Dimensionality reduction techniques transform high-dimensional data into a lower-dimensional representation while retaining important information. Principal component analysis (PCA) is a common linear technique that projects data along directions of maximum variance to obtain principal components as new uncorrelated variables. It works by computing the covariance matrix of standardized data to identify correlations, then computes the eigenvalues and eigenvectors of the covariance matrix to identify the principal components that capture the most information with fewer dimensions.