1
DISCREATE
MATH
M i n i - P r o j e c t
Supervised by Dr. Mohammad Salah Uddin
GOOD
AFTERNOON
2
3
WORK DETAILS
C Program Undirected Graph Adjacency Matrix
Computational Time
F(n) F(n)
GOOD
AFTERNOON
4
Good Morning
Good Day
Happy Morning
5
Vertices
People, Pages, Photo,
Comments, Places, Group
Edges
User Posting a video,
Your Greeting to your
beloved
6
GRAPH USED
Facebook Graph API
Google Knowledge Graph
Flight Network
Recommendation Engines.
Path Optimization Algorithms.
Scientific Computations.
RANDOM GRAPH INITIALIZE
int **graph = (int **)malloc(n * sizeof(int *)); // Dynamic space allocation //
for (i=0; i<n; i++)
graph[i] = (int *)malloc(n * sizeof(int));
for(i=0; i<n; i++ )
for(j=i+1; j<n; j++)
graph[i][j] = graph[j][i] = rand()%2; // Random undirected graph initialize //
7
CALCULATING TOTAL EDGE & DEGREE
int total_edges = 0;
for(i = 0 ; i < n ; i++)
for(j = i + 1 ; j < n ; j++)
if (graph[i][j] == 1)
total_edges++; // Counting edges //
int total_degrees = 0;
for(i = 0 ; i < n ; i++ )
for(j = 0 ; j < n ; j++)
if (graph[i][j] == 1)
total_degrees++; // Computing degrees //
8
VERIFYING THE HANDSHAKING THEOREM
int flag;
if(total_degrees == 2 * total_edges) // Verifying Handshaking theorem //
flag = 1;
else
flag = 0;
if(flag == 1) // Printing The Verification of Handshaking theorem //
printf("ttIt holds Handshaking theorem! n");
else
printf("ttIt does not holds Handshaking theorem! n");
9
CALCULATION OF TIME
struct timespec start, end;
clock_gettime(CLOCK_REALTIME, &start); // Start time for computation //
clock_gettime(CLOCK_REALTIME, &end); // End time for computation //
double nanos = (double)(end.tv_nsec - start.tv_nsec);
double ms = nanos/1000000;
printf("ttComputational time = %.2f ms.nnn",ms); // Showing Computational Time //
10
Add a Footer 11
YOUR TITLE GOES HERE
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Ut gravida eros erat. Proin a tellus sed risus lobortis sagitti
Output Values for
1000, 2000, 3000,
4000, 5000 Vertices
Add a Footer 12
TITLE
YOUR TITLE GOES HERE
• Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
gravida eros erat.
• Proin a tellus sed risus lobortis
sagittis eu quis est. Duis ut aliquam
nisi. Suspendisse vehicla mi diam,
• sit amet lacinia massa sodales ac.
Fusce condimentum egestas nunc a
YOUR TITLE GOES HERE
• Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
gravida eros erat.
• Proin a tellus sed risus lobortis
sagittis eu quis est. Duis ut aliquam
nisi. Suspendisse vehicula mi diam,
• sit amet lacinia massa sodales ac.
Fusce condimentum egestas nunc a
Add a Footer 13
TITLE GOES HERE
S U B T I T L E G O E S H E R E
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut
gravida eros erat. Proin a tellus sed risus lobortis sagittis
eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi
diam, sit amet lacinia massa sodales ac. Fusce
condimentum egestas nunc a maximus. Quisque et orci
purus. Proin dolor mi, ultrices sit amet ipsum placerat,
congue mattis turpis. Donec vestibulum eros eget mauris
dignissim, ut ultricies dolor viverra. Phasellus efficitur ante
nec sem convallis, in ornare est accumsan. Lorem ipsum
dolor sit amet, consectetur adipiscing elit. Ut gravida eros
erat. Proin a tellus sed risus lobortis sagittis eu quis est.
11%
19%
17%
28%
24%
CHART TITLE
Jan Feb Mar Apr May
Equation :- 6x106
X2
+ 0.029X - 23.51
f(n) = 6x106
n2
+ 0.029n - 23.51
For f(n)=Og(n)
f(n) ≤ c.g(n)
=> 6x106
n2
+ 0.029n - 23.51 ≤ 6x106
n2
+ 0.029 n2
- 23.51 n2
[n ≤ n2
,1 ≤ n2
]
Þ6x106
n2
+ 0.029n - 23.51 ≤ 5.99998x106
n2
f(n) = 6x106
n2
+ 0.029n - 23.51  O(n2
)
Add a Footer 14
TITLE GOES HERE
S U B T I T L E G O E S H E R E
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut
gravida eros erat. Proin a tellus sed risus lobortis sagittis
eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi
diam, sit amet lacinia massa sodales ac. Fusce
condimentum egestas nunc a maximus. Quisque et orci
purus. Proin dolor mi, ultrices sit amet ipsum placerat,
congue mattis turpis. Donec vestibulum eros eget mauris
dignissim, ut ultricies dolor viverra. Phasellus efficitur ante
nec sem convallis, in ornare est accumsan. Lorem ipsum
dolor sit amet, consectetur adipiscing elit. Ut gravida eros
erat. Proin a tellus sed risus lobortis sagittis eu quis est.
11%
19%
17%
28%
24%
CHART TITLE
Jan Feb Mar Apr May
Your text here
 For assignment, summation, , addition, divition we take contant. Because they are not
dependent on n.
 The for loop will be executed (n – 1) times. For each for loop, two comparisons will be done.
One more comparison will be needed to exit the for loop. Therefore, exactly 2(n – 1) + 1 = 2n
– 1 comparisons are used. Hence, the worst-case time complexity of the algorithm is 2n – 1
 O(n).
 For each nested loop execution will be n*(2n-1) times. Hence, the worst-case time
complexity of the algorithm is 2n2
– n O(n2
). Because the second loop will execute n time
for every first n time loop.
Add a Footer 15
TITLE GOES HERE
S U B T I T L E G O E S H E R E
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut
gravida eros erat. Proin a tellus sed risus lobortis sagittis
eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi
diam, sit amet lacinia massa sodales ac. Fusce
condimentum egestas nunc a maximus. Quisque et orci
purus. Proin dolor mi, ultrices sit amet ipsum placerat,
congue mattis turpis. Donec vestibulum eros eget mauris
dignissim, ut ultricies dolor viverra. Phasellus efficitur ante
nec sem convallis, in ornare est accumsan. Lorem ipsum
dolor sit amet, consectetur adipiscing elit. Ut gravida eros
erat. Proin a tellus sed risus lobortis sagittis eu quis est.
11%
19%
17%
28%
24%
CHART TITLE
Jan Feb Mar Apr May
Your text here
int total_edges = 0;
for(i = 0 ; i < n ; i++)
for(j = i + 1 ; j < n ; j++)
if (graph[i][j] == 1)
total_edges++; // Counting edges //
int total_degrees = 0;
for(i = 0 ; i < n ; i++ )
for(j = 0 ; j < n ; j++)
if (graph[i][j] == 1)
total_degrees++; // Computing degrees //
int flag;
if(total_degrees == 2 * total_edges) // Verifying Handshaking theorem //
flag = 1;
else
flag = 0;
For assignment k1
For nested loop n(2n-1)
For If statement k2
For Summation and assignment k3
Total = k1 + k0 n(2n-1) + k2 + k3
For assignment k4
For nested loop n(2n-1)
For If statement k k5
For Summation and assignment k6
Total = k4 + k7 n(2n-1) + k5 + k6
For If statement k8
Total = k8
For total time = k1 + k0 n(2n-1) + k2 + k4 + k7 n(2n-1) + k5 + k6 + k8
= k + k (2n2
– n)
 0(n2
) [After omitting constant and taking most determine value ]
Add a Footer 16
TITLE GOES HERE
S U B T I T L E G O E S H E R E
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut
gravida eros erat. Proin a tellus sed risus lobortis sagittis
eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi
diam, sit amet lacinia massa sodales ac. Fusce
condimentum egestas nunc a maximus. Quisque et orci
purus. Proin dolor mi, ultrices sit amet ipsum placerat,
congue mattis turpis. Donec vestibulum eros eget mauris
dignissim, ut ultricies dolor viverra. Phasellus efficitur ante
nec sem convallis, in ornare est accumsan. Lorem ipsum
dolor sit amet, consectetur adipiscing elit. Ut gravida eros
erat. Proin a tellus sed risus lobortis sagittis eu quis est.
11%
19%
17%
28%
24%
CHART TITLE
Jan Feb Mar Apr May
Your text here
 Theoretically we got T(n)  0(n2
) for the
nested loop.
 From the graph equation we got 5.99998x106
n2
. Which is T(n)  k * n2
 0(n2
).
 Compering this with statistical result verifies
the claim.
THANK YOU
17

