O C C U P A N T
P R O T E C T I O N
D E S I G N
P A R A M E T E R S I N
S L E D T E S T I N G
P R O J E C T - 2
M A D E BY :
A K S H AY M I S T R I
1
CONTENTS
• Objectives
• Injury Criteria to observe
• Effects of individual parameters:
– Sensor Timing (Slide 5 - 7)
– Retractor Load Limiter (Slide 8 - 10)
– Airbag Mass-Flow rate (Slide 11 - 14)
– Sled Pulse (Slide 15 - 17)
• Final Model (18 – 21)
• Conclusion
Note: Underlined words contain link to go to their respective slides.
2
OBJECTIVES
• Test conditions: Belted 50% Hybrid III dummy in driver seat subjected to 35 mph
impact.
• Design parameters to observe:
– Sensor timing (-5 ms /+5 ms)
– Retractor Load Limiter: Seatbelt load (Scaling: 0.8/1.2)
– Airbag mass flow rate (Scaling: 0.8/1.2)
– Sled pulse (Scaling: 0.8/1.2)
3
INJURY CRITERIA TO OBSERVE
Criteria Threshold
Head Injury Criteria (HIC15) 700
Chest Displacement [mm] 63
Chest Acceleration [g] 60
Left Femur Load [kN] 10
Right Femur Load [kN] 10
4
EFFECT OF SENSOR TIMING
5
Injury Criteria Baseline (@13ms) Timing -5ms (@8ms) Timing +5ms (@18ms)
HIC15 722 655 784
Chest Acceleration [g] 109.3 122 132.8
Chest Deflection [mm] 58.44 59 58.3
Left Femur Load [kN] 29.5 27.1 32.6
Right Femur Load [kN] 31.3 29.5 34.2
• Green and Red colors show decrement and increment in the injury values respectively.
• Here, pretensioner sensor fire timings were varied.
• Early action of pretensioner reduces the dummy travel and hence HIC and femur loads are
reduced.
• However, due to early action chest deflection increases.
• Chest acceleration worsens in both cases.
6
EFFECT OF SENSOR TIMING
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration -5 ms +5 ms
0
10.5
21
31.5
42
52.5
63
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection -5 ms +5 ms
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC 15 -5 ms +5 ms
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur -5 ms +5 ms
-40
-20
0
20
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur -5 ms +5 ms
7
EFFECT OF SENSOR TIMING
• Time -5ms (@8 ms) • Time +5ms (@18 ms)
EFFECT OF RETRACTOR LOAD LIMITER
8
Baseline - SF 1
(@3.25 kN)
Scale Factor - SF 0.9
(@2.93 kN)
Scale Factor - SF 1.2
(@3.9 kN)
HIC15 722 760 742
Chest Acceleration [g] 109.3 127.9 128.8
Chest Deflection [mm] 58.44 64.3 65.6
Left Femur Load [kN] 29.5 29.1 29.3
Right Femur Load [kN] 31.3 31.8 31.4
• Increasing and decreasing the retractor load limit, demotes the injury values.
• More dummy travel is the reason in case of increasing the load limit. (Late action of
retractor)
• When limit is decreased, retractor acts early but makes the belt stiff for the occupant
which increases the injury values.
• Femur loads almost don’t vary for both cases.
9
EFFECT OF RETRACTOR LOAD LIMITER
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration SF : 0.9 SF : 1.2
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection SF : 0.9 SF : 1.2
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC 15 SF : 0.9 SF : 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur SF : 0.9 SF : 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur SF : 0.9 SF : 1.2
10
EFFECT OF RETRACTOR LOAD LIMITER
• SF: 0.9 (2.9 kN) • SF: 1.2 (3.9 kN)
EFFECT OF AIRBAG MASS-FLOW RATE
• VSCA: Volume Scale Factor and PSCA: Pressure Scale Factor.
• Decreasing the volume factor increases the injury values, as the dummy travel increases.
Accelerations and chest deflections increase.
