The document discusses FactorVAE, a method for disentangling latent representations in variational autoencoders (VAEs). It introduces Total Correlation (TC) as a penalty term that encourages independence between latent variables. TC is added to the standard VAE objective function to guide the model to learn disentangled representations. The document provides details on how TC is defined and computed based on the density-ratio trick from generative adversarial networks. It also discusses how FactorVAE uses TC to learn disentangled representations and can be evaluated using a disentanglement metric.
Related topics: