SlideShare a Scribd company logo
Distributed Consensus:
Making Impossible
Possible
Heidi Howard
PhD Student @ University of Cambridge
heidi.howard@cl.cam.ac.uk
@heidiann360
Distributed Consensus: Making Impossible Possible by Heidi howard
What is Consensus?
“The process by which we reach agreement over
system state between unreliable machines connected
by asynchronous networks”
Why?
• Distributed locking
• Banking
• Safety critical systems
• Distributed scheduling and coordination
Anything which requires guaranteed agreement
A walk through history
We are going to take a journey through the
developments in distributed consensus, spanning 3
decades.
We are going to search for answers to questions like:
• how do we reach consensus?
• what is the best method for reaching consensus?
• can we even reach consensus?
• what’s next in the field?
FLP Result
off to a slippery start
Impossibility of distributed
consensus with one faulty process
Michael Fischer, Nancy Lynch
and Michael Paterson
ACM SIGACT-SIGMOD
Symposium on Principles of
Database Systems
1983
FLP
We cannot guarantee agreement in an asynchronous
system where even one host might fail.
Why?
We cannot reliably detect failures. We cannot know
for sure the difference between a slow host/network
and a failed host
NB: We can still guarantee safety, the issue limited to
guaranteeing liveness.
Solution to FLP
In practice:
We accept that sometimes the system will not be
available. We mitigate this using timers and backoffs.
In theory:
We make weaker assumptions about the synchrony
of the system e.g. messages arrive within a year.
Paxos
Lamport’s original consensus algorithm
The Part-Time Parliament
Leslie Lamport
ACM Transactions on Computer Systems
May 1998
Paxos
The original consensus algorithm for reaching
agreement on a single value.
• two phase process: promise and commit
• majority agreement
• monotonically increasing numbers
Paxos Example -
Failure Free
1 2
3
P:
C:
P:
C:
P:
C:
1 2
3
P:
C:
P:
C:
P:
C:
B
Incoming request from Bob
1 2
3
P:
C:
P: 13
C:
P:
C:
B
Promise (13) ?
Phase 1
Promise (13) ?
1 2
3
P: 13
C:
OKOK
P: 13
C:
P: 13
C:
Phase 1
1 2
3
P: 13
C: 13, B
P: 13
C:
P: 13
C:
Phase 2
Commit (13, ) ?B Commit (13, ) ?B
1 2
3
P: 13
C: 13, B
P: 13
C: 13,
P: 13
C: 13,
Phase 2
B B
OKOK
1 2
3
P: 13
C: 13, B
P: 13
C: 13,
P: 13
C: 13, B B
OK
Bob is granted the lock
Paxos Example -
Node Failure
1 2
3
P:
C:
P:
C:
P:
C:
1 2
3
P:
C:
P: 13
C:
P:
C:
Promise (13) ?
Phase 1
B
Incoming request from Bob
Promise (13) ?
1 2
3
P: 13
C:
P: 13
C:
P: 13
C:
Phase 1
B
OK
OK
1 2
3
P: 13
C:
P: 13
C: 13,
P: 13
C:
Phase 2
Commit (13, ) ?B
B
1 2
3
P: 13
C:
P: 13
C: 13,
P: 13
C: 13,
Phase 2
B
B
1 2
3
P: 13
C:
P: 13
C: 13,
P: 13
C: 13,
Alice would also like the lock
B
B
A
1 2
3
P: 13
C:
P: 13
C: 13,
P: 13
C: 13,
Alice would also like the lock
B
B
A
1 2
3
P: 22
C:
P: 13
C: 13,
P: 13
C: 13,
Phase 1
B
B
A
Promise (22) ?
1 2
3
P: 22
C:
P: 13
C: 13,
P: 22
C: 13,
Phase 1
B
B
A
OK(13, )B
1 2
3
P: 22
C: 22,
P: 13
C: 13,
P: 22
C: 13,
Phase 2
B
B
A
Commit (22, ) ?B
B
1 2
3
P: 22
C: 22,
P: 13
C: 13,
P: 22
C: 22,
Phase 2
B
B
OK
B
NO
Paxos Summary
Clients must wait two round trips (2 RTT) to the
majority of nodes. Sometimes longer.
The system will continue as long as a majority of
nodes are up
Multi-Paxos
Lamport’s leader-driven consensus algorithm
Paxos Made Moderately Complex
Robbert van Renesse and Deniz
Altinbuken
ACM Computing Surveys
April 2015
Not the original, but highly recommended
Multi-Paxos
Lamport’s insight:
Phase 1 is not specific to the request so can be done
before the request arrives and can be reused.
Implication:
Bob now only has to wait one RTT
State Machine
Replication
fault-tolerant services using consensus
Implementing Fault-Tolerant
Services Using the State Machine
Approach: A Tutorial
Fred Schneider
ACM Computing Surveys
1990
State Machine Replication
A general technique for making a service, such as a
database, fault-tolerant.
Application
Client Client
Distributed Consensus: Making Impossible Possible by Heidi howard
Application
Application
Application
Client
Client
Network
Consensus
Consensus
Consensus
Consensus
Consensus
Distributed Consensus: Making Impossible Possible by Heidi howard
CAP Theorem
You cannot have your cake and eat it
CAP Theorem
Eric Brewer
Presented at Symposium on
Principles of Distributed
Computing, 2000
Consistency, Availability &
Partition Tolerance - Pick Two
1 2
3 4
B C
Paxos Made Live
How google uses Paxos
Paxos Made Live - An Engineering
Perspective
Tushar Chandra, Robert Griesemer
and Joshua Redstone
ACM Symposium on Principles of
Distributed Computing
2007
Paxos Made Live
Paxos made live documents the challenges in
constructing Chubby, a distributed coordination
service, built using Multi-Paxos and SMR.
Isn’t this a solved problem?
“There are significant gaps between the description
of the Paxos algorithm and the needs of a real-world
