SlideShare a Scribd company logo
El CNA como centro de ensayos
de irradiación dentro de una
ICTS interdisciplinar
Presented by Yolanda Morilla
Conferencia de Posgrado FdI-UCM, 18 de Mayo de 2021
1
Parque Científico
Tecnológico Cartuja
Avda. Tomás Alba Edison nº 7
E-41092 – Sevilla. Spain
http://www.cna.us.es
Director: Dr. Rafael Garcia-Tenorio
(gtenorio@us.es)
2
CNA – MAIN EQUIPMENTS
Spanish ICTS (singular scientific and technological infraestructure) Interdisciplinary research
3 MV Tandem accelerator 18/9 Cyclotron accelerator Co-60 Gamma-irradiator
1 MV Tandem AMS
MICADAS
PET / CT SCANNERS
Radiopharmacy
3
A little bit of history...
• 1997, agreement between Universidad de Sevilla, Junta de Andalucía and CSIC
• 1998, the 3MV tandem accelerator settled in Sevilla
• 1999, the laboratory is opened to the scientific community (public or private enterprise),
mainly to perform ion beam analysis (IBA)
• 2003, the cyclotron accelerator is installed
• Agreement CNA-Schering España. Radiopharmacy and PET research.
• 2005, the compact system for accelerators mass spectrometry (AMS) is put into operation
• 2005/06, the movable line for ion implantation and irradiation is designed and installed to be
shared with tandem and cyclotron accelerators
• 2006, routine service in IBA techniques accessible
Agreement CNA-IBA Molecular-SAS. Radiopharmacy service for all the Andalusian
hospitals.
• 2008/09, Total dose and Microdosimetry irradiation tests (static and dynamic mode)
• 2012/13, 60Co irradiation tester and 0.5 MV AMS MICADAS have been installed
• 2013 up today, improvements of facilities and expansion of activities (projects,
agreements…)
4
Main working scopes
– Material Science
Thin films, ceramics, metallic alloys
– Medicine and Biology
Organic fluids, tissues, radiopharmacy
– Art and Archaeometry
Metals, ceramics, paintings
– Environmental research
Water, aerosols, sediments, soils
- Basic Nuclear Physics
Astrophysics, detectors, nuclear electronic
- Mass Spectrometry with accelerators
Carbon dating, environmental applications
- Accelerated irradiation testing
Astrophysics, detectors, nuclear electronic
- Scholar and scientific outreach activities
Academic training, high and secundary school visits
www.cna.us.es
5
TANDEM
Laboratory
IBA Techniques
Materials Modification
Irradiation Damage
Física nuclear
6
Ion-Solid Interaction
Técnicas IBA / Modificación de materiales / Reactions
dx
dE
E
S
E
S
N e
n 

 )]
(
)
(
[
Transmited ions
Channelled ions
Neutrons
Scattered ions
Reaction products
Ions
γ rays
electrons
X rays
Sputtered atoms
Backscattered
ions
Incident Ion
Beam
Electrons
Atoms
Nuclear collisions
Lattice
Ion
Teoría LSS
(Linhard-Scharf-Schiøtt)
Energy Loss
Nuclear & Electronic stopping
Ion Range
Different events
Cross section
 