More Related Content

PDF
Dynamic Programming From CS 6515(Fibonacci, LIS, LCS))
PPTX
Presentation_23953_Content_Document_20240906040454PM.pptx
PPTX
1_Asymptotic_Notation_pptx.pptx
PDF
kactl.pdf
PDF
Asymptotic Notation
PPT
Analysis Of Algorithms I
PDF
6_12_13Asymptotic analysiskfnhlkjsbfbkjs.pdf
PPT
lecture 3
Dynamic Programming From CS 6515(Fibonacci, LIS, LCS))
Presentation_23953_Content_Document_20240906040454PM.pptx
1_Asymptotic_Notation_pptx.pptx
kactl.pdf
Asymptotic Notation
Analysis Of Algorithms I
6_12_13Asymptotic analysiskfnhlkjsbfbkjs.pdf
lecture 3

Similar to Discrete mathematics introductionSlide.pptx (20)

PPT
tutorial5.ppt
PDF
Skiena algorithm 2007 lecture02 asymptotic notation
PPT
lecture3.ppt
PPTX
CS 161 Section 1 Slides - Stanford University
PPT
3. Recursion and Recurrences.ppt detail about recursive learning
PPT
Asymptotic analysis
PDF
1ST_UNIT_DAdefewfrewfgrwefrAdfdgfdsgevedr (2).pdf
PDF
3.pdf
PPTX
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
PPT
Time complexity
PPTX
9. Asymptotic Analysizbbsbsbsbshzhsbbss.pptx
PPT
AsymptoticAnalysis-goal of analysis of algorithms
PPTX
Asymptotic Notation
PPT
AsymptoticAnalysis.ppt
PPTX
Class 18: Measuring Cost
PDF
Copy of y16 02-2119divide-and-conquer
PDF
time_complexity_list_02_04_2024_22_pages.pdf
PPTX
Time complexity.pptxghhhhhhhhhhhhhhhjjjjjjjjjjjjjjjjjjjjjjjjjj
PPTX
Asymptotic notations for desing analysis of algorithm.pptx
PDF
02 Notes Divide and Conquer
tutorial5.ppt
Skiena algorithm 2007 lecture02 asymptotic notation
lecture3.ppt
CS 161 Section 1 Slides - Stanford University
3. Recursion and Recurrences.ppt detail about recursive learning
Asymptotic analysis
1ST_UNIT_DAdefewfrewfgrwefrAdfdgfdsgevedr (2).pdf
3.pdf
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
Time complexity
9. Asymptotic Analysizbbsbsbsbshzhsbbss.pptx
AsymptoticAnalysis-goal of analysis of algorithms
Asymptotic Notation
AsymptoticAnalysis.ppt
Class 18: Measuring Cost
Copy of y16 02-2119divide-and-conquer
time_complexity_list_02_04_2024_22_pages.pdf
Time complexity.pptxghhhhhhhhhhhhhhhjjjjjjjjjjjjjjjjjjjjjjjjjj
Asymptotic notations for desing analysis of algorithm.pptx
02 Notes Divide and Conquer
Ad

More from atulnarkhede7 (6)

PPTX
Electronics_ diode circuits_concept.pptx
PPT
Ai introduction for beginners to understand AI .ppt
PPTX
Classification of solid using energy level.pptx
PPTX
part 1_Semiconductor physics exaplanitation.pptx
PPTX
Function Math's and problems on functions .pptx
PPT
cmos_steps.ppt
Electronics_ diode circuits_concept.pptx
Ai introduction for beginners to understand AI .ppt
Classification of solid using energy level.pptx
part 1_Semiconductor physics exaplanitation.pptx
Function Math's and problems on functions .pptx
cmos_steps.ppt
Ad

Recently uploaded (20)