system.
In order to build a real-world system, an expert needs
to use numerous ideas scattered in the literature and
make several relatively small protocol extensions.
The cumulative effort will be substantial and the final
system will be based on an unproven protocol.”
Challenges
• Handling disk failure and corruption
• Dealing with limited storage capacity
• Effectively handling read-only requests
• Dynamic membership & reconfiguration
• Supporting transactions
• Verifying safety of the implementation
Fast Paxos
Like Multi-Paxos, but faster
Fast Paxos
Leslie Lamport
Microsoft Research Tech Report
MSR-TR-2005-112
Fast Paxos
Paxos: Any node can commit a value in 2 RTTs
Multi-Paxos: The leader node can commit a value in
1 RTT
But, what about any node committing a value in 1
RTT?
Fast Paxos
We can bypass the leader node for many operations,
so any node can commit a value in 1 RTT.
However, we must either:
• reduce the number of failures we guarantee to
tolerance, or
• increase the size of the quorum, or
• a combination of both
Egalitarian Paxos
Don’t restrict yourself unnecessarily
There Is More Consensus in
Egalitarian Parliaments
Iulian Moraru, David G. Andersen,
Michael Kaminsky
SOSP 2013
also see Generalized Consensus and Paxos
Egalitarian Paxos
The basis of SMR is that every replica of an
application receives the same commands in the
same order.
However, sometimes the ordering can be relaxed…
C=1 B? C=C+1 C? B=0 B=C
C=1 B?
C=C+1
C?
B=0
B=C
Partial Ordering
Total Ordering
C=1 B? C=C+1 C? B=0 B=C
Many possible orderings
B? C=C+1 C?B=0 B=CC=1
B?C=C+1 C? B=0 B=CC=1
B? C=C+1 C? B=0 B=CC=1
Egalitarian Paxos
Allow requests to be out-of-order if they are
commutative.
Conflict becomes much less common.
Works well in combination with Fast Paxos.
Viewstamped
Replication Revisited
the forgotten algorithm
Viewstamped Replication Revisited
Barbara Liskov and James
Cowling
MIT Tech Report
MIT-CSAIL-TR-2012-021
Viewstamped Replication
Revisited (VRR)
Interesting and well explained variant of SMR + Multi-
Paxos.
Key features:
• Round robin leader election
• Dynamic Membership
Raft Consensus
Paxos made understandable
In Search of an Understandable
Consensus Algorithm
Diego Ongaro and John
Ousterhout
USENIX Annual Technical
Conference
2014
Raft
Raft has taken the wider community by storm. Due to
its understandable description.
It’s another variant of SMR with Multi-Paxos.
Key features:
• Really strong leadership - all other nodes are
passive
• Dynamic membership and log compaction
Follower Candidate Leader
Startup/
Restart
Timeout Win
Timeout
Step down
Step down
Ios
Why do things yourself, when you can delegate it?
to appear
Ios
The issue with leader-driven algorithms like Multi-
Paxos, Raft and VRR is that throughput is limited to
one node.
Ios allows a leader to safely and dynamically
delegate their responsibilities to other nodes in the
system.
Hydra
consensus for geo-replication
to appear
Hydra
Distributed consensus for systems which span
multiple datacenters.
We use Ios for replication within the datacenter and a
Egalitarian Paxos like protocol for across datacenters.
The system has a clear leader but most requests
simply bypass the leader.
1 2
3
4 5
6
7 8
9
Tokyo
West Coast
East Coast
B
1 2
3
4 5
6
7 8
9
Tokyo
West Coast
East Coast
B
1 2
3
4 5
6
7 8
9
Tokyo
West Coast
East Coast
B
The road we travelled
• 2 impossibility results: CAP & FLP
• 1 replication method: State machine Replication
• 6 consensus algorithms: Paxos, Multi-Paxos, Fast
Paxos, Egalitarian Paxos, Viewstamped Replication
Revisited & Raft
• 2 future algorithms: Ios & Hydra
How strong is the
leadership?
Strong
Leadership Leaderless
Paxos
Egalitarian
Paxos
Raft VRR Ios Hydra
Multi-Paxos Fast Paxos
Leader with
Delegation
Leader only
when needed
Leader driven
Who is the winner?
Depends on the award:
• Best for minimum latency: VRR
• Easier to understand: Raft
• Best for WANs (conflicts rare): Egalitarian Paxos
• Best for WANs (conflicts common): Fast Paxos
Future
1. More algorithms offering a compromise between
strong leadership and leaderless
2. More understandable consensus algorithms
3. Achieving consensus is getting cheaper, even in
challenging settings
4. Deployment with micro-services and unikernels
5. Self-scaling replication - adapting resources to
maintain resilience level.
Stops we drove passed
We have seen one path through history, but many
more exist.
• Alternative replication techniques e.g. chain
replication and primary backup replication
• Alternative failure models e.g. nodes acting
maliciously
• Alternative domains e.g. sensor networks, mobile
networks, between cores
Summary
Do not be discouraged by
impossibility results and dense
abstract academic papers.
Consensus is useful and achievable.
Find the right algorithm for your
specific domain.
heidi.howard@cl.cam.ac.uk
@heidiann360

More Related Content

What's hot (20)

PDF
Getting started with quorum -101
Chainstack
 
PPTX
How do private transactions work on Quorum
Chainstack
 
PPTX
Overview of Blockchain Consensus Mechanisms
Johannes Ahlmann
 
PDF
Hyperchains
Grzegorz Uriasz
 
PPTX
Defrag X Keynote: Deploying and managing Global Blockchain Network
Duncan Johnston-Watt
 
PPTX
Webinar: Enterprise Blockchain Radically Simplified with Truffle and Kaleido
Kaleido
 
PPTX
Consensus Algorithms - Nakov @ jProfessionals - Jan 2018
Svetlin Nakov
 
PPTX
Enterprise Blockchain
Aalok Singh
 
PDF
Collective Authorities
Ismail Khoffi
 
PDF
Understanding blockchains
Len Bass
 
PDF
Vilnius blockchain club 20170413 consensus
Audrius Ramoska
 
PDF
Hyperledger Fabric Application Development 20190618
Arnaud Le Hors
 
PDF
Introduction to Ethereum Blockchain & Smart Contract
Thanh Nguyen
 
PPTX
Hyperledger Fabric
Murughan Palaniachari
 
PDF
Ethcon seoul 2019 presentation final
Heung-No Lee
 
PPTX
Blockchain - HyperLedger Fabric
Araf Karsh Hamid
 
PPTX
Blockchain, 
Hyperledger fabric & Hyperledger cello
Sahdev Zala
 
PPTX
Introduction to Consensus techniques
Vasiliy Suvorov
 
PDF
Demystify blockchain development with hyperledger fabric
Benjamin Fuentes
 
PPTX
EUIPO DPM knowledge share: Blockchain and IP
Audrius Ramoska
 
Getting started with quorum -101
Chainstack
 
How do private transactions work on Quorum
Chainstack
 
Overview of Blockchain Consensus Mechanisms
Johannes Ahlmann
 
Hyperchains
Grzegorz Uriasz
 
Defrag X Keynote: Deploying and managing Global Blockchain Network
Duncan Johnston-Watt
 