E
e
n E
S
E
S
dE
N
R
0
)
(
)
(
1
7
- Particle detectors (RBS, NRA, ERDA)
- X-ray detectors (SiLi, LeGe) for PIXE
- γ-ray detector (HPGe) for PIGE
- Sample holder 150x112 mm2
- X-Y movement
- Minimum spot size (Ø~0.5 mm)
- Electron gun
8
- Sample holder (Ø~5 cm)
- Four axis (X-Y, θ-Φ) goniometer
- Minimum spot size (Ø~0.5 mm)
Specially to study crystalline samples
- Particle detectors (RBS, NRA, ERDA)
- X-ray detectors (SiLi, LeGe) for PIXE
- γ-ray detector (HPGe) for PIGE
9
BS/C with 3.5 MeV alpha particles
Damage distribution and simultaneous analysis of C & Si sublattices
MUESTRA
DOSIS
(Al2+/cm2)
DENSIDAD
CORRIENTE
(nA/cm2)
DESORDEN MÁXIMO
RELATIVO-Si
DESORDEN
MÁXIMO
RELATIVO-C
A 2 X 1014 21 34 % 50 %
B 2 X 1014 83 36 % 52 %
C 2 X 1014 105 40 % 58 %
D 4 X 1014 86 90 % 100 %
E 7 X 1014 86 100 % 100 %
400 600 800 1000 1200 1400 1600 1800 2000
0
200
400
600
800
1000
1200
1400
Rendimiento
de
retrodispersión
Energía(keV)
Virgen
A
C
D
E
Random
100 150 200 250 300 350 400
0
100
200
300
400
500
600
700
800
900
1000
1100
Rendimiento
de
retrodispersión
Canal
AExperimental
ASimulado
RandomSimulación
VirgenSimulación
Random
Virgen
6H-SiC Implantation
2 MeV Al2+ , tilt = 61º , room T
100 200 300 400 500
0
200
400
600
800
4300 keV
4321 keV
4341 keV
4360 keV
4380 keV
4280 keV
4241 keV
4261 keV
4226 keV
Channels
Y
ie
ld
4He2+ ~4.26 MeV Backscattering in channeling geometry {resonance 12C(α,α)12C}
Y. Morilla, J.
García-López, G.
Battistig et al.
10
- Particle detectors (RBS, STIM)
- Secundary electrons detector (SEM)
- X-ray detector (SiLi) for PIXE
- γ-ray detector (HPGe, NaI) for PIGE
- Minimum Ion beam size ~ 3μm
- Scanning system, elemental maps
- Small sample holder
- Electrons gun
11
Heavy Metals in neurons
Parkinson’s disease
Decrease [dopamine]
Increase of [Fe.]
Increase [dead cells]
A. Carmona (CNA), R. Ortega (CENBG) et al.
Organometallic compound
Dopamine -Fe
Nuclear microprobe analysis of
arabidopsis thaliana leaves
M.D. Ynsa and F.J. Ager (CNA), J.R. Domínguez, C. Gotor
and L.C. Romero (IBVFSE-CSIC)
20um
Ca Ka1: PIXE3( 113- 123)
Contaminated soils
Phytorecovery
Heavy metals acumulation sites
Fe, Cd, Zn…
12
- Ion beam size ~ 50-100μm
- Versatile sample holder
- γ-ray detector (HPGe) for PIGE
-Two X-ray detectors (SiLi, LeGe) for PIXE
13
Tartesic Gold Jewellery:
Ébora treasure
Two kind of solders:
brazing, forging
Necklace, 700 - 500 B.C.
Archaeological Museum of Seville
0 5 10 15 20 25
0
2
4
6
8
10
Ag K
Ag K
Cu K
Au L
Au L
Energía
Au L
Cu K
Patrón de Oro
Detector Si(Li)
Haz Externo CNA
KeV
Study of paintings and ceramics
from Teotihuacán
Different colors characterization
Differencial-PIXE; Non destructive stratigrafy
Painting thickness
M.A. Ontalba, I. Ortega, Respaldiza et al.
14
- Exotic nuclei studies
- Cross section determination for astrophysical applications
- Development of nuclear electronics and detectors
15
The last installed in the 3MV Tandem accelerator before the 90º magnet
Based on deuteron nuclear reactions p(7Li,n), d(D,n), p(9Be,n) & d(9Be,n), from
thermal neutrons up to 9 MeV beams.
HISPANoS: pulsed / continuous neutron source at CNA
16
Cyclotron Laboratory
(18 MeV H+ / 9 MeV D+)
Nuclear Medicine
Irradiation Damage
High Energy PIXE
Cyclotron vault
Experimental vault
2 m thick concrete wall
Cyclotron CNA model
17
Radiopharmacy
(PET isotopes)
Biomolecules marked with 18F and 11C
13NH3 and H2
15O
Research - Dispensation 18
Human & Micro-PET / TC scanning
systems for medical imaging research
using short life isotopes
PET (Positron
Emission
Tomography)
AMS Laboratory
(14C, 10Be, 26Al, 129I, 239Pu, 240Pu, 236U )
IAEA – CNA agreement
surface seawater off Namibian coast
19
Carbon dating in Spain
Co-60 gamma Laboratory
GAMMABEAM ® X200 (Best Theratronics)
Induction of Mutagenesis in Rice seeds
20
Gammagraphy / TC for arts
National Accelerators Centre,
a facility for irradiation testing
21
Severe natural environment above Earth’s atmosphere
‐ Electrons (~keV‐7 MeV)
‐ Protons (~keV‐800 MeV)
‐ Heavy ions
‐ X ‐ Radiation (100 eV – 100 keV)
‐ γ ‐ Radiation
‐ Neutrons (atmospheric level)
Image Source: ESA
22
Type of radiation in space
23
Radiation effects on components
From Federico Faccio ‐ CERN
From the point of view of the effects, the degradation will differ according to
the energy of the particles, to their nature and to the mission orbit.
It is necessary to understand the instrument technology and geometry to
determine the vulnerability to the environment. Radiation effects important to
consider for instrument and spacecraft design fall roughly into three categories:
degradation from Total Ionizing Dose (TID), Displacement Damage Dose
(DDD), and Single Event Effects (SEE).
24
TID is due to ionizing radiation, by primary protons and
electrons and secondary particles
It causes threshold shifts, leakage current and timing skews
It is possible to reduce this with shielding
The effect first appears as a parametric degradation of the
device and ultimately results in functional failure
Displacement damage is long-term structural damage on
semiconductors caused by protons, electrons, and neutrons
Produce defects mainly in optoelectronics components
SEEs result from ionization by a single charged particle as it
passes through a sensitive junction of an electronic device,
mostly caused by heavier ions but also protons
The severity of the effect can range from noisy data to loss of
the mission, depending on the type of effect and the criticality
of the system in which it occurs
Shielding is not an effective mitigation technique because they
are induced by very penetrating high-energy particles.
Generation and transport of charges by the effect of a SEE in the drain region of a NMOS transistor.
Image Source: [S. Sordo, Thesis IMSE-US https://idus.us.es/handle/11441/52295]. 25
Radiation Hardness Assurance - RHA
Activities undertaken to ensure that the electronic piece parts placed in the space
system continue to perform according to their design specifications after exposure
to the space environment
From Christian Poivey ‐ ESA
To produce a system tolerant to the radiation environment
26
• Field analysis
– Based on reports of reparations and replacing of components
– When there is enough statistic data the products are obsolete
– It is necessary to spend several years
• Real time tests
– Based on the study of numerous chips running under natural environment
– It is necessary to spend a lot of time and this is very expensive
• Accelerated tests (static or dynamic)
– Based on the simulation of the natural radiation environment (100 years in
a few minutes)
– Adequate method but expensive (NORMATIVAS / ESCC – DLA…)
• It is required to use radiation sources and equipments associated
(particle accelerators, nuclear reactors, radioactive sources as Co60 or
Cs137)
• Laser tests
– Based on photoelectric prompt, try to emulate the particle track
– It is a lower cost experiment
 Development of fault injection emulators
 Faults prevention in the design phase of the devices
Materials and devices testing
They require to be checked by the accelerated tests 27
• The nature of the radiation, energy, flux and fluence of the beam determine
the type of test, which in turn will depend on the structure, design and use
of the device
• The parameters used in the tests will be determined by the flight conditions and
service of the spacecraft or equipment (usually 10-30 years exposure real-time)
Accelerated tests / Irradiation tests
Space and other hostile environments
Irradiation capabilities at the CNA
PHOTONS Low E-IONS & NEUTRONS
28
Cyclotron
• Protons18 MeV
Deuterons 9 MeV
• Lower Energies by
degraders
Possibility to work on air or vacuum
3MV Tandem
• Ions from H to Au
• Proton Energies
550 KeV - 6 MeV
• Differents spot sizes
PHOTONS
60Co Irradiator system
(Gammabeam ® X200, Best
Theratronics)
• Photons energies 1,17 and
1,33 MeV
• Kerma rate up to 160 Gy/h
(September 2019)
Low E-IONS & NEUTRONS
Irradiation capabilities at the CNA
29
• RENASER / RENASER+ / RENASER3 / RENASER4: Análisis integral de circuitos y sistemas
digitales para aplicaciones aeroespaciales (Spanish calls R&D 2007‐2010 ; 2011‐2013; 2016‐2019)
(Total analysis of  digital circuits and systems for aerospace applications)
• RADLAB: Laboratorio para Ensayos de Irradiación (Spanish calls R&D‐ INNPACTO 2011/2014) 
(Laboratory for irradiation tests)
• PRECEDER: Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación 
(Andalussian calls Proyecto CEI 2020/00000158)
(Prediction of the behavior for electronic devices under radiation applying “machine learning”)
• RADNEXT: RADiation facility Network for the EXploration of effects for indusTry and research    
H2020 INFRAIA‐02‐2020: Integrating Activities for Starting Communities EU Project 101008126 
The CNA  is the Spanish Centre for combined irradiation tests, 
implemented as a consequence of the projects:
30
60Co Irradiator system (Gammabeam ® X200, Best Theratronics)
• Photons energies 1,17 and 1,33 MeV
(1,25 MeV average)
• Activity 144 TBq (September 2020)
RadLab Gamma irradiation tests with Co-60
ALTER TECHNOLOGY TÜV Nord S.A.U. / CNA Project RADLAB (IPT-2011-1603-370000), Spanish MICIIN, Subprograma INNPACTO
Square flat radiation fields.
Areas from about 110 cm x 110 cm meet standards homogeneity requirement,
although dose rate nonuniformity ≤ 1% is also available for a wide range of field
