6
Most read
8
Most read
10
Most read
DEEP LEARNING JP
[DL Papers]
Disentangling by Factorising
Hirono Okamoto, Matsuo Lab
http://deeplearning.jp/
1
: Disentangling by Factorising
n 2018 ICML accepted
n : Hyunjik Kim, Andriy Mnih
n β-VAE disentanglement metric
n disentangle
n
rotation position x scale position y
Shape
( )
gif
https://github.com/1Konny/FactorVAE
: beta-VAE
n : β-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED
VARIATIONAL FRAMEWORK
n ICLR 2017(poster)
n :
n VAE disentangle
n disentanglement VAE …
azimuth entangle
??
β-VAE :
n : disentangle
n ⇒
n p(z) N(0, I)
n β 1 βVAE VAE
n β z
disentangle
n β trade off …
β-VAE : disentangle
n accuracy disentangle
n 1. k ( scale)
n 2. L
n
n encode
n encode
n 3. 2 z ( )
y (y=Wz )
n disentangle z
y
n = metric score
n K-1 disentangle
100% …
Disentangle Metric
Scale Scale z
0
FactorVAE β-VAE ( )
n β-VAE disentanglement
n disentanglement
n ⇒ Total Correlation Penalty
n β-VAE disentanglement metric
n ( : L iteration )
n ( … )
n (K K-1 disentangle
100% )
n ⇒ a new metric for disentanglement
new metric
old metric
FactorVAE : Total Correlation Penalty
n FactorVAE
n Total Correlation (TC):
n GAN z
density-ratio trick
q(z)
¯q(z)
=
p(z|y = 1)
p(z|y = 0)
=
p(y = 1|z)
p(y = 0|z)
⇡
D(z)
1 D(z)
density-ratio trick
q(z) =
Z
pdata(x)q(z|x)dx
<latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit>
Total Correlation Penalty
VAE objective
FactorVAE : Total Correlation Penalty
n FactorVAE
n Total Correlation (TC):
n GAN z
density-ratio trick
q(z) =
Z
pdata(x)q(z|x)dx
<latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit>
z
GAN
z
FactorVAE : A New Metric for Disentanglement
n 1. k x L
n 2. x encode z
n 3. d k
Old metric
New metric
z
0
: β-VAE vs factorVAE, 2D Shapes
n β-VAE FactorVAE disentanglement metric
( )
n ( ) ( )
n
y
x
size
shape
shape entangle …
: InfoWGAN-GP, 2D Shapes
n Info-GAN + WGAN-GP
n
n infoGAN
( )
n (infoGAN
…( ))
InfoWGAN-GP β-VAE Factor-VAE
better
: β-VAE vs factorVAE, 3D Shapes
n disentangle factorVAE ( )
n shape scale disentangle ( )
: β-VAE vs factorVAE, 3D Chairs
βVAE …?
leg style ??
: β-VAE vs factorVAE, 3D Faces
βVAE …?
azimuth ??
: β-VAE vs factorVAE, CelebA
FactorVAE
n contribution
n 2D Shapes 3D Shapes factorVAE betaVAE
disentanglement scores
n β-VAE disentanglement metric metric
n failure mode
n VAE GAN
n limitation
n Total Correlation disentangling
n ex) q(z|x) p(z)=N(z|0,I) TC=0 x
n
n future work
n
n
n Adversarial Autoencoder
n infoGAN
: adversarial autoencoder
n
n AAE VAE
n ICLR 2016 workshop
: InfoGAN
n InfoGAN: Interpretable Representation Learning by Information Maximizing Generative
Adversarial Nets
n NIPS 2016
n
disentangle
n disentangle
n ex) mnist
:
n :
n I(X; Y) = H(X) - H(X|Y)
n H(X) H(X|Y) Y
X
n x, y
n KL
n p(x) p(x|y)
( )
n wikipedia
:
n : c
n :
n : I(c; G(c, z))
n GAN c c
n z
n disentangle …?
n L
:
n p(c|x)
Q(c|x)
n lemma A.1
P(c|x)
n Q D
: MNIST
n condition
n c ~ unif(-1, 1)
n 10
y ~ cat(10)
n D c c’
n https://github.com/znxlwm/pytorch-generative-model-
collections/blob/master/infoGAN.py
n
n c c’ disentangle
n c c’
: yz c ( ) yz c ( )
n s

More Related Content

PDF
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
PPTX
[DL輪読会]GQNと関連研究,世界モデルとの関係について
PPTX
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
PDF
ELBO型VAEのダメなところ
PDF
論文紹介 Pixel Recurrent Neural Networks
PPTX
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
PDF
「深層学習」第6章 畳込みニューラルネット
PDF
[DL輪読会]Conditional Neural Processes
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
ELBO型VAEのダメなところ
論文紹介 Pixel Recurrent Neural Networks
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
「深層学習」第6章 畳込みニューラルネット
[DL輪読会]Conditional Neural Processes

What's hot (20)