Webinar: Enterprise Blockchain Radically Simplified with Truffle and Kaleido
Kaleido
 
Consensus Algorithms - Nakov @ jProfessionals - Jan 2018
Svetlin Nakov
 
Enterprise Blockchain
Aalok Singh
 
Collective Authorities
Ismail Khoffi
 
Understanding blockchains
Len Bass
 
Vilnius blockchain club 20170413 consensus
Audrius Ramoska
 
Hyperledger Fabric Application Development 20190618
Arnaud Le Hors
 
Introduction to Ethereum Blockchain & Smart Contract
Thanh Nguyen
 
Hyperledger Fabric
Murughan Palaniachari
 
Ethcon seoul 2019 presentation final
Heung-No Lee
 
Blockchain - HyperLedger Fabric
Araf Karsh Hamid
 
Blockchain, 
Hyperledger fabric & Hyperledger cello
Sahdev Zala
 
Introduction to Consensus techniques
Vasiliy Suvorov
 
Demystify blockchain development with hyperledger fabric
Benjamin Fuentes
 
EUIPO DPM knowledge share: Blockchain and IP
Audrius Ramoska
 

Similar to Distributed Consensus: Making Impossible Possible by Heidi howard (20)

PDF
Distributed Consensus: Making Impossible Possible [Revised]
Heidi Howard
 
PPTX
Basic Paxos Implementation in Orc
Hemanth Kumar Mantri
 
PDF
Consensus Algorithms: An Introduction & Analysis
Zak Cole
 
PDF
Reaching reliable agreement in an unreliable world
Heidi Howard
 
PDF
Cornelia Davis, Meaghan Kjelland, Erin Schnabel, Therese Stowell, and Mathang...
VMware Tanzu
 
PDF
Distributed Systems Theory for Mere Mortals
Ensar Basri Kahveci
 
PDF
Flexible Paxos: Reaching agreement without majorities
Heidi Howard
 
PDF
Raft_Diego_Ongaro.pdf
jsathy97
 
PDF
Impossibility
Pawel Szulc
 
PPT
L14.C3.FA18.ppt
FarhanKhan371680
 
PDF
Paxos building-reliable-system
Yanpo Zhang
 
PPTX
Paxos vs Raft Have we reached consensus on distributed consensus.pptx
mahdiaghaei19
 
ZIP
9X5u87KWa267pP7aGX3K
CapitolPunishment
 
ODP
Consensus algo with_distributed_key_value_store_in_distributed_system
Atin Mukherjee
 
PDF
Introduction to Raft algorithm
muayyad alsadi
 
PDF
TMPA-2017: Live testing distributed system fault tolerance with fault injecti...
Iosif Itkin
 
PPS
the Paxos Commit algorithm
paolos84
 
PDF
Consensus in distributed computing
Ruben Tan
 
PDF
Beyond Off the-Shelf Consensus
Rebecca Bilbro
 
PDF
From Mainframe to Microservice: An Introduction to Distributed Systems
Tyler Treat
 
Distributed Consensus: Making Impossible Possible [Revised]
Heidi Howard
 
Basic Paxos Implementation in Orc
Hemanth Kumar Mantri
 
Consensus Algorithms: An Introduction & Analysis
Zak Cole
 
Reaching reliable agreement in an unreliable world
Heidi Howard
 
Cornelia Davis, Meaghan Kjelland, Erin Schnabel, Therese Stowell, and Mathang...
VMware Tanzu
 