PDF
Project_Mgmt_Institute_-Marc Marc Marc .pdf
PDF
Micro 4 New.ppt.pdf a servay of cells and microorganism
PPTX
chapter 1.pptx dotnet technology introduction
PDF
Mechanics of materials week 2 rajeshwari
PDF
Unit1 - AIML Chapter 1 concept and ethics
PPT
UNIT-I Machine Learning Essentials for 2nd years
PPTX
Micro1New.ppt.pptx the mai themes of micfrobiology
PDF
Present and Future of Systems Engineering: Air Combat Systems
PDF
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
PDF
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
PPTX
MAD Unit - 3 User Interface and Data Management (Diploma IT)
PDF
Research on ultrasonic sensor for TTU.pdf
PPTX
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
PPTX
Cisco Network Behaviour dibuywvdsvdtdstydsdsa
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PDF
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
PPTX
Wireless sensor networks (WSN) SRM unit 2
PDF
electrical machines course file-anna university
Project_Mgmt_Institute_-Marc Marc Marc .pdf
Micro 4 New.ppt.pdf a servay of cells and microorganism
chapter 1.pptx dotnet technology introduction
Mechanics of materials week 2 rajeshwari
Unit1 - AIML Chapter 1 concept and ethics
UNIT-I Machine Learning Essentials for 2nd years
Micro1New.ppt.pptx the mai themes of micfrobiology
Present and Future of Systems Engineering: Air Combat Systems
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
Environmental studies, Moudle 3-Environmental Pollution.pptx
MAD Unit - 3 User Interface and Data Management (Diploma IT)
Research on ultrasonic sensor for TTU.pdf
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
Environmental studies, Moudle 3-Environmental Pollution.pptx
Cisco Network Behaviour dibuywvdsvdtdstydsdsa
20250617 - IR - Global Guide for HR - 51 pages.pdf
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
Wireless sensor networks (WSN) SRM unit 2
electrical machines course file-anna university