size.
Attenuation System allows to obtain different dose rates, over several irradiation field areas, to carry out independent tests,
under different dose rate conditions, simultaneously.
rad(Si)/h
krad(Si)/h
u ≤ 4%
30 rad(Si)/h
420 rad(Si)/h
220 rad(Si)/h
Remote access & staff support
Dynamic study can be checked by user
Step measurements in collaboration
31
Calibration and certification by SSDL PTW-Freiburg.
compliance with TRS-398 and TRS-469 IAEA protocols.
Dosimetry Intercomparison exercises
- Based on ionization chamber; ESA/ESTEC, CNA-ALTER/RadLab and UCL/CRC (2013)
- Based on the study of the filterbox with european, american and russian institutions (2018-2021)
- Based on allanine dosimetry with ESA/ESTEC; SL & TRAD (2020-2021)
Alter Technology agreement
ESCC 22900 and MIL-STD-883/750 test methods 1019
(ISO17025; DLA Lab suitability)
Novelty incoming
Current activity In the frame of PRECEDER Project
Prediction of the behavior for electronic devices
under radiation applying “machine learning”
Objective: to be included in VIRTUAL-LAB
https://www.altertechnology-
group.com/en/news/news-details/article/virtual-lab/
32
Materials & static tests
Optical & Electronic devices
New technologies or applications
Gamma Radiation Effects on HfO2-based RRAM Devices
Shared laboratory
Attenuation System
Different dose rates
simultaneous tests
Thorough dosimetry
study
Exclusive use of laboratory
No attenuation System
RadLab Versatile laboratory
220 rad(Si)/h
SOLARMEMS
IMSE
335 Gy(Si)/h
UCAM
33
Before and after a total
cumulative dose of 22.1 Mrad(Si)
HUVM
0.08-2.5 Gy(Si)/h
Hostile environment Application
Total Ionising Dose (TID) gamma radiation testing of
the lift’s electronics for Tokamak building (ITER project)
The lifts will be exposed up to 25 µGy/h over a lifetime of 25 years.
(Gy) Accumulated Dose (Gy) Total Test Dose
Possibility to carry out temperature cycles while samples are being irradiated.
FACILITY UPDATE IN PROGRESS
Elevated temperature / cryogenic temperature testing
First TID testing with temperatura cycles
(UV AlGaN/GaN Power HEMT / UC3M PUF / ETSI-US QFG MOS)
Dosimetry systems are currently under study
Design and comissioning
(Project CECI – RENASER3)
Compatible system with particles and Ƴ
radiation labs;
in air, in vacuum or another atmosphere.
Current T range from -70ºC to 150ºC (±1ºC)
in the DUT
35
P. Martin-Holgado PhD Thesis
Normalized forward gate current of
GaN HEMTs as a function of total dose
0
500
1000
1500
2000
2500
3000
3500
5000
6000
0
2
4
6
8
10
12
14
16
18
Dose (krad(SiO2))
I
G
/I
G
@0krad
MISHEMT control p-GaN control
MISHEMT @ 400VDS MISHEMT @ 400VDS Average
MISHEMT @ 400VDS/-5VGS MISHEMT @ 400VDS/-5VGS Average
MISHEMT Shorted MISHEMT Shorted Average
p-GaN (All bias) p-GaN (All bias) Average
Ann24h25ºC
Ann168h100ºC
Compact 18/9 Cyclotron (IBA):
 Available quasi-monoenergetic (FWHM 1 – 3 %) 1H+ 18 MeV and 2H+ 9 MeV
 Lower energies are available by using foils degraders (usually 1H+ 16-10 MeV)
 H [LET(Si) ~0.02 - 0.04 MeV-cm2/mg / Range ~700-2000 microns]
 External beam line. (Possibility to couple vacuum chamber)
 Maximum achievable >90% uniform irradiated area at 10 MeV (Ø 3.5 cm)
3 MV Tandem Pelletron (NEC):
• Available quasi-monoenergetic (FWHM 0.2 - 0.03 %) ion beams
• 1H+ [LET(Si) ~0.2 - 0.05 MeV-cm2/mg / Range ~7-300 microns]
• Heavier ions (Range in Si, máximum in the order of tens of microns)
• Neutrons up to 9 MeV by nuclear reaction using >5MeV deuteron as primary beam
 Energy range from ~600 keV to several MeV
(E=(1+q)V; p.e. 600 keV to 6 MeV for H+)
 Different ion beam sizes
Irradiation beam line (usually 1cm2)
Microprobe (beam resolution ~ µm)
 Maximum irradiated área (scanning systems):
Irradiation beam line, 16x20 cm2 (for mE/q2=18)
Vacuum Microprobe line, 2.5x2.5 mm2 (for mE/q2=3)
 Vacuum system (P ~ 10-6 mbar)
 Several opto-electrical feedthroughs
Irradiation tests with LEP, HI and n
Irradiated area uniformity better than 10% Fluence u ~ 10-20%
36
- Scanning system
Double magnetic coils
High stability power supplies
Variable scanning frequency
1cm2 spot scanned up to 20x20 cm2
- Sample holders
- Maximum 20x16 cm2
- X-Y movement
- Complete turnabout
- Heating / Cooling possibility
- Others
- Lighting possibility
- Temperature control
- Opto-electrical feedthroughs
DOSIMETRY
Current integration on sample holder and/or on the
isolated sample holder and/or slits.
This is biased up to 300 volts in order to collect the
secondary electrons
Integration limits the working flux, specially on real
time monitoring
Brookhaven integrator
Flux range: ~ 6 x 1012 to ~ 1 x 108 p/cm2s
Possibilities of different particle detectors
Flux range: < 1 x 107 p/cm2s
First designed for ion implantation (fixed energy, high fluxes and fluences)
Adaptation to irradiation testing (variable energy steps, low fluxes and fluences)
Decrease flux increasing the scanning beam area / defocusing the beam (worse quality beam)
37
Although there is not possibility of scanning, it allows for a diverse range of irradiation
areas by playing with the material of the exit window and the target distance.
EXIT FLANGE
Various sizes available
Internally covered with a 5 mm carbon film to
avoid the activation.
Different graphite collimators with several hole
diameters
Several windows
SAMPLE HOLDER
Remote control (step 0.06 mm)
X 200 mm; Y 200 mm; Z 100 mm
Manual movable structure
DOSIMETRY on device under test (DUT)
Aligned masks and collimators
Control beam spot with scintillator foils and
radiochromic films
Flux monitoring on isolated graphite collimator
Previous calibration
Correlation factors depending on the set-up
ARTE ALTER
INTA
UC3M
38
LEP Space Applications
Proton Energy
Proton Energy
p+cm-2 Fluence
Proton Energy
p+cm-2 Fluence
p+cm-2 Fluence
Proton Irradiation Test on Solar Cells
cables and shielding materials
Usual requirement T<40ºC on the samples; easy reached with prompt flux <1E13 p/cm2
SPASOLAB
p+cm-2 Fluence
39
Irradiation campaign CNA-UCM on COTS SRAM – 65 nm at low bias voltage
TID in RadLab (Cobalt-60)
DR = 750 rad (Si) / h ; TID = 18 krad (Si)
SEE campaign 15 MeV
protons in the 18/9 Cyclotron
Flux 1 x108 p/cm2s
Fluence 1x1010 p/cm2
Estimated TID ~5 krad (Si)
M. Rezaei PhD Thesis
40
Irradiation campaign CNA-UCM on COTS SRAM & FRAM
G.Korkian PhD Thesis
41
LEP Applications; Space, Radiation monitors
Low energy proton direct ionization testing on FPGAs
Single Event Effects (SEE) cross sections
90 & 65 nm
COTS and RADSAGA SRAMs (ESR15)
SRAM <65 nm
MFlux 2E7 – 2E9 p/cm2s
PFlux 8E8 – 3E10 p/cm2s
Tilts (15º/30º/45º/60º)
Fluence 4E8 – 8E11 p/cm2
MFlux 3E4 – 4E8 p/cm2s
PFlux 5E7 – 1.3E11 p/cm2s
Complementary Si diode system (by ChipIR)
MFlux 1.5E2 – 5E5 p/cm2s
Fluence 1.1E6 – 1.2E11 p/cm2
42
SINGULAR EXPERIMENT AT CNA
Proton & neutron irradiation campaigns on the same device
First time in our facility performing both, proton and neutron fault injection campaigns, to evaluate and compare
the different robustness achieved in a microprocessor via different models of hardening software.
Beam Flux
(#/scm2)
Time
(s)
Total
events
Detected
events
Non detected
events
Protons 4.3·108 3718 311 85.2% 14.8%
Neutrons 1.1·106 27360 135 82.2% 17.8%
15.0 MeV protons - CYCLOTRON
Exit window: Mylar® 125 µm; WDD Air 59 cm
Flux uniformity >90% in 15 mm diameter area
Benchmark based on Matrix multiplication (MMULT) with an additional circuit
PDTC to observe and detect microprocessor errors during execution.
DUT on Zybo boards, Zynq-7000 Xilinx FPGA
28 nm technology.
ARM A9 microprocessor core, 650 MHz clock
6.1 to 8.6 MeV neutrons TANDEM 3MV
2H(d,n)3He Reaction
5.48 MeV deuteron primary beam
10 mm diameter focusing
TD1D Air 11 mm; DUT 17mm x 17mm
UC3M/UA/CNA
43
ID & DDD experiments with low energy beams
CMOS Image Sensors
Adaptation to perform microdosimetry
irradiadiation test (static & dynamic mode)
First CNA-SEU experiments with 11 to18 MeV O and C microbeams
CNES
0.5 to 6 MeV H+; 0.5 MeV D
8/11 MeV O; 11 MeV Al; 6/10 MeV C
Another particles applications
ETSI-US
44
APPLICATIONS FOR USE
Previous contact (Yolanda Morilla; ymorilla@us.es) is recommended to know in advance
the test feasibility and to obtain custom budget
The use of CNA facilities requires the approval of the Scientific Committee.
– FILL IN THE CORRESPONDING “BEAM TIME REQUEST”.
The template are available in www.cna.us.es
http://institucionales.us.es/solicitudescna/index.php/en/information-and-documents-for-use-of-accelerators
Facilitates the tedious procedure through your contact
– SEND THE APPLICATION TO solicitudescna@us.es.
Your contact will keep you informed of the procedure progress.
– When the application is accepted, the experiment date is planned according to the user
and depending on the staff and facility availability.
– Usually, the full process is completed in less than two months.
– The current tariffs charged will be a day of using the accelerator/irradiator system
http://institucionales.us.es/solicitudescna/index.php/en/rates
300-600 €/day [24 h (gamma lab); less staff involvement on real time; specific use]
400-1000 €/day [8 h (particle labs); Staff limitations; multidisciplinary use; time limitation]
45
Acknowledgements
Projects PRECEDER-2020/00000158
ESP2015-68245-C4-4-P & IPT-2011-1603-370000
To the users and collaborators from public institutions and private companies
Your requirements are our improvements !!!
46