PPTX
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
PPTX
[DL輪読会]Flow-based Deep Generative Models
PPTX
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
PDF
深層生成モデルと世界モデル
PDF
【メタサーベイ】数式ドリブン教師あり学習
PPTX
畳み込みニューラルネットワークの高精度化と高速化
PDF
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
PPTX
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
PDF
PCAの最終形態GPLVMの解説
PDF
実装レベルで学ぶVQVAE
PDF
GAN(と強化学習との関係)
PDF
PRML学習者から入る深層生成モデル入門
PDF
【論文読み会】Self-Attention Generative Adversarial Networks
PDF
[DL輪読会]data2vec: A General Framework for Self-supervised Learning in Speech,...
PDF
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
PPTX
Curriculum Learning (関東CV勉強会)
PDF
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
PDF
Generating Diverse High-Fidelity Images with VQ-VAE-2
PPTX
StyleGAN解説 CVPR2019読み会@DeNA
PDF
自己教師学習(Self-Supervised Learning)
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Flow-based Deep Generative Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
深層生成モデルと世界モデル
【メタサーベイ】数式ドリブン教師あり学習
畳み込みニューラルネットワークの高精度化と高速化
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
PCAの最終形態GPLVMの解説
実装レベルで学ぶVQVAE
GAN(と強化学習との関係)
PRML学習者から入る深層生成モデル入門
【論文読み会】Self-Attention Generative Adversarial Networks
[DL輪読会]data2vec: A General Framework for Self-supervised Learning in Speech,...
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
Curriculum Learning (関東CV勉強会)
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
Generating Diverse High-Fidelity Images with VQ-VAE-2
StyleGAN解説 CVPR2019読み会@DeNA
自己教師学習(Self-Supervised Learning)
Ad

Similar to [DL輪読会]Disentangling by Factorising (20)

PDF
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
PDF
Paper Summary of Disentangling by Factorising (Factor-VAE)
PDF
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
PDF
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...
PDF
Explanation of Autoencoder to Variontal Auto Encoder
PDF
Lecture 7-8 From Autoencoder to VAE.pdf
PDF
Variational Autoencoders For Image Generation
PDF
Unsupervised Computer Vision: The Current State of the Art
PDF
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
PDF
Generative adversarial networks
PPTX
Lecture 7-8 From Autoencoder to VAE.pptx
PDF
VAE-type Deep Generative Models
PDF
從 VAE 走向深度學習新理論
PPTX
Variational Auto Encoder and the Math Behind
PDF
Robustness Metrics for ML Models based on Deep Learning Methods
PDF
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PDF
Theory and evaluation metrics for learning disentangled representations
PDF
Emergence of Invariance and Disentangling in Deep Representations
PDF
Introduction to Variational Auto Encoder
PPTX
Adversarial Variational Autoencoders to extend and improve generative model
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
Paper Summary of Disentangling by Factorising (Factor-VAE)
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Challenging Common Assumptions in the Unsupervised Learning of Disentangled R...
Explanation of Autoencoder to Variontal Auto Encoder
Lecture 7-8 From Autoencoder to VAE.pdf
Variational Autoencoders For Image Generation
Unsupervised Computer Vision: The Current State of the Art
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
Generative adversarial networks
Lecture 7-8 From Autoencoder to VAE.pptx
VAE-type Deep Generative Models
從 VAE 走向深度學習新理論
Variational Auto Encoder and the Math Behind
Robustness Metrics for ML Models based on Deep Learning Methods
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
Theory and evaluation metrics for learning disentangled representations
Emergence of Invariance and Disentangling in Deep Representations
Introduction to Variational Auto Encoder
Adversarial Variational Autoencoders to extend and improve generative model
Ad

More from Deep Learning JP (20)

PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
PPTX
【DL輪読会】事前学習用データセットについて
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
PPTX
【DL輪読会】マルチモーダル LLM
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
PPTX
【DL輪読会】Hopfield network 関連研究について
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】事前学習用データセットについて
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】マルチモーダル LLM
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...

Recently uploaded (20)

PDF
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
PPTX
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
PPTX
Microsoft User Copilot Training Slide Deck
PDF
Dell Pro Micro: Speed customer interactions, patient processing, and learning...
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
Comparative analysis of machine learning models for fake news detection in so...
PDF
Early detection and classification of bone marrow changes in lumbar vertebrae...
PDF
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
PDF
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
PDF
Accessing-Finance-in-Jordan-MENA 2024 2025.pdf
PDF
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
PDF
Advancing precision in air quality forecasting through machine learning integ...
PDF
Rapid Prototyping: A lecture on prototyping techniques for interface design
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
giants, standing on the shoulders of - by Daniel Stenberg
PDF
CXOs-Are-you-still-doing-manual-DevOps-in-the-age-of-AI.pdf
PDF
4 layer Arch & Reference Arch of IoT.pdf
PPTX
Internet of Everything -Basic concepts details
DOCX
search engine optimization ppt fir known well about this
PPTX
Configure Apache Mutual Authentication
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
Microsoft User Copilot Training Slide Deck
Dell Pro Micro: Speed customer interactions, patient processing, and learning...
Taming the Chaos: How to Turn Unstructured Data into Decisions
Comparative analysis of machine learning models for fake news detection in so...
Early detection and classification of bone marrow changes in lumbar vertebrae...
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
Accessing-Finance-in-Jordan-MENA 2024 2025.pdf
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
Advancing precision in air quality forecasting through machine learning integ...
Rapid Prototyping: A lecture on prototyping techniques for interface design
Custom Battery Pack Design Considerations for Performance and Safety
giants, standing on the shoulders of - by Daniel Stenberg
CXOs-Are-you-still-doing-manual-DevOps-in-the-age-of-AI.pdf
4 layer Arch & Reference Arch of IoT.pdf
Internet of Everything -Basic concepts details
search engine optimization ppt fir known well about this
Configure Apache Mutual Authentication

