCHRONOUS COUNTERS (CONTINUE) • MOD-4 Asynchronous up-counter 6 J Q K Q CLK 1 J Q K Q CLK 1 Q0 (LSB) Q1 (MSB) CLK Q1 0 0 1 1 0 0 1 1 0 Q0 0 1 0 1 0 1 0 1 0 Binary 0 → 1 → 2 → 3 → 0 → 1 → 2 → 3 → 0 CLK
  • 7. ASYNCHRONOUS COUNTERS (CONTINUE) • MOD-8 Asynchronous up-counter 7 J Q K Q CLK 1 J Q K Q CLK 1 J Q K Q CLK 1 C B A A 0 B 0 C 0 CLK
  • 8. ASYNCHRONOUS COUNTERS (CONTINUE) • Next state table and state diagram 8 Present State Next State ABC ABC 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 000 0 1 2 3 7 6 5 4
  • 9. ASYNCHRONOUS COUNTERS (CONTINUE) • 2-bit Asynchronous down counter 9 J Q K Q CLK 1 J Q K Q CLK 1 B (LSB) A (MSB) CLK B 0 1 0 1 0 1 0 1 0 A 0 1 1 0 0 1 1 0 0 Binary 0 → 3 → 2 → 1 → 0 → 3 → 2 → 1 → 0 CLK
  • 10. ASYNCHRONOUS COUNTERS (CONTINUE) • So far, we have design the counters with MOD number equal to 2N, where N is the number of bit (N = 1,2,3,4….) (also correspond to number of FF) • Thus, the counters are limited on for counting MOD-2, MOD4, MOD-8, MOD-16 etc.. • The question is how to design a MOD-5, MOD-6, MOD-7, MOD-9 which is not a MOD-2N (MOD  2N) ? • MOD-6 counters will count from 010 (0002) to 510(1012) and after that will recount back to 010 (0002) continuously. 10
  • 11. ASYNCHRONOUS COUNTERS • MOD-6 ripple up-counter (MOD  2N) 11 Present St. Next St. ABC ABC 000 001 001 010 010 011 011 100 100 101 101 000(110) 0 1 2 3 5 4 Reset the state to 0002 when 1102 is detected
  • 12. ASYNCHRONOUS COUNTERS (CONTINUE) • Circuit diagram for MOD-6 ripple up-counter (MOD  2N) 12 J Q K CLR Q CLK 1 1 1 C B A J Q K CLR Q CLK J Q K CLR Q CLK Detect the output at ABC=110 to activate CLR. NAND gate is used to detect outputs that generates ‘1’! CLK
  • 14. CHIP FOR ASYNCHRONOUS COUNTERS • 74293 IC for Asynchronous counter with Reset (MR1 and MR2) 14 MR1 MR2 Q0 Q1 Q2 Q3 CP0 CP1 74293 J Q K CLR Q CLK 1 1 1 Q0 Q1 Q2 J Q K CLR Q CLK J Q K CLR Q CLK 1 J Q K CLR Q CLK Q3 MR1 MR2 CP0 CP1
  • 15. CHIP FOR ASYNCHRONOUS COUNTERS (CONTINUE) • Using 74293 IC to design MOD  16 asynchronous up- counter! • Exercise: • use 74293 IC to design MOD-10 ripple up-counter 15 MR1 MR2 Q0 Q1 Q2 Q3 CP0 CP1 74293 1 0 1 0
  • 16. CHIP FOR ASYNCHRONOUS COUNTERS (CONTINUE) • Exercise: • Determine the MOD for each configuration shown below? 16 MR1 MR2 Q0 Q1 Q2 Q3 CP0 CP1 74293 MR1 MR2 Q0 Q1 Q2 Q3 CP0 CP1 74293 1 0 1 3 2 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
  • 17. CHIP FOR ASYNCHRONOUS COUNTERS (CONTINUE) • Determine the MOD for each configuration shown below? 17 MR1 MR2 Q0 Q1 Q2 Q3 CP0 CP1 74293
  • 18. ASYNCHRONOUS COUNTERS • Disadvantages of Asynchronous Counters:- • Propagation delay is severe for larger MOD of counters, especially at the MSB. • Existence of ‘glitch’ is inevitable for MOD  2N counters. • Difficult to design random counters (i.e:- to design circuit that counts numbers in the random sequence 6→4→7→2→1→6→4→7→2→1→6→4….) • Disadvantages can be overcome by::::: SYNCHRONOUS COUNTERS. 18
  • 19. SYNCHRONOUS COUNTERS • For synchronous counters, all the flip-flops are using the same CLOCK signal.Thus, the output would change synchronously. • Procedure to design synchronous counter are as follows:- STEP 1: Obtain the State Diagram. STEP 2: Obtain the Excitation Table using state transition table for any particular FF (JK or D). Determine number of FF used. STEP 3: Obtain and simplify the function of each FF input using K-Map. STEP 4: Draw the circuit. 19
  • 20. SYNCHRONOUS COUNTERS • Design a MOD-4 synchronous up-counter, using JK FF. STEP 1: Obtain the State transition Diagram 20 0 1 2 3 00 01 10 11 Binary
  • 21. SYNCHRONOUS COUNTERS STEP 2: Obtain the Excitation table.Two JK FF are used. 21 Present State Next State A B A B JA KA JB KB 0 0 0 1 0 X 1 X 0 1 1 0 1 X X 1 1 0 1 1 X 0 1 X 1 1 0 0 X 1 X 1 OUTPUT TRANSITION QN QN+1 FF INPUT J K 0 → 0 0 X 0 → 1 1 X 1 → 0 X 1 1 → 1 X 0 Excitation table