More Related Content

PDF
638828main thibeault presentation
Clifford Stone
 
PDF
srivastava-221110(2)
Ajay Kumar Srivastava
 
PDF
Luminescence of common materials application to national security spooner
Leishman Associates
 
PDF
Talents up grazioli cesare_20_05_2013
AREA Science Park
 
PDF
IRJET- A Novel Detection Technique for Nuclear Radiations: Solid State Nuclea...
IRJET Journal
 
PDF
Lamps fazia silicon-detectors_20200827_phil_yoon
py153
 
PPT
.Nano road
Hebatalrahman Ahmed
 
PPT
Nanotechnology Progess And Pitfalls
phackettualberta
 
638828main thibeault presentation
Clifford Stone
 
srivastava-221110(2)
Ajay Kumar Srivastava
 
Luminescence of common materials application to national security spooner
Leishman Associates
 
Talents up grazioli cesare_20_05_2013
AREA Science Park
 
IRJET- A Novel Detection Technique for Nuclear Radiations: Solid State Nuclea...
IRJET Journal
 
Lamps fazia silicon-detectors_20200827_phil_yoon
py153
 
Nanotechnology Progess And Pitfalls
phackettualberta
 

What's hot (17)

PPTX
nano science
Shreeja Ravi
 
PDF
Combinatorial approach to materials discovery.
Sociedade Brasileira de Pesquisa em Materiais
 
PPTX
Application of radiography in non destructive testing
BalveerCL
 
PDF
150903 Physics MSc Lecture
Louwrens van Schalkwyk
 
PDF
Roadshow2014 - presentazione Helmut Schober (4 giugno 2014)
Roadshow2014
 
PPTX
Spectral x-ray photon counting
Gunnar Maehlum
 
PPTX
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Fundación Ramón Areces
 
PPTX
Nanotechnology in Defence Sector
Manu Shreshtha
 
PPT
ETE444-lec1-nano-introduction.ppt
mashiur
 
PPT
Nanotechnology in Defence Sector
sumeetbrar007
 
PDF
Tomorrow Today - a Laser Science Newsletter, March 2014
Laser Science
 
PPTX
Modeling organic electronics with ADF
Software for Chemistry & Materials
 
PPT
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
SEENET-MTP
 
PDF
An Analytical Review on Radioactive Waste Classification
IRJET Journal
 
PDF
Development of a Stent-Based Electrode For Radio Frequency Thermal Ablation P...
Tony Almeida
 
PPT
Research summary for Yi Yang
yxy081020
 
PPTX
Chemistry and Materials with the ADF modeling suite
Software for Chemistry & Materials
 
nano science
Shreeja Ravi
 
Combinatorial approach to materials discovery.
Sociedade Brasileira de Pesquisa em Materiais
 
Application of radiography in non destructive testing
BalveerCL
 
150903 Physics MSc Lecture
Louwrens van Schalkwyk
 
Roadshow2014 - presentazione Helmut Schober (4 giugno 2014)
Roadshow2014
 
Spectral x-ray photon counting
Gunnar Maehlum
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Fundación Ramón Areces
 
Nanotechnology in Defence Sector
Manu Shreshtha
 
ETE444-lec1-nano-introduction.ppt
mashiur
 
Nanotechnology in Defence Sector
sumeetbrar007
 
Tomorrow Today - a Laser Science Newsletter, March 2014
Laser Science
 
Modeling organic electronics with ADF
Software for Chemistry & Materials
 
D01L10 G Ristic - Applied Physics Laboratory (APL) at the Faculty of Electron...
SEENET-MTP
 
An Analytical Review on Radioactive Waste Classification
IRJET Journal
 
Development of a Stent-Based Electrode For Radio Frequency Thermal Ablation P...
Tony Almeida
 
Research summary for Yi Yang
yxy081020
 
Chemistry and Materials with the ADF modeling suite
Software for Chemistry & Materials
 
Ad

Similar to El CNA como centro de ensayos de irradiación dentro de una ICTS interdisciplinar. (20)