Discrete mathematics introductionSlide.pptx

  • 1. 1 DISCREATE MATH M i n i - P r o j e c t Supervised by Dr. Mohammad Salah Uddin
  • 3. 3 WORK DETAILS C Program Undirected Graph Adjacency Matrix Computational Time F(n) F(n)
  • 5. 5 Vertices People, Pages, Photo, Comments, Places, Group Edges User Posting a video, Your Greeting to your beloved
  • 6. 6 GRAPH USED Facebook Graph API Google Knowledge Graph Flight Network Recommendation Engines. Path Optimization Algorithms. Scientific Computations.
  • 7. RANDOM GRAPH INITIALIZE int **graph = (int **)malloc(n * sizeof(int *)); // Dynamic space allocation // for (i=0; i<n; i++) graph[i] = (int *)malloc(n * sizeof(int)); for(i=0; i<n; i++ ) for(j=i+1; j<n; j++) graph[i][j] = graph[j][i] = rand()%2; // Random undirected graph initialize // 7
  • 8. CALCULATING TOTAL EDGE & DEGREE int total_edges = 0; for(i = 0 ; i < n ; i++) for(j = i + 1 ; j < n ; j++) if (graph[i][j] == 1) total_edges++; // Counting edges // int total_degrees = 0; for(i = 0 ; i < n ; i++ ) for(j = 0 ; j < n ; j++) if (graph[i][j] == 1) total_degrees++; // Computing degrees // 8
  • 9. VERIFYING THE HANDSHAKING THEOREM int flag; if(total_degrees == 2 * total_edges) // Verifying Handshaking theorem // flag = 1; else flag = 0; if(flag == 1) // Printing The Verification of Handshaking theorem // printf("ttIt holds Handshaking theorem! n"); else printf("ttIt does not holds Handshaking theorem! n"); 9
  • 10. CALCULATION OF TIME struct timespec start, end; clock_gettime(CLOCK_REALTIME, &start); // Start time for computation // clock_gettime(CLOCK_REALTIME, &end); // End time for computation // double nanos = (double)(end.tv_nsec - start.tv_nsec); double ms = nanos/1000000; printf("ttComputational time = %.2f ms.nnn",ms); // Showing Computational Time // 10
  • 11. Add a Footer 11 YOUR TITLE GOES HERE Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagitti Output Values for 1000, 2000, 3000, 4000, 5000 Vertices
  • 12. Add a Footer 12 TITLE YOUR TITLE GOES HERE • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. • Proin a tellus sed risus lobortis sagittis eu quis est. Duis ut aliquam nisi. Suspendisse vehicla mi diam, • sit amet lacinia massa sodales ac. Fusce condimentum egestas nunc a YOUR TITLE GOES HERE • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. • Proin a tellus sed risus lobortis sagittis eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi diam, • sit amet lacinia massa sodales ac. Fusce condimentum egestas nunc a
  • 13. Add a Footer 13 TITLE GOES HERE S U B T I T L E G O E S H E R E Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi diam, sit amet lacinia massa sodales ac. Fusce condimentum egestas nunc a maximus. Quisque et orci purus. Proin dolor mi, ultrices sit amet ipsum placerat, congue mattis turpis. Donec vestibulum eros eget mauris dignissim, ut ultricies dolor viverra. Phasellus efficitur ante nec sem convallis, in ornare est accumsan. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. 11% 19% 17% 28% 24% CHART TITLE Jan Feb Mar Apr May Equation :- 6x106 X2 + 0.029X - 23.51 f(n) = 6x106 n2 + 0.029n - 23.51 For f(n)=Og(n) f(n) ≤ c.g(n) => 6x106 n2 + 0.029n - 23.51 ≤ 6x106 n2 + 0.029 n2 - 23.51 n2 [n ≤ n2 ,1 ≤ n2 ] Þ6x106 n2 + 0.029n - 23.51 ≤ 5.99998x106 n2 f(n) = 6x106 n2 + 0.029n - 23.51  O(n2 )
  • 14. Add a Footer 14 TITLE GOES HERE S U B T I T L E G O E S H E R E Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi diam, sit amet lacinia massa sodales ac. Fusce condimentum egestas nunc a maximus. Quisque et orci purus. Proin dolor mi, ultrices sit amet ipsum placerat, congue mattis turpis. Donec vestibulum eros eget mauris dignissim, ut ultricies dolor viverra. Phasellus efficitur ante nec sem convallis, in ornare est accumsan. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. 11% 19% 17% 28% 24% CHART TITLE Jan Feb Mar Apr May Your text here  For assignment, summation, , addition, divition we take contant. Because they are not dependent on n.  The for loop will be executed (n – 1) times. For each for loop, two comparisons will be done. One more comparison will be needed to exit the for loop. Therefore, exactly 2(n – 1) + 1 = 2n – 1 comparisons are used. Hence, the worst-case time complexity of the algorithm is 2n – 1  O(n).  For each nested loop execution will be n*(2n-1) times. Hence, the worst-case time complexity of the algorithm is 2n2 – n O(n2 ). Because the second loop will execute n time for every first n time loop.
  • 15. Add a Footer 15 TITLE GOES HERE S U B T I T L E G O E S H E R E Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi diam, sit amet lacinia massa sodales ac. Fusce condimentum egestas nunc a maximus. Quisque et orci purus. Proin dolor mi, ultrices sit amet ipsum placerat, congue mattis turpis. Donec vestibulum eros eget mauris dignissim, ut ultricies dolor viverra. Phasellus efficitur ante nec sem convallis, in ornare est accumsan. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. 11% 19% 17% 28% 24% CHART TITLE Jan Feb Mar Apr May Your text here int total_edges = 0; for(i = 0 ; i < n ; i++) for(j = i + 1 ; j < n ; j++) if (graph[i][j] == 1) total_edges++; // Counting edges // int total_degrees = 0; for(i = 0 ; i < n ; i++ ) for(j = 0 ; j < n ; j++) if (graph[i][j] == 1) total_degrees++; // Computing degrees // int flag; if(total_degrees == 2 * total_edges) // Verifying Handshaking theorem // flag = 1; else flag = 0; For assignment k1 For nested loop n(2n-1) For If statement k2 For Summation and assignment k3 Total = k1 + k0 n(2n-1) + k2 + k3 For assignment k4 For nested loop n(2n-1) For If statement k k5 For Summation and assignment k6 Total = k4 + k7 n(2n-1) + k5 + k6 For If statement k8 Total = k8 For total time = k1 + k0 n(2n-1) + k2 + k4 + k7 n(2n-1) + k5 + k6 + k8 = k + k (2n2 – n)  0(n2 ) [After omitting constant and taking most determine value ]
  • 16. Add a Footer 16 TITLE GOES HERE S U B T I T L E G O E S H E R E Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. Duis ut aliquam nisi. Suspendisse vehicula mi diam, sit amet lacinia massa sodales ac. Fusce condimentum egestas nunc a maximus. Quisque et orci purus. Proin dolor mi, ultrices sit amet ipsum placerat, congue mattis turpis. Donec vestibulum eros eget mauris dignissim, ut ultricies dolor viverra. Phasellus efficitur ante nec sem convallis, in ornare est accumsan. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut gravida eros erat. Proin a tellus sed risus lobortis sagittis eu quis est. 11% 19% 17% 28% 24% CHART TITLE Jan Feb Mar Apr May Your text here  Theoretically we got T(n)  0(n2 ) for the nested loop.  From the graph equation we got 5.99998x106 n2 . Which is T(n)  k * n2  0(n2 ).  Compering this with statistical result verifies the claim.