Distributed Systems Theory for Mere Mortals
Ensar Basri Kahveci
 
Flexible Paxos: Reaching agreement without majorities
Heidi Howard
 
Raft_Diego_Ongaro.pdf
jsathy97
 
Impossibility
Pawel Szulc
 
L14.C3.FA18.ppt
FarhanKhan371680
 
Paxos building-reliable-system
Yanpo Zhang
 
Paxos vs Raft Have we reached consensus on distributed consensus.pptx
mahdiaghaei19
 
9X5u87KWa267pP7aGX3K
CapitolPunishment
 
Consensus algo with_distributed_key_value_store_in_distributed_system
Atin Mukherjee
 
Introduction to Raft algorithm
muayyad alsadi
 
TMPA-2017: Live testing distributed system fault tolerance with fault injecti...
Iosif Itkin
 
the Paxos Commit algorithm
paolos84
 
Consensus in distributed computing
Ruben Tan
 
Beyond Off the-Shelf Consensus
Rebecca Bilbro
 
From Mainframe to Microservice: An Introduction to Distributed Systems
Tyler Treat
 
Ad

More from J On The Beach (20)

PDF
Massively scalable ETL in real world applications: the hard way
J On The Beach
 
PPTX
Big Data On Data You Don’t Have
J On The Beach
 
PPTX
Acoustic Time Series in Industry 4.0: Improved Reliability and Cyber-Security...
J On The Beach
 
PDF
Pushing it to the edge in IoT
J On The Beach
 
PDF
Drinking from the firehose, with virtual streams and virtual actors
J On The Beach
 
PDF
How do we deploy? From Punched cards to Immutable server pattern
J On The Beach
 
PDF
Java, Turbocharged
J On The Beach
 
PDF
When Cloud Native meets the Financial Sector
J On The Beach
 
PDF
The big data Universe. Literally.
J On The Beach
 
PDF
Streaming to a New Jakarta EE
J On The Beach
 
PDF
The TIPPSS Imperative for IoT - Ensuring Trust, Identity, Privacy, Protection...
J On The Beach
 
PDF
Pushing AI to the Client with WebAssembly and Blazor
J On The Beach
 
PDF
Axon Server went RAFTing
J On The Beach
 
PDF
The Six Pitfalls of building a Microservices Architecture (and how to avoid t...
J On The Beach
 
PDF
Madaari : Ordering For The Monkeys
J On The Beach
 
PDF
Servers are doomed to fail
J On The Beach
 
PDF
Interaction Protocols: It's all about good manners
J On The Beach
 
PDF
A race of two compilers: GraalVM JIT versus HotSpot JIT C2. Which one offers ...
J On The Beach
 
PDF
Leadership at every level
J On The Beach
 
PDF
Machine Learning: The Bare Math Behind Libraries
J On The Beach
 
Massively scalable ETL in real world applications: the hard way
J On The Beach
 
Big Data On Data You Don’t Have
J On The Beach
 
Acoustic Time Series in Industry 4.0: Improved Reliability and Cyber-Security...
J On The Beach
 
Pushing it to the edge in IoT
J On The Beach
 
Drinking from the firehose, with virtual streams and virtual actors
J On The Beach
 
How do we deploy? From Punched cards to Immutable server pattern
J On The Beach
 
Java, Turbocharged
J On The Beach
 
When Cloud Native meets the Financial Sector
J On The Beach
 
The big data Universe. Literally.
J On The Beach
 
Streaming to a New Jakarta EE
J On The Beach
 
The TIPPSS Imperative for IoT - Ensuring Trust, Identity, Privacy, Protection...
J On The Beach
 
Pushing AI to the Client with WebAssembly and Blazor
J On The Beach
 
Axon Server went RAFTing
J On The Beach
 
The Six Pitfalls of building a Microservices Architecture (and how to avoid t...
J On The Beach
 
Madaari : Ordering For The Monkeys
J On The Beach
 
Servers are doomed to fail
J On The Beach
 
Interaction Protocols: It's all about good manners
J On The Beach
 
A race of two compilers: GraalVM JIT versus HotSpot JIT C2. Which one offers ...
J On The Beach
 
Leadership at every level
J On The Beach
 
Machine Learning: The Bare Math Behind Libraries
J On The Beach
 
Ad

Recently uploaded (20)