PDF
ListOfTechProjsWITHSphinxV1
Carlo Fanara
 
PDF
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
STUK - Säteilyturvakeskus
 
PPT
Behalf Of Pamela Collaboration
ahmad bassiouny
 
PDF
Ldb Convergenze Parallele_sorba_01
laboratoridalbasso
 
PDF
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
The Air Force Office of Scientific Research
 
PDF
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Yi Lin
 
PPTX
Neutron scattering from nanoparticles
upvita pandey
 
PDF
A comparative study of the scintillation detector na i(tl) in two sizes
Alexander Decker
 
PPT
My encounter with nanotechnology
Eternal University Baru Sahib, HP, India
 
PDF
Sirius: The New Brazilian Synchrotron Light Source.
Sociedade Brasileira de Pesquisa em Materiais
 
PPT
Identify the possibility of predication of seismic activity through the ionos...
ashrafrateb1985
 
PDF
Medical Imaging Seminar Session 2
Space IDEAS Hub
 
PDF
ILC_Paper
Ravi Nidumolu
 
PPTX
Laboratory Raman spectroscopy ISP NASU
Юлия Деева
 
PDF
First results from a prototype for the Fluorescence detector Array of Single-...
Toshihiro FUJII
 
PPTX
some active beamlines properties
sarah shoorian
 
PDF
2016.06.21 lab282 NanoFrontMag
NanoFrontMag-cm
 
PDF
DarkSide_GDR_Perasso
Stefano Perasso
 
ListOfTechProjsWITHSphinxV1
Carlo Fanara
 
Jyväskylän yliopiston kiihdytinlaboratorio - perustutkimusta ja uusia avauksi...
STUK - Säteilyturvakeskus
 
Behalf Of Pamela Collaboration
ahmad bassiouny
 
Ldb Convergenze Parallele_sorba_01
laboratoridalbasso
 
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
The Air Force Office of Scientific Research
 
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Yi Lin
 
Neutron scattering from nanoparticles
upvita pandey
 
A comparative study of the scintillation detector na i(tl) in two sizes
Alexander Decker
 
My encounter with nanotechnology
Eternal University Baru Sahib, HP, India
 
Sirius: The New Brazilian Synchrotron Light Source.
Sociedade Brasileira de Pesquisa em Materiais
 
Identify the possibility of predication of seismic activity through the ionos...
ashrafrateb1985
 
Medical Imaging Seminar Session 2
Space IDEAS Hub
 
ILC_Paper
Ravi Nidumolu
 
Laboratory Raman spectroscopy ISP NASU
Юлия Деева
 
First results from a prototype for the Fluorescence detector Array of Single-...
Toshihiro FUJII
 
some active beamlines properties
sarah shoorian
 
2016.06.21 lab282 NanoFrontMag
NanoFrontMag-cm
 
DarkSide_GDR_Perasso
Stefano Perasso
 
Ad

More from Facultad de Informática UCM (20)

PDF
¿Por qué debemos seguir trabajando en álgebra lineal?
Facultad de Informática UCM
 
PDF
TECNOPOLÍTICA Y ACTIVISMO DE DATOS: EL MAPEO COMO FORMA DE RESILIENCIA ANTE L...
Facultad de Informática UCM
 
PDF
DRAC: Designing RISC-V-based Accelerators for next generation Computers
Facultad de Informática UCM
 
PDF
uElectronics ongoing activities at ESA
Facultad de Informática UCM
 
PDF
Tendencias en el diseño de procesadores con arquitectura Arm
Facultad de Informática UCM
 
PDF
Formalizing Mathematics in Lean
Facultad de Informática UCM
 
PDF
Introduction to Quantum Computing and Quantum Service Oriented Computing
Facultad de Informática UCM
 
PPTX
Computer Design Concepts for Machine Learning
Facultad de Informática UCM
 
PDF
Inteligencia Artificial en la atención sanitaria del futuro
Facultad de Informática UCM
 
PDF
Design Automation Approaches for Real-Time Edge Computing for Science Applic...
Facultad de Informática UCM
 
PDF
Estrategias de navegación para robótica móvil de campo: caso de estudio proye...
Facultad de Informática UCM
 
PPTX
Fault-tolerance Quantum computation and Quantum Error Correction
Facultad de Informática UCM
 
PDF
Cómo construir un chatbot inteligente sin morir en el intento
Facultad de Informática UCM
 
PDF
Automatic generation of hardware memory architectures for HPC
Facultad de Informática UCM
 
PDF
Type and proof structures for concurrency
Facultad de Informática UCM
 
PDF
Hardware/software security contracts: Principled foundations for building sec...
Facultad de Informática UCM
 
PDF
Jose carlossancho slidesLa seguridad en el desarrollo de software implementad...
Facultad de Informática UCM
 
PDF
Do you trust your artificial intelligence system?
Facultad de Informática UCM
 
PDF
Redes neuronales y reinforcement learning. Aplicación en energía eólica.
Facultad de Informática UCM
 
PDF
Challenges and Opportunities for AI and Data analytics in Offshore wind
Facultad de Informática UCM
 
¿Por qué debemos seguir trabajando en álgebra lineal?
Facultad de Informática UCM
 
TECNOPOLÍTICA Y ACTIVISMO DE DATOS: EL MAPEO COMO FORMA DE RESILIENCIA ANTE L...
Facultad de Informática UCM
 
DRAC: Designing RISC-V-based Accelerators for next generation Computers
Facultad de Informática UCM
 
uElectronics ongoing activities at ESA
Facultad de Informática UCM
 
Tendencias en el diseño de procesadores con arquitectura Arm
Facultad de Informática UCM
 
Formalizing Mathematics in Lean
Facultad de Informática UCM
 
Introduction to Quantum Computing and Quantum Service Oriented Computing
Facultad de Informática UCM
 
Computer Design Concepts for Machine Learning
Facultad de Informática UCM
 
Inteligencia Artificial en la atención sanitaria del futuro
Facultad de Informática UCM
 
Design Automation Approaches for Real-Time Edge Computing for Science Applic...
Facultad de Informática UCM
 
Estrategias de navegación para robótica móvil de campo: caso de estudio proye...
Facultad de Informática UCM
 
Fault-tolerance Quantum computation and Quantum Error Correction
Facultad de Informática UCM
 
Cómo construir un chatbot inteligente sin morir en el intento
Facultad de Informática UCM
 
Automatic generation of hardware memory architectures for HPC
Facultad de Informática UCM
 
Type and proof structures for concurrency
Facultad de Informática UCM
 
Hardware/software security contracts: Principled foundations for building sec...
Facultad de Informática UCM
 
Jose carlossancho slidesLa seguridad en el desarrollo de software implementad...
Facultad de Informática UCM
 
Do you trust your artificial intelligence system?
Facultad de Informática UCM
 
Redes neuronales y reinforcement learning. Aplicación en energía eólica.
Facultad de Informática UCM
 
Challenges and Opportunities for AI and Data analytics in Offshore wind
Facultad de Informática UCM
 

Recently uploaded (20)

PDF
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PDF
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
PDF
2010_Book_EnvironmentalBioengineering (1).pdf
EmilianoRodriguezTll
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PDF
The Effect of Artifact Removal from EEG Signals on the Detection of Epileptic...
Partho Prosad
 
PDF
Introduction to Data Science: data science process
ShivarkarSandip
 
PPTX
AgentX UiPath Community Webinar series - Delhi
RohitRadhakrishnan8
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PPTX
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
PDF
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
PPTX
Victory Precisions_Supplier Profile.pptx
victoryprecisions199
 
PPT
Ppt for engineering students application on field effect
lakshmi.ec
 
PPTX
Information Retrieval and Extraction - Module 7
premSankar19
 
PDF
Software Testing Tools - names and explanation
shruti533256
 
PDF
Zero carbon Building Design Guidelines V4
BassemOsman1
 
PPTX
Introduction of deep learning in cse.pptx
fizarcse
 
PPTX
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
PDF
Zero Carbon Building Performance standard
BassemOsman1
 
PPTX
MSME 4.0 Template idea hackathon pdf to understand
alaudeenaarish
 
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
2010_Book_EnvironmentalBioengineering (1).pdf
EmilianoRodriguezTll
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
The Effect of Artifact Removal from EEG Signals on the Detection of Epileptic...
Partho Prosad
 
Introduction to Data Science: data science process
ShivarkarSandip
 
AgentX UiPath Community Webinar series - Delhi
RohitRadhakrishnan8
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
Victory Precisions_Supplier Profile.pptx
victoryprecisions199
 
Ppt for engineering students application on field effect
lakshmi.ec
 
Information Retrieval and Extraction - Module 7
premSankar19
 
Software Testing Tools - names and explanation
shruti533256
 
Zero carbon Building Design Guidelines V4
BassemOsman1
 
Introduction of deep learning in cse.pptx
fizarcse
 
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
Zero Carbon Building Performance standard
BassemOsman1
 
MSME 4.0 Template idea hackathon pdf to understand
alaudeenaarish
 

El CNA como centro de ensayos de irradiación dentro de una ICTS interdisciplinar.

  • 1. El CNA como centro de ensayos de irradiación dentro de una ICTS interdisciplinar Presented by Yolanda Morilla Conferencia de Posgrado FdI-UCM, 18 de Mayo de 2021 1
  • 2. Parque Científico Tecnológico Cartuja Avda. Tomás Alba Edison nº 7 E-41092 – Sevilla. Spain http://www.cna.us.es Director: Dr. Rafael Garcia-Tenorio ([email protected]) 2
  • 3. CNA – MAIN EQUIPMENTS Spanish ICTS (singular scientific and technological infraestructure) Interdisciplinary research 3 MV Tandem accelerator 18/9 Cyclotron accelerator Co-60 Gamma-irradiator 1 MV Tandem AMS MICADAS PET / CT SCANNERS Radiopharmacy 3
  • 4. A little bit of history... • 1997, agreement between Universidad de Sevilla, Junta de Andalucía and CSIC • 1998, the 3MV tandem accelerator settled in Sevilla • 1999, the laboratory is opened to the scientific community (public or private enterprise), mainly to perform ion beam analysis (IBA) • 2003, the cyclotron accelerator is installed • Agreement CNA-Schering España. Radiopharmacy and PET research. • 2005, the compact system for accelerators mass spectrometry (AMS) is put into operation • 2005/06, the movable line for ion implantation and irradiation is designed and installed to be shared with tandem and cyclotron accelerators • 2006, routine service in IBA techniques accessible Agreement CNA-IBA Molecular-SAS. Radiopharmacy service for all the Andalusian hospitals. • 2008/09, Total dose and Microdosimetry irradiation tests (static and dynamic mode) • 2012/13, 60Co irradiation tester and 0.5 MV AMS MICADAS have been installed • 2013 up today, improvements of facilities and expansion of activities (projects, agreements…) 4
  • 5. Main working scopes – Material Science Thin films, ceramics, metallic alloys – Medicine and Biology Organic fluids, tissues, radiopharmacy – Art and Archaeometry Metals, ceramics, paintings – Environmental research Water, aerosols, sediments, soils - Basic Nuclear Physics Astrophysics, detectors, nuclear electronic - Mass Spectrometry with accelerators Carbon dating, environmental applications - Accelerated irradiation testing Astrophysics, detectors, nuclear electronic - Scholar and scientific outreach activities Academic training, high and secundary school visits www.cna.us.es 5
  • 7. Ion-Solid Interaction Técnicas IBA / Modificación de materiales / Reactions dx dE E S E S N e n    )] ( ) ( [ Transmited ions Channelled ions Neutrons Scattered ions Reaction products Ions γ rays electrons X rays Sputtered atoms Backscattered ions Incident Ion Beam Electrons Atoms Nuclear collisions Lattice Ion Teoría LSS (Linhard-Scharf-Schiøtt) Energy Loss Nuclear & Electronic stopping Ion Range Different events Cross section    E e n E S E S dE N R 0 ) ( ) ( 1 7
  • 8. - Particle detectors (RBS, NRA, ERDA) - X-ray detectors (SiLi, LeGe) for PIXE - γ-ray detector (HPGe) for PIGE - Sample holder 150x112 mm2 - X-Y movement - Minimum spot size (Ø~0.5 mm) - Electron gun 8
  • 9. - Sample holder (Ø~5 cm) - Four axis (X-Y, θ-Φ) goniometer - Minimum spot size (Ø~0.5 mm) Specially to study crystalline samples - Particle detectors (RBS, NRA, ERDA) - X-ray detectors (SiLi, LeGe) for PIXE - γ-ray detector (HPGe) for PIGE 9
  • 10. BS/C with 3.5 MeV alpha particles Damage distribution and simultaneous analysis of C & Si sublattices MUESTRA DOSIS (Al2+/cm2) DENSIDAD CORRIENTE (nA/cm2) DESORDEN MÁXIMO RELATIVO-Si DESORDEN MÁXIMO RELATIVO-C A 2 X 1014 21 34 % 50 % B 2 X 1014 83 36 % 52 % C 2 X 1014 105 40 % 58 % D 4 X 1014 86 90 % 100 % E 7 X 1014 86 100 % 100 % 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 Rendimiento de retrodispersión Energía(keV) Virgen A C D E Random 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 800 900 1000 1100 Rendimiento de retrodispersión Canal AExperimental ASimulado RandomSimulación VirgenSimulación Random Virgen 6H-SiC Implantation 2 MeV Al2+ , tilt = 61º , room T 100 200 300 400 500 0 200 400 600 800 4300 keV 4321 keV 4341 keV 4360 keV 4380 keV 4280 keV 4241 keV 4261 keV 4226 keV Channels Y ie ld 4He2+ ~4.26 MeV Backscattering in channeling geometry {resonance 12C(α,α)12C} Y. Morilla, J. García-López, G. Battistig et al. 10
  • 11. - Particle detectors (RBS, STIM) - Secundary electrons detector (SEM) - X-ray detector (SiLi) for PIXE - γ-ray detector (HPGe, NaI) for PIGE - Minimum Ion beam size ~ 3μm - Scanning system, elemental maps - Small sample holder - Electrons gun 11
  • 12. Heavy Metals in neurons Parkinson’s disease Decrease [dopamine] Increase of [Fe.] Increase [dead cells] A. Carmona (CNA), R. Ortega (CENBG) et al. Organometallic compound Dopamine -Fe Nuclear microprobe analysis of arabidopsis thaliana leaves M.D. Ynsa and F.J. Ager (CNA), J.R. Domínguez, C. Gotor and L.C. Romero (IBVFSE-CSIC) 20um Ca Ka1: PIXE3( 113- 123) Contaminated soils Phytorecovery Heavy metals acumulation sites Fe, Cd, Zn… 12
  • 13. - Ion beam size ~ 50-100μm - Versatile sample holder - γ-ray detector (HPGe) for PIGE -Two X-ray detectors (SiLi, LeGe) for PIXE 13
  • 14. Tartesic Gold Jewellery: Ébora treasure Two kind of solders: brazing, forging Necklace, 700 - 500 B.C. Archaeological Museum of Seville 0 5 10 15 20 25 0 2 4 6 8 10 Ag K Ag K Cu K Au L Au L Energía Au L Cu K Patrón de Oro Detector Si(Li) Haz Externo CNA KeV Study of paintings and ceramics from Teotihuacán Different colors characterization Differencial-PIXE; Non destructive stratigrafy Painting thickness M.A. Ontalba, I. Ortega, Respaldiza et al. 14
  • 15. - Exotic nuclei studies - Cross section determination for astrophysical applications - Development of nuclear electronics and detectors 15
  • 16. The last installed in the 3MV Tandem accelerator before the 90º magnet Based on deuteron nuclear reactions p(7Li,n), d(D,n), p(9Be,n) & d(9Be,n), from thermal neutrons up to 9 MeV beams. HISPANoS: pulsed / continuous neutron source at CNA 16
  • 17. Cyclotron Laboratory (18 MeV H+ / 9 MeV D+) Nuclear Medicine Irradiation Damage High Energy PIXE Cyclotron vault Experimental vault 2 m thick concrete wall Cyclotron CNA model 17
  • 18. Radiopharmacy (PET isotopes) Biomolecules marked with 18F and 11C 13NH3 and H2 15O Research - Dispensation 18 Human & Micro-PET / TC scanning systems for medical imaging research using short life isotopes PET (Positron Emission Tomography)
  • 19. AMS Laboratory (14C, 10Be, 26Al, 129I, 239Pu, 240Pu, 236U ) IAEA – CNA agreement surface seawater off Namibian coast 19 Carbon dating in Spain
  • 20. Co-60 gamma Laboratory GAMMABEAM ® X200 (Best Theratronics) Induction of Mutagenesis in Rice seeds 20 Gammagraphy / TC for arts
  • 21. National Accelerators Centre, a facility for irradiation testing 21
  • 22. Severe natural environment above Earth’s atmosphere ‐ Electrons (~keV‐7 MeV) ‐ Protons (~keV‐800 MeV) ‐ Heavy ions ‐ X ‐ Radiation (100 eV – 100 keV) ‐ γ ‐ Radiation ‐ Neutrons (atmospheric level) Image Source: ESA 22
  • 23. Type of radiation in space 23
  • 24. Radiation effects on components From Federico Faccio ‐ CERN From the point of view of the effects, the degradation will differ according to the energy of the particles, to their nature and to the mission orbit. It is necessary to understand the instrument technology and geometry to determine the vulnerability to the environment. Radiation effects important to consider for instrument and spacecraft design fall roughly into three categories: degradation from Total Ionizing Dose (TID), Displacement Damage Dose (DDD), and Single Event Effects (SEE). 24
  • 25. TID is due to ionizing radiation, by primary protons and electrons and secondary particles It causes threshold shifts, leakage current and timing skews It is possible to reduce this with shielding The effect first appears as a parametric degradation of the device and ultimately results in functional failure Displacement damage is long-term structural damage on semiconductors caused by protons, electrons, and neutrons Produce defects mainly in optoelectronics components SEEs result from ionization by a single charged particle as it passes through a sensitive junction of an electronic device, mostly caused by heavier ions but also protons The severity of the effect can range from noisy data to loss of the mission, depending on the type of effect and the criticality of the system in which it occurs Shielding is not an effective mitigation technique because they are induced by very penetrating high-energy particles. Generation and transport of charges by the effect of a SEE in the drain region of a NMOS transistor. Image Source: [S. Sordo, Thesis IMSE-US https://idus.us.es/handle/11441/52295]. 25
  • 26. Radiation Hardness Assurance - RHA Activities undertaken to ensure that the electronic piece parts placed in the space system continue to perform according to their design specifications after exposure to the space environment From Christian Poivey ‐ ESA To produce a system tolerant to the radiation environment 26