• Best results are found when VSCA is increased and PSCA is decreased. Increase in volume
reduces the dummy travel and decrease in pressure reduces the stiffness of the bag which
is a bit desirable.
• Worst case is observed when VSCA and PSCA both are increased, in this case the airbag
becomes the cause of injury to the occupant.
11
Baseline -
VSCA:1 PSCA:1
Timing - VSCA: 0.8
PSCA: 0.8
Timing - VSCA:
1.2 PSCA:1.2
Timing - VSCA:
0.8 PSCA:1.2
Timing - VSCA:
1.2 PSCA:0.8
HIC15 722 780 749 749 743
Chest Acceleration [g] 109.3 126 125.8 126.5 125.4
Chest Deflection [mm] 58.44 59.4 57 62.4 55
Left Femur Load [kN] 29.5 29.4 45.4 29.6 29.5
Right Femur Load [kN] 31.3 31.3 47.7 31.5 32
12
EFFECT OF AIRBAG MASS-FLOW RATE
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
ChestAcceleration[g]
Time [ms]
Chest Acceleration VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
ChestDeflection[mm]
Time [ms]
Chest Deflection VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15 VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
-50
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
-60
-40
-20
0
20
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
13
EFFECT OF AIRBAG MASS-FLOW RATE
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration VSCA: 1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15 VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
14
EFFECT OF AIRBAG MASS-FLOW RATE
• VSCA:0.8 PSCA:0.8 • VSCA:1.2 PSCA:1.2
• VSCA:0.8 PSCA:1.2 • VSCA:1.2 PSCA:0.8
EFFECT OF SLED PULSE
15
Baseline - SF:1 Scale Factor - SF 0.9 Scale Factor - SF 1.2
HIC15 722 521 1103
Chest Acceleration [g] 109.3 111 147.8
Chest Deflection [mm] 58.44 58.14 58.4
Left Femur Load [kN] 29.5 25.8 35.4
Right Femur Load [kN] 31.3 29.6 35.7
• Decreasing the sled pulse, obviously, decreased the injury values.
• Injury values highly increased with the increase of sled pulse.
16
0
20
40
60
80
100
120
140
160
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration SF: 0.9 SF: 1.2
EFFECT OF SLED PULSE
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
ChestDeflection[mm]
Time [ms]
Chest Deflection SF : 0.9 SF : 1.2
0
40
80
120
160
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15
SF : 0.9 SF: 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur SF: 0.9 SF: 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur SF: 0.9 SF: 1.2
17
EFFECT OF SLED PULSE
• SF:
0.9
• SF:
1.2
FINAL MODEL
• A knee airbag is recommended to reduce femur loads, is added to the final model.
18
Baseline model Final model
Sled Pulse Scale Factor 1 0.95
Pretensioner Sensor timing [ms] 13 10
Knee Airbag VSCA, PSCA NA 0.3, 0.3
Airbag VSCA, PSCA 1, 1 1.2, 0.9
Knee Airbag
19
FINAL MODEL
Injury Criteria Threshold Values Baseline Final Model
HIC15 700 722 613
Chest Acceleration [g] 60 109.3 52
Chest Deflection [mm] 63 58.44 57.9
Left Femur Load [kN] 10 29.5 13
Right Femur Load [kN] 10 31.3 11.6
• Knee airbag added to the model highly decreases the femur loads.
• Slight reduction in sled pulse helps to control the injury values, specially the HIC.
• While the combined effect of early action seatbelt pretensioner sensor time and airbag
flow scale factors (slightly high VSCA and slightly low PSCA), helps in controlling of HIC
and Chest injury values.
20
FINAL MODEL
0
20
40
60
80
100
120
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration Baseline Final Model
0
10.5
21
31.5
42
52.5
63
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection Baseline Final Model
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15 Baseline Final Model
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur Baseline Final Model
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur Baseline Final Model
21
FINAL MODEL
• Final Model• Baseline
CONCLUSION
• Airbag:
– High pressure in airbag can be a cause of injury. Similar will be the effect for low volume.
– High volume and slightly low pressure is the optimum case. High volume reduces the
dummy travel and slightly low pressure will not make the bag very stiff.
• Seatbelt:
– Early action of pretensioner was seen favorable, reducing the slack proved beneficial.
– Making the seatbelt very stiff (retractor force), are the reasons for high chest injuries.
• Sled Pulse:
– Reduction in sled pulse, decreased the injury values.
– However, this should not be reduced highly, since it will not reproduce the exact crash
impact scenario which could occur in real life.
– Slight reduction in sled pulse is justified, since it could be reduced by improving the
structure of the vehicle which could be made to absorb more energy.
22

More Related Content

PPTX
Juan pablo marsicano ingles
PPTX
Principles of flight
PPTX
Aircraft Weight & Balance
DOCX
Longitudinal static stability of boeing 737 max 8
PDF
Experimental and numerical stress analysis of a rectangular wing structure
PDF
Carpenter BMT: Selection (and Design) of Equipment for Towing
PPT
WorldSID Biofidelity Tests
PDF
Cueing Deceleration Forces for Auto Simulators
Juan pablo marsicano ingles
Principles of flight
Aircraft Weight & Balance
Longitudinal static stability of boeing 737 max 8
Experimental and numerical stress analysis of a rectangular wing structure
Carpenter BMT: Selection (and Design) of Equipment for Towing
WorldSID Biofidelity Tests
Cueing Deceleration Forces for Auto Simulators

Similar to Effects of Occupant Protection Design Parameters in Sled Testing (8)

PDF
IRJET- Safety Enhancement in Vehicle Design to Prevent Neck Injury Due to Rea...
PDF
Design parameters of driver seat in an automobile
PDF
Study of Influence of Different Parameters of Head- Restraints on Energy Abso...
PDF
2015-TSC_MASH-FMVSS_Prodduturu
PDF
Paper id 41201623
PPTX
Automotive seat design
DOCX
(1) ((Bastien et al., 2013b) state that AEBS reduces the sp
PDF
B1302020508
IRJET- Safety Enhancement in Vehicle Design to Prevent Neck Injury Due to Rea...
Design parameters of driver seat in an automobile
Study of Influence of Different Parameters of Head- Restraints on Energy Abso...
2015-TSC_MASH-FMVSS_Prodduturu
Paper id 41201623
Automotive seat design
(1) ((Bastien et al., 2013b) state that AEBS reduces the sp
B1302020508
Ad

More from Akshay Mistri (20)

PPTX
Understanding optistruct & LS-Dyna files using text editor
PPTX
Theories of failure
PPTX
Everything About Seat-belts
PPTX
Mechanical Joints in LS-Dyna for Explicit Analysis
PPTX
Automation in Hypermesh
PPTX
HIII Headform Calibration Test
PPTX
Structural Analysis of Toyota RAV4 and its Convertible version
PPTX
Global Human Body Model Consortium (GHBMC) Head Model Validation
PPTX
Setting up a crash simulation in LS-Dyna
PPTX
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)
PPTX
Buckling Frequencies for Beams in Hypermesh
PPTX
Truss Analysis (Mechanics vs. Hypermesh)
PDF
Solar Powered Field Utility Vehicle
PDF
Natural Frequencies and Mode shape vectors for 10 Mass-Spring system
PDF
Modelling Planar Vehicle Dynamics using Bicycle Model
PPTX
Analysing simple pendulum using matlab
PPTX
PPT.3 Starting with hypermesh – Static Load Application and Analysis
PPTX
PPT-2 Starting with hypermesh - Meshing
PPTX
PPT-1 Starting with Hypermesh
PDF
Drive wheel motor torque calculations
Understanding optistruct & LS-Dyna files using text editor
Theories of failure
Everything About Seat-belts
Mechanical Joints in LS-Dyna for Explicit Analysis
Automation in Hypermesh
HIII Headform Calibration Test
Structural Analysis of Toyota RAV4 and its Convertible version
Global Human Body Model Consortium (GHBMC) Head Model Validation
Setting up a crash simulation in LS-Dyna
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)
Buckling Frequencies for Beams in Hypermesh
Truss Analysis (Mechanics vs. Hypermesh)
Solar Powered Field Utility Vehicle
Natural Frequencies and Mode shape vectors for 10 Mass-Spring system
Modelling Planar Vehicle Dynamics using Bicycle Model
Analysing simple pendulum using matlab
PPT.3 Starting with hypermesh – Static Load Application and Analysis
PPT-2 Starting with hypermesh - Meshing
PPT-1 Starting with Hypermesh
Drive wheel motor torque calculations
Ad

Recently uploaded (20)

PDF
Mechanics of materials week 2 rajeshwari
PDF
BBC NW_Tech Facilities_30 Odd Yrs Ago [J].pdf
DOCX
An investigation of the use of recycled crumb rubber as a partial replacement...