[DL輪読会]Disentangling by Factorising

  • 1. DEEP LEARNING JP [DL Papers] Disentangling by Factorising Hirono Okamoto, Matsuo Lab http://deeplearning.jp/ 1
  • 2. : Disentangling by Factorising n 2018 ICML accepted n : Hyunjik Kim, Andriy Mnih n β-VAE disentanglement metric n disentangle n rotation position x scale position y Shape ( ) gif https://github.com/1Konny/FactorVAE
  • 3. : beta-VAE n : β-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED VARIATIONAL FRAMEWORK n ICLR 2017(poster) n : n VAE disentangle n disentanglement VAE … azimuth entangle ??
  • 4. β-VAE : n : disentangle n ⇒ n p(z) N(0, I) n β 1 βVAE VAE n β z disentangle n β trade off …
  • 5. β-VAE : disentangle n accuracy disentangle n 1. k ( scale) n 2. L n n encode n encode n 3. 2 z ( ) y (y=Wz ) n disentangle z y n = metric score n K-1 disentangle 100% … Disentangle Metric Scale Scale z 0
  • 6. FactorVAE β-VAE ( ) n β-VAE disentanglement n disentanglement n ⇒ Total Correlation Penalty n β-VAE disentanglement metric n ( : L iteration ) n ( … ) n (K K-1 disentangle 100% ) n ⇒ a new metric for disentanglement new metric old metric
  • 7. FactorVAE : Total Correlation Penalty n FactorVAE n Total Correlation (TC): n GAN z density-ratio trick q(z) ¯q(z) = p(z|y = 1) p(z|y = 0) = p(y = 1|z) p(y = 0|z) ⇡ D(z) 1 D(z) density-ratio trick q(z) = Z pdata(x)q(z|x)dx <latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit> Total Correlation Penalty VAE objective
  • 8. FactorVAE : Total Correlation Penalty n FactorVAE n Total Correlation (TC): n GAN z density-ratio trick q(z) = Z pdata(x)q(z|x)dx <latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit> z GAN z
  • 9. FactorVAE : A New Metric for Disentanglement n 1. k x L n 2. x encode z n 3. d k Old metric New metric z 0
  • 10. : β-VAE vs factorVAE, 2D Shapes n β-VAE FactorVAE disentanglement metric ( ) n ( ) ( ) n y x size shape shape entangle …
  • 11. : InfoWGAN-GP, 2D Shapes n Info-GAN + WGAN-GP n n infoGAN ( ) n (infoGAN …( )) InfoWGAN-GP β-VAE Factor-VAE better
  • 12. : β-VAE vs factorVAE, 3D Shapes n disentangle factorVAE ( ) n shape scale disentangle ( )
  • 13. : β-VAE vs factorVAE, 3D Chairs βVAE …? leg style ??
  • 14. : β-VAE vs factorVAE, 3D Faces βVAE …? azimuth ??
  • 15. : β-VAE vs factorVAE, CelebA FactorVAE
  • 16. n contribution n 2D Shapes 3D Shapes factorVAE betaVAE disentanglement scores n β-VAE disentanglement metric metric n failure mode n VAE GAN n limitation n Total Correlation disentangling n ex) q(z|x) p(z)=N(z|0,I) TC=0 x n n future work n n
  • 18. : adversarial autoencoder n n AAE VAE n ICLR 2016 workshop
  • 19. : InfoGAN n InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets n NIPS 2016 n disentangle n disentangle n ex) mnist
  • 20. : n : n I(X; Y) = H(X) - H(X|Y) n H(X) H(X|Y) Y X n x, y n KL n p(x) p(x|y) ( ) n wikipedia
  • 21. : n : c n : n : I(c; G(c, z)) n GAN c c n z n disentangle …? n L
  • 22. : n p(c|x) Q(c|x) n lemma A.1 P(c|x) n Q D
  • 23. : MNIST n condition n c ~ unif(-1, 1) n 10 y ~ cat(10) n D c c’ n https://github.com/znxlwm/pytorch-generative-model- collections/blob/master/infoGAN.py n n c c’ disentangle n c c’
  • 24. : yz c ( ) yz c ( ) n s