PPTX
Home Care Tools: Benefits, features and more
Third Rock Techkno
 
PPTX
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PPTX
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
PPTX
Change Common Properties in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PPTX
Homogeneity of Variance Test Options IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
PPTX
Agentic Automation Journey Series Day 2 – Prompt Engineering for UiPath Agents
klpathrudu
 
PDF
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
PPTX
AEM User Group: India Chapter Kickoff Meeting
jennaf3
 
PDF
SAP Firmaya İade ABAB Kodları - ABAB ile yazılmıl hazır kod örneği
Salih Küçük
 
PDF
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
PDF
Wondershare PDFelement Pro Crack for MacOS New Version Latest 2025
bashirkhan333g
 
PDF
4K Video Downloader Plus Pro Crack for MacOS New Download 2025
bashirkhan333g
 
PDF
Technical-Careers-Roadmap-in-Software-Market.pdf
Hussein Ali
 
PDF
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
PDF
Dipole Tech Innovations – Global IT Solutions for Business Growth
dipoletechi3
 
PDF
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 
PPTX
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
PPTX
Build a Custom Agent for Agentic Testing.pptx
klpathrudu
 
PDF
TheFutureIsDynamic-BoxLang witch Luis Majano.pdf
Ortus Solutions, Corp
 
Home Care Tools: Benefits, features and more
Third Rock Techkno
 
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
Change Common Properties in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
Homogeneity of Variance Test Options IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
Agentic Automation Journey Series Day 2 – Prompt Engineering for UiPath Agents
klpathrudu
 
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
AEM User Group: India Chapter Kickoff Meeting
jennaf3
 
SAP Firmaya İade ABAB Kodları - ABAB ile yazılmıl hazır kod örneği
Salih Küçük
 
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
Wondershare PDFelement Pro Crack for MacOS New Version Latest 2025
bashirkhan333g
 
4K Video Downloader Plus Pro Crack for MacOS New Download 2025
bashirkhan333g
 
Technical-Careers-Roadmap-in-Software-Market.pdf
Hussein Ali
 
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
Dipole Tech Innovations – Global IT Solutions for Business Growth
dipoletechi3
 
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
Build a Custom Agent for Agentic Testing.pptx
klpathrudu
 
TheFutureIsDynamic-BoxLang witch Luis Majano.pdf
Ortus Solutions, Corp
 

Distributed Consensus: Making Impossible Possible by Heidi howard

  • 1. Distributed Consensus: Making Impossible Possible Heidi Howard PhD Student @ University of Cambridge [email protected] @heidiann360
  • 3. What is Consensus? “The process by which we reach agreement over system state between unreliable machines connected by asynchronous networks”
  • 4. Why? • Distributed locking • Banking • Safety critical systems • Distributed scheduling and coordination Anything which requires guaranteed agreement
  • 5. A walk through history We are going to take a journey through the developments in distributed consensus, spanning 3 decades. We are going to search for answers to questions like: • how do we reach consensus? • what is the best method for reaching consensus? • can we even reach consensus? • what’s next in the field?
  • 6. FLP Result off to a slippery start Impossibility of distributed consensus with one faulty process Michael Fischer, Nancy Lynch and Michael Paterson ACM SIGACT-SIGMOD Symposium on Principles of Database Systems 1983
  • 7. FLP We cannot guarantee agreement in an asynchronous system where even one host might fail. Why? We cannot reliably detect failures. We cannot know for sure the difference between a slow host/network and a failed host NB: We can still guarantee safety, the issue limited to guaranteeing liveness.
  • 8. Solution to FLP In practice: We accept that sometimes the system will not be available. We mitigate this using timers and backoffs. In theory: We make weaker assumptions about the synchrony of the system e.g. messages arrive within a year.
  • 9. Paxos Lamport’s original consensus algorithm The Part-Time Parliament Leslie Lamport ACM Transactions on Computer Systems May 1998
  • 10. Paxos The original consensus algorithm for reaching agreement on a single value. • two phase process: promise and commit • majority agreement • monotonically increasing numbers
  • 14. 1 2 3 P: C: P: 13 C: P: C: B Promise (13) ? Phase 1 Promise (13) ?
  • 15. 1 2 3 P: 13 C: OKOK P: 13 C: P: 13 C: Phase 1
  • 16. 1 2 3 P: 13 C: 13, B P: 13 C: P: 13 C: Phase 2 Commit (13, ) ?B Commit (13, ) ?B
  • 17. 1 2 3 P: 13 C: 13, B P: 13 C: 13, P: 13 C: 13, Phase 2 B B OKOK
  • 18. 1 2 3 P: 13 C: 13, B P: 13 C: 13, P: 13 C: 13, B B OK Bob is granted the lock
  • 21. 1 2 3 P: C: P: 13 C: P: C: Promise (13) ? Phase 1 B Incoming request from Bob Promise (13) ?
  • 22. 1 2 3 P: 13 C: P: 13 C: P: 13 C: Phase 1 B OK OK
  • 23. 1 2 3 P: 13 C: P: 13 C: 13, P: 13 C: Phase 2 Commit (13, ) ?B B
  • 24. 1 2 3 P: 13 C: P: 13 C: 13, P: 13 C: 13, Phase 2 B B
  • 25. 1 2 3 P: 13 C: P: 13 C: 13, P: 13 C: 13, Alice would also like the lock B B A
  • 26. 1 2 3 P: 13 C: P: 13 C: 13, P: 13 C: 13, Alice would also like the lock B B A
  • 27. 1 2 3 P: 22 C: P: 13 C: 13, P: 13 C: 13, Phase 1 B B A Promise (22) ?
  • 28. 1 2 3 P: 22 C: P: 13 C: 13, P: 22 C: 13, Phase 1 B B A OK(13, )B
  • 29. 1 2 3 P: 22 C: 22, P: 13 C: 13, P: 22 C: 13, Phase 2 B B A Commit (22, ) ?B B
  • 30. 1 2 3 P: 22 C: 22, P: 13 C: 13, P: 22 C: 22, Phase 2 B B OK B NO
  • 31. Paxos Summary Clients must wait two round trips (2 RTT) to the majority of nodes. Sometimes longer. The system will continue as long as a majority of nodes are up
  • 32. Multi-Paxos Lamport’s leader-driven consensus algorithm Paxos Made Moderately Complex Robbert van Renesse and Deniz Altinbuken ACM Computing Surveys April 2015 Not the original, but highly recommended
  • 33. Multi-Paxos Lamport’s insight: Phase 1 is not specific to the request so can be done before the request arrives and can be reused. Implication: Bob now only has to wait one RTT
  • 34. State Machine Replication fault-tolerant services using consensus Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial Fred Schneider ACM Computing Surveys 1990
  • 35. State Machine Replication A general technique for making a service, such as a database, fault-tolerant. Application Client Client
  • 39. CAP Theorem You cannot have your cake and eat it CAP Theorem Eric Brewer Presented at Symposium on Principles of Distributed Computing, 2000
  • 40. Consistency, Availability & Partition Tolerance - Pick Two 1 2 3 4 B C
  • 41. Paxos Made Live How google uses Paxos Paxos Made Live - An Engineering Perspective Tushar Chandra, Robert Griesemer and Joshua Redstone ACM Symposium on Principles of Distributed Computing 2007
  • 42. Paxos Made Live Paxos made live documents the challenges in constructing Chubby, a distributed coordination service, built using Multi-Paxos and SMR.
  • 43. Isn’t this a solved problem? “There are significant gaps between the description of the Paxos algorithm and the needs of a real-world system. In order to build a real-world system, an expert needs to use numerous ideas scattered in the literature and make several relatively small protocol extensions. The cumulative effort will be substantial and the final system will be based on an unproven protocol.”