PPTX
Real Estate Management PART 1.pptxFFFFFFFFFFFFF
PDF
Artificial Intelligence_ Basics .Artificial Intelligence_ Basics .
PDF
ECT443_instrumentation_Engg_mod-1.pdf indroduction to instrumentation
PPTX
SC Robotics Team Safety Training Presentation
PPTX
DATA STRCUTURE LABORATORY -BCSL305(PRG1)
PPTX
Module1.pptxrjkeieuekwkwoowkemehehehrjrjrj
PDF
Research on ultrasonic sensor for TTU.pdf
PPT
Comprehensive Java Training Deck - Advanced topics
PPTX
Software-Development-Life-Cycle-SDLC.pptx
PDF
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
PPT
UNIT-I Machine Learning Essentials for 2nd years
PPTX
MODULE 02 - CLOUD COMPUTING-Virtual Machines and Virtualization of Clusters a...
PDF
IAE-V2500 Engine Airbus Family A319/320
PPTX
AI-Reporting for Emerging Technologies(BS Computer Engineering)
PPTX
Wireless sensor networks (WSN) SRM unit 2
PPTX
Design ,Art Across Digital Realities and eXtended Reality
PDF
ASPEN PLUS USER GUIDE - PROCESS SIMULATIONS
Mechanics of materials week 2 rajeshwari
BBC NW_Tech Facilities_30 Odd Yrs Ago [J].pdf
An investigation of the use of recycled crumb rubber as a partial replacement...
Real Estate Management PART 1.pptxFFFFFFFFFFFFF
Artificial Intelligence_ Basics .Artificial Intelligence_ Basics .
ECT443_instrumentation_Engg_mod-1.pdf indroduction to instrumentation
SC Robotics Team Safety Training Presentation
DATA STRCUTURE LABORATORY -BCSL305(PRG1)
Module1.pptxrjkeieuekwkwoowkemehehehrjrjrj
Research on ultrasonic sensor for TTU.pdf
Comprehensive Java Training Deck - Advanced topics
Software-Development-Life-Cycle-SDLC.pptx
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
UNIT-I Machine Learning Essentials for 2nd years
MODULE 02 - CLOUD COMPUTING-Virtual Machines and Virtualization of Clusters a...