  • 22. SYNCHRONOUS COUNTERS STEP 3: Obtain the simplified function using K-Map 22 B A 0 1 0 0 1 1 X X JA = B B A 0 1 0 X X 1 0 1 KA = B B A 0 1 0 1 X 1 1 X JB = 1 B A 0 1 0 X 1 1 X 1 KB = 1
  • 23. SYNCHRONOUS COUNTERS STEP 4: Draw the circuit diagram 23 JB Q KB Q CLK 1 JA Q KA Q CLK B (LSB) A (MSB)
  • 24. SYNCHRONOUS COUNTERS • Design a MOD-4 synchronous down-counter, using JK FF? STEP 1: Obtain the State transition Diagram 24 0 3 2 1 00 11 10 01 Binary
  • 25. SYNCHRONOUS COUNTERS • Obtain the Excitation table.Two JK FF are used. 25 Present St. Next St. A B A B JA KA JB KB 0 0 1 1 1 X 1 X 0 1 0 0 0 X X 1 1 0 0 1 X 1 1 X 1 1 1 0 X 0 X 1 OUTPUT TRANSITION QN QN+1 FF INPUT J K 0 → 0 0 X 0 → 1 1 X 1 → 0 X 1 1 → 1 X 0
  • 26. SYNCHRONOUS COUNTERS • Obtain the simplified function using K-Map 26 B A 0 1 0 1 0 1 X X JA =B’ B A 0 1 0 X X 1 1 0 KA =B’ B A 0 1 0 1 X 1 1 X JB = 1 B A 0 1 0 X 1 1 X 1 KB =1
  • 27. SYNCHRONOUS COUNTERS • Draw the circuit diagram 27 JB Q KB Q CLK JA Q KA Q CLK B A
  • 30. 30
  • 32. 32
  • 33. 33 }
  • 34. MODULO-10 UP/DOWN COUNTER USINGT FFS • Step 1: The number of flip flops:A modulo-10 counter has 10 states and so it requires 4 FFs. • 4-FFs can have 16 states. So out of 16, six states (1010 through 1111) are invalid. The entries for excitations corresponding to invalid states are don’t cares. For selecting up and down modes a control or mode signal is required. Let us say it counts up when the mode signal M=1 and counts down when M=0.The clock signal is applied to all the FFs simultaneously. • Step 2: The state diagram:The state diagram of the mod-10 up/down counter is drawn. • Step 3: The type of flip flops and the excitation table:T flip flops are selected and the excitation table of the modulo-10 up/down counter usingT FFs 34
  • 36. 36 PS MOD E NS Required excitations Q4 Q3 Q2 Q1 M Q4 Q3 Q2 Q1 T4 T3 T2 T1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1
  • 37. 37
  • 38. 38
  • 39. MODULO-9 SYNCHRONOUS COUNTER USINGT FFS • Step 1: The number of flip flops: counting sequence for a modulo-9 counter is 0000,0001,0010,0011,0100,0101,0110,0111,1000,0000,… • It has 9 states. So it requires 4 FFs • (9<=24). 4 flip flops can have 16 states. 7 states 1001, 1010, 1100, 1101, 1110, and 1111 are invalid.The entries for excitation corresponding to invalid states are don’t cares. • Step 2: The states diagram:The states diagram for the mod-9 counter is drawn • Step 3: The type of flip flops and the excitation table:T flip flops are selected and the excitation table of a mod-9 counter using T FFs is drawn. 39
  • 40. PS NS Required Excitations Q4 Q3 Q2 Q1 Q4 Q3 Q2 Q1 T4 T3 T2 T1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 40
  • 41. 41 Step 4: The minimal expressions: The K-maps for excitation T4,T3,T2, and T1 in term of the outputs of the FFs Q4,Q3,Q3 and Q1, their minimization and the minimal expression for excitation obtained
  • 42. 42  A shift register counter is a shift register whose output being fed back (connected back) to the serial input. This shift register would count the state in a unique sequence!  Two types of shift register counter:-  The ring counter  The Johnson counter Shift Register Counters
  • 44. 44 Ring Counter (continue) 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
  • 46. 46 Ring Counter (continue) ❑Ring counters are used to construct “One-Hot” counters ❑It can be constructed for any desired MOD number ❑A MOD-N ring counter uses N flip-flops connected in the arrangement as shown in fig. In general ring-counter will require more flip-flops than a binary counter for the same MOD number
  • 48. 48 Johnson Counter Or Twisted-ring counter ❑Johnson counter constructed exactly like a normal ring counter except that the inverted output of the last flip-flop is fed back to first flip-flop
  • 49. 49 Johnson Counter (Continue) A B C 0 1 1 1 0 0 1 1 0 0 0 1