  • 44. Challenges • Handling disk failure and corruption • Dealing with limited storage capacity • Effectively handling read-only requests • Dynamic membership & reconfiguration • Supporting transactions • Verifying safety of the implementation
  • 45. Fast Paxos Like Multi-Paxos, but faster Fast Paxos Leslie Lamport Microsoft Research Tech Report MSR-TR-2005-112
  • 46. Fast Paxos Paxos: Any node can commit a value in 2 RTTs Multi-Paxos: The leader node can commit a value in 1 RTT But, what about any node committing a value in 1 RTT?
  • 47. Fast Paxos We can bypass the leader node for many operations, so any node can commit a value in 1 RTT. However, we must either: • reduce the number of failures we guarantee to tolerance, or • increase the size of the quorum, or • a combination of both
  • 48. Egalitarian Paxos Don’t restrict yourself unnecessarily There Is More Consensus in Egalitarian Parliaments Iulian Moraru, David G. Andersen, Michael Kaminsky SOSP 2013 also see Generalized Consensus and Paxos
  • 49. Egalitarian Paxos The basis of SMR is that every replica of an application receives the same commands in the same order. However, sometimes the ordering can be relaxed…
  • 50. C=1 B? C=C+1 C? B=0 B=C C=1 B? C=C+1 C? B=0 B=C Partial Ordering Total Ordering
  • 51. C=1 B? C=C+1 C? B=0 B=C Many possible orderings B? C=C+1 C?B=0 B=CC=1 B?C=C+1 C? B=0 B=CC=1 B? C=C+1 C? B=0 B=CC=1
  • 52. Egalitarian Paxos Allow requests to be out-of-order if they are commutative. Conflict becomes much less common. Works well in combination with Fast Paxos.
  • 53. Viewstamped Replication Revisited the forgotten algorithm Viewstamped Replication Revisited Barbara Liskov and James Cowling MIT Tech Report MIT-CSAIL-TR-2012-021
  • 54. Viewstamped Replication Revisited (VRR) Interesting and well explained variant of SMR + Multi- Paxos. Key features: • Round robin leader election • Dynamic Membership
  • 55. Raft Consensus Paxos made understandable In Search of an Understandable Consensus Algorithm Diego Ongaro and John Ousterhout USENIX Annual Technical Conference 2014
  • 56. Raft Raft has taken the wider community by storm. Due to its understandable description. It’s another variant of SMR with Multi-Paxos. Key features: • Really strong leadership - all other nodes are passive • Dynamic membership and log compaction
  • 57. Follower Candidate Leader Startup/ Restart Timeout Win Timeout Step down Step down
  • 58. Ios Why do things yourself, when you can delegate it? to appear
  • 59. Ios The issue with leader-driven algorithms like Multi- Paxos, Raft and VRR is that throughput is limited to one node. Ios allows a leader to safely and dynamically delegate their responsibilities to other nodes in the system.
  • 61. Hydra Distributed consensus for systems which span multiple datacenters. We use Ios for replication within the datacenter and a Egalitarian Paxos like protocol for across datacenters. The system has a clear leader but most requests simply bypass the leader.
  • 62. 1 2 3 4 5 6 7 8 9 Tokyo West Coast East Coast B
  • 63. 1 2 3 4 5 6 7 8 9 Tokyo West Coast East Coast B
  • 64. 1 2 3 4 5 6 7 8 9 Tokyo West Coast East Coast B
  • 65. The road we travelled • 2 impossibility results: CAP & FLP • 1 replication method: State machine Replication • 6 consensus algorithms: Paxos, Multi-Paxos, Fast Paxos, Egalitarian Paxos, Viewstamped Replication Revisited & Raft • 2 future algorithms: Ios & Hydra
  • 66. How strong is the leadership? Strong Leadership Leaderless Paxos Egalitarian Paxos Raft VRR Ios Hydra Multi-Paxos Fast Paxos Leader with Delegation Leader only when needed Leader driven
  • 67. Who is the winner? Depends on the award: • Best for minimum latency: VRR • Easier to understand: Raft • Best for WANs (conflicts rare): Egalitarian Paxos • Best for WANs (conflicts common): Fast Paxos
  • 68. Future 1. More algorithms offering a compromise between strong leadership and leaderless 2. More understandable consensus algorithms 3. Achieving consensus is getting cheaper, even in challenging settings 4. Deployment with micro-services and unikernels 5. Self-scaling replication - adapting resources to maintain resilience level.
  • 69. Stops we drove passed We have seen one path through history, but many more exist. • Alternative replication techniques e.g. chain replication and primary backup replication • Alternative failure models e.g. nodes acting maliciously • Alternative domains e.g. sensor networks, mobile networks, between cores
  • 70. Summary Do not be discouraged by impossibility results and dense abstract academic papers. Consensus is useful and achievable. Find the right algorithm for your specific domain. [email protected] @heidiann360