IAE-V2500 Engine Airbus Family A319/320
AI-Reporting for Emerging Technologies(BS Computer Engineering)
Wireless sensor networks (WSN) SRM unit 2
Design ,Art Across Digital Realities and eXtended Reality
ASPEN PLUS USER GUIDE - PROCESS SIMULATIONS

Effects of Occupant Protection Design Parameters in Sled Testing

  • 1. O C C U P A N T P R O T E C T I O N D E S I G N P A R A M E T E R S I N S L E D T E S T I N G P R O J E C T - 2 M A D E BY : A K S H AY M I S T R I 1
  • 2. CONTENTS • Objectives • Injury Criteria to observe • Effects of individual parameters: – Sensor Timing (Slide 5 - 7) – Retractor Load Limiter (Slide 8 - 10) – Airbag Mass-Flow rate (Slide 11 - 14) – Sled Pulse (Slide 15 - 17) • Final Model (18 – 21) • Conclusion Note: Underlined words contain link to go to their respective slides. 2
  • 3. OBJECTIVES • Test conditions: Belted 50% Hybrid III dummy in driver seat subjected to 35 mph impact. • Design parameters to observe: – Sensor timing (-5 ms /+5 ms) – Retractor Load Limiter: Seatbelt load (Scaling: 0.8/1.2) – Airbag mass flow rate (Scaling: 0.8/1.2) – Sled pulse (Scaling: 0.8/1.2) 3
  • 4. INJURY CRITERIA TO OBSERVE Criteria Threshold Head Injury Criteria (HIC15) 700 Chest Displacement [mm] 63 Chest Acceleration [g] 60 Left Femur Load [kN] 10 Right Femur Load [kN] 10 4
  • 5. EFFECT OF SENSOR TIMING 5 Injury Criteria Baseline (@13ms) Timing -5ms (@8ms) Timing +5ms (@18ms) HIC15 722 655 784 Chest Acceleration [g] 109.3 122 132.8 Chest Deflection [mm] 58.44 59 58.3 Left Femur Load [kN] 29.5 27.1 32.6 Right Femur Load [kN] 31.3 29.5 34.2 • Green and Red colors show decrement and increment in the injury values respectively. • Here, pretensioner sensor fire timings were varied. • Early action of pretensioner reduces the dummy travel and hence HIC and femur loads are reduced. • However, due to early action chest deflection increases. • Chest acceleration worsens in both cases.
  • 6. 6 EFFECT OF SENSOR TIMING 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration -5 ms +5 ms 0 10.5 21 31.5 42 52.5 63 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection -5 ms +5 ms 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC 15 -5 ms +5 ms -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur -5 ms +5 ms -40 -20 0 20 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur -5 ms +5 ms
  • 7. 7 EFFECT OF SENSOR TIMING • Time -5ms (@8 ms) • Time +5ms (@18 ms)
  • 8. EFFECT OF RETRACTOR LOAD LIMITER 8 Baseline - SF 1 (@3.25 kN) Scale Factor - SF 0.9 (@2.93 kN) Scale Factor - SF 1.2 (@3.9 kN) HIC15 722 760 742 Chest Acceleration [g] 109.3 127.9 128.8 Chest Deflection [mm] 58.44 64.3 65.6 Left Femur Load [kN] 29.5 29.1 29.3 Right Femur Load [kN] 31.3 31.8 31.4 • Increasing and decreasing the retractor load limit, demotes the injury values. • More dummy travel is the reason in case of increasing the load limit. (Late action of retractor) • When limit is decreased, retractor acts early but makes the belt stiff for the occupant which increases the injury values. • Femur loads almost don’t vary for both cases.
  • 9. 9 EFFECT OF RETRACTOR LOAD LIMITER 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration SF : 0.9 SF : 1.2 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection SF : 0.9 SF : 1.2 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC 15 SF : 0.9 SF : 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur SF : 0.9 SF : 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur SF : 0.9 SF : 1.2
  • 10. 10 EFFECT OF RETRACTOR LOAD LIMITER • SF: 0.9 (2.9 kN) • SF: 1.2 (3.9 kN)
  • 11. EFFECT OF AIRBAG MASS-FLOW RATE • VSCA: Volume Scale Factor and PSCA: Pressure Scale Factor. • Decreasing the volume factor increases the injury values, as the dummy travel increases. Accelerations and chest deflections increase. • Best results are found when VSCA is increased and PSCA is decreased. Increase in volume reduces the dummy travel and decrease in pressure reduces the stiffness of the bag which is a bit desirable. • Worst case is observed when VSCA and PSCA both are increased, in this case the airbag becomes the cause of injury to the occupant. 11 Baseline - VSCA:1 PSCA:1 Timing - VSCA: 0.8 PSCA: 0.8 Timing - VSCA: 1.2 PSCA:1.2 Timing - VSCA: 0.8 PSCA:1.2 Timing - VSCA: 1.2 PSCA:0.8 HIC15 722 780 749 749 743 Chest Acceleration [g] 109.3 126 125.8 126.5 125.4 Chest Deflection [mm] 58.44 59.4 57 62.4 55 Left Femur Load [kN] 29.5 29.4 45.4 29.6 29.5 Right Femur Load [kN] 31.3 31.3 47.7 31.5 32
  • 12. 12 EFFECT OF AIRBAG MASS-FLOW RATE 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 ChestAcceleration[g] Time [ms] Chest Acceleration VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 ChestDeflection[mm] Time [ms] Chest Deflection VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 -50 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 -60 -40 -20 0 20 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
  • 13. 13 EFFECT OF AIRBAG MASS-FLOW RATE 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration VSCA: 1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
  • 14. 14 EFFECT OF AIRBAG MASS-FLOW RATE • VSCA:0.8 PSCA:0.8 • VSCA:1.2 PSCA:1.2 • VSCA:0.8 PSCA:1.2 • VSCA:1.2 PSCA:0.8
  • 15. EFFECT OF SLED PULSE 15 Baseline - SF:1 Scale Factor - SF 0.9 Scale Factor - SF 1.2 HIC15 722 521 1103 Chest Acceleration [g] 109.3 111 147.8 Chest Deflection [mm] 58.44 58.14 58.4 Left Femur Load [kN] 29.5 25.8 35.4 Right Femur Load [kN] 31.3 29.6 35.7 • Decreasing the sled pulse, obviously, decreased the injury values. • Injury values highly increased with the increase of sled pulse.
  • 16. 16 0 20 40 60 80 100 120 140 160 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration SF: 0.9 SF: 1.2 EFFECT OF SLED PULSE 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 ChestDeflection[mm] Time [ms] Chest Deflection SF : 0.9 SF : 1.2 0 40 80 120 160 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 SF : 0.9 SF: 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur SF: 0.9 SF: 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur SF: 0.9 SF: 1.2
  • 17. 17 EFFECT OF SLED PULSE • SF: 0.9 • SF: 1.2
  • 18. FINAL MODEL • A knee airbag is recommended to reduce femur loads, is added to the final model. 18 Baseline model Final model Sled Pulse Scale Factor 1 0.95 Pretensioner Sensor timing [ms] 13 10 Knee Airbag VSCA, PSCA NA 0.3, 0.3 Airbag VSCA, PSCA 1, 1 1.2, 0.9 Knee Airbag
  • 19. 19 FINAL MODEL Injury Criteria Threshold Values Baseline Final Model HIC15 700 722 613 Chest Acceleration [g] 60 109.3 52 Chest Deflection [mm] 63 58.44 57.9 Left Femur Load [kN] 10 29.5 13 Right Femur Load [kN] 10 31.3 11.6 • Knee airbag added to the model highly decreases the femur loads. • Slight reduction in sled pulse helps to control the injury values, specially the HIC. • While the combined effect of early action seatbelt pretensioner sensor time and airbag flow scale factors (slightly high VSCA and slightly low PSCA), helps in controlling of HIC and Chest injury values.
  • 20. 20 FINAL MODEL 0 20 40 60 80 100 120 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration Baseline Final Model 0 10.5 21 31.5 42 52.5 63 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection Baseline Final Model 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 Baseline Final Model -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur Baseline Final Model -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur Baseline Final Model
  • 21. 21 FINAL MODEL • Final Model• Baseline
  • 22. CONCLUSION • Airbag: – High pressure in airbag can be a cause of injury. Similar will be the effect for low volume. – High volume and slightly low pressure is the optimum case. High volume reduces the dummy travel and slightly low pressure will not make the bag very stiff. • Seatbelt: – Early action of pretensioner was seen favorable, reducing the slack proved beneficial. – Making the seatbelt very stiff (retractor force), are the reasons for high chest injuries. • Sled Pulse: – Reduction in sled pulse, decreased the injury values. – However, this should not be reduced highly, since it will not reproduce the exact crash impact scenario which could occur in real life. – Slight reduction in sled pulse is justified, since it could be reduced by improving the structure of the vehicle which could be made to absorb more energy. 22