  • 27. • Field analysis – Based on reports of reparations and replacing of components – When there is enough statistic data the products are obsolete – It is necessary to spend several years • Real time tests – Based on the study of numerous chips running under natural environment – It is necessary to spend a lot of time and this is very expensive • Accelerated tests (static or dynamic) – Based on the simulation of the natural radiation environment (100 years in a few minutes) – Adequate method but expensive (NORMATIVAS / ESCC – DLA…) • It is required to use radiation sources and equipments associated (particle accelerators, nuclear reactors, radioactive sources as Co60 or Cs137) • Laser tests – Based on photoelectric prompt, try to emulate the particle track – It is a lower cost experiment  Development of fault injection emulators  Faults prevention in the design phase of the devices Materials and devices testing They require to be checked by the accelerated tests 27
  • 28. • The nature of the radiation, energy, flux and fluence of the beam determine the type of test, which in turn will depend on the structure, design and use of the device • The parameters used in the tests will be determined by the flight conditions and service of the spacecraft or equipment (usually 10-30 years exposure real-time) Accelerated tests / Irradiation tests Space and other hostile environments Irradiation capabilities at the CNA PHOTONS Low E-IONS & NEUTRONS 28
  • 29. Cyclotron • Protons18 MeV Deuterons 9 MeV • Lower Energies by degraders Possibility to work on air or vacuum 3MV Tandem • Ions from H to Au • Proton Energies 550 KeV - 6 MeV • Differents spot sizes PHOTONS 60Co Irradiator system (Gammabeam ® X200, Best Theratronics) • Photons energies 1,17 and 1,33 MeV • Kerma rate up to 160 Gy/h (September 2019) Low E-IONS & NEUTRONS Irradiation capabilities at the CNA 29
  • 30. • RENASER / RENASER+ / RENASER3 / RENASER4: Análisis integral de circuitos y sistemas digitales para aplicaciones aeroespaciales (Spanish calls R&D 2007‐2010 ; 2011‐2013; 2016‐2019) (Total analysis of  digital circuits and systems for aerospace applications) • RADLAB: Laboratorio para Ensayos de Irradiación (Spanish calls R&D‐ INNPACTO 2011/2014)  (Laboratory for irradiation tests) • PRECEDER: Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación  (Andalussian calls Proyecto CEI 2020/00000158) (Prediction of the behavior for electronic devices under radiation applying “machine learning”) • RADNEXT: RADiation facility Network for the EXploration of effects for indusTry and research     H2020 INFRAIA‐02‐2020: Integrating Activities for Starting Communities EU Project 101008126  The CNA  is the Spanish Centre for combined irradiation tests,  implemented as a consequence of the projects: 30
  • 31. 60Co Irradiator system (Gammabeam ® X200, Best Theratronics) • Photons energies 1,17 and 1,33 MeV (1,25 MeV average) • Activity 144 TBq (September 2020) RadLab Gamma irradiation tests with Co-60 ALTER TECHNOLOGY TÜV Nord S.A.U. / CNA Project RADLAB (IPT-2011-1603-370000), Spanish MICIIN, Subprograma INNPACTO Square flat radiation fields. Areas from about 110 cm x 110 cm meet standards homogeneity requirement, although dose rate nonuniformity ≤ 1% is also available for a wide range of field size. Attenuation System allows to obtain different dose rates, over several irradiation field areas, to carry out independent tests, under different dose rate conditions, simultaneously. rad(Si)/h krad(Si)/h u ≤ 4% 30 rad(Si)/h 420 rad(Si)/h 220 rad(Si)/h Remote access & staff support Dynamic study can be checked by user Step measurements in collaboration 31
  • 32. Calibration and certification by SSDL PTW-Freiburg. compliance with TRS-398 and TRS-469 IAEA protocols. Dosimetry Intercomparison exercises - Based on ionization chamber; ESA/ESTEC, CNA-ALTER/RadLab and UCL/CRC (2013) - Based on the study of the filterbox with european, american and russian institutions (2018-2021) - Based on allanine dosimetry with ESA/ESTEC; SL & TRAD (2020-2021) Alter Technology agreement ESCC 22900 and MIL-STD-883/750 test methods 1019 (ISO17025; DLA Lab suitability) Novelty incoming Current activity In the frame of PRECEDER Project Prediction of the behavior for electronic devices under radiation applying “machine learning” Objective: to be included in VIRTUAL-LAB https://www.altertechnology- group.com/en/news/news-details/article/virtual-lab/ 32
  • 33. Materials & static tests Optical & Electronic devices New technologies or applications Gamma Radiation Effects on HfO2-based RRAM Devices Shared laboratory Attenuation System Different dose rates simultaneous tests Thorough dosimetry study Exclusive use of laboratory No attenuation System RadLab Versatile laboratory 220 rad(Si)/h SOLARMEMS IMSE 335 Gy(Si)/h UCAM 33 Before and after a total cumulative dose of 22.1 Mrad(Si) HUVM 0.08-2.5 Gy(Si)/h
  • 34. Hostile environment Application Total Ionising Dose (TID) gamma radiation testing of the lift’s electronics for Tokamak building (ITER project) The lifts will be exposed up to 25 µGy/h over a lifetime of 25 years. (Gy) Accumulated Dose (Gy) Total Test Dose
  • 35. Possibility to carry out temperature cycles while samples are being irradiated. FACILITY UPDATE IN PROGRESS Elevated temperature / cryogenic temperature testing First TID testing with temperatura cycles (UV AlGaN/GaN Power HEMT / UC3M PUF / ETSI-US QFG MOS) Dosimetry systems are currently under study Design and comissioning (Project CECI – RENASER3) Compatible system with particles and Ƴ radiation labs; in air, in vacuum or another atmosphere. Current T range from -70ºC to 150ºC (±1ºC) in the DUT 35 P. Martin-Holgado PhD Thesis Normalized forward gate current of GaN HEMTs as a function of total dose 0 500 1000 1500 2000 2500 3000 3500 5000 6000 0 2 4 6 8 10 12 14 16 18 Dose (krad(SiO2)) I G /I G @0krad MISHEMT control p-GaN control MISHEMT @ 400VDS MISHEMT @ 400VDS Average MISHEMT @ 400VDS/-5VGS MISHEMT @ 400VDS/-5VGS Average MISHEMT Shorted MISHEMT Shorted Average p-GaN (All bias) p-GaN (All bias) Average Ann24h25ºC Ann168h100ºC
  • 36. Compact 18/9 Cyclotron (IBA):  Available quasi-monoenergetic (FWHM 1 – 3 %) 1H+ 18 MeV and 2H+ 9 MeV  Lower energies are available by using foils degraders (usually 1H+ 16-10 MeV)  H [LET(Si) ~0.02 - 0.04 MeV-cm2/mg / Range ~700-2000 microns]  External beam line. (Possibility to couple vacuum chamber)  Maximum achievable >90% uniform irradiated area at 10 MeV (Ø 3.5 cm) 3 MV Tandem Pelletron (NEC): • Available quasi-monoenergetic (FWHM 0.2 - 0.03 %) ion beams • 1H+ [LET(Si) ~0.2 - 0.05 MeV-cm2/mg / Range ~7-300 microns] • Heavier ions (Range in Si, máximum in the order of tens of microns) • Neutrons up to 9 MeV by nuclear reaction using >5MeV deuteron as primary beam  Energy range from ~600 keV to several MeV (E=(1+q)V; p.e. 600 keV to 6 MeV for H+)  Different ion beam sizes Irradiation beam line (usually 1cm2) Microprobe (beam resolution ~ µm)  Maximum irradiated área (scanning systems): Irradiation beam line, 16x20 cm2 (for mE/q2=18) Vacuum Microprobe line, 2.5x2.5 mm2 (for mE/q2=3)  Vacuum system (P ~ 10-6 mbar)  Several opto-electrical feedthroughs Irradiation tests with LEP, HI and n Irradiated area uniformity better than 10% Fluence u ~ 10-20% 36
  • 37. - Scanning system Double magnetic coils High stability power supplies Variable scanning frequency 1cm2 spot scanned up to 20x20 cm2 - Sample holders - Maximum 20x16 cm2 - X-Y movement - Complete turnabout - Heating / Cooling possibility - Others - Lighting possibility - Temperature control - Opto-electrical feedthroughs DOSIMETRY Current integration on sample holder and/or on the isolated sample holder and/or slits. This is biased up to 300 volts in order to collect the secondary electrons Integration limits the working flux, specially on real time monitoring Brookhaven integrator Flux range: ~ 6 x 1012 to ~ 1 x 108 p/cm2s Possibilities of different particle detectors Flux range: < 1 x 107 p/cm2s First designed for ion implantation (fixed energy, high fluxes and fluences) Adaptation to irradiation testing (variable energy steps, low fluxes and fluences) Decrease flux increasing the scanning beam area / defocusing the beam (worse quality beam) 37
  • 38. Although there is not possibility of scanning, it allows for a diverse range of irradiation areas by playing with the material of the exit window and the target distance. EXIT FLANGE Various sizes available Internally covered with a 5 mm carbon film to avoid the activation. Different graphite collimators with several hole diameters Several windows SAMPLE HOLDER Remote control (step 0.06 mm) X 200 mm; Y 200 mm; Z 100 mm Manual movable structure DOSIMETRY on device under test (DUT) Aligned masks and collimators Control beam spot with scintillator foils and radiochromic films Flux monitoring on isolated graphite collimator Previous calibration Correlation factors depending on the set-up ARTE ALTER INTA UC3M 38
  • 39. LEP Space Applications Proton Energy Proton Energy p+cm-2 Fluence Proton Energy p+cm-2 Fluence p+cm-2 Fluence Proton Irradiation Test on Solar Cells cables and shielding materials Usual requirement T<40ºC on the samples; easy reached with prompt flux <1E13 p/cm2 SPASOLAB p+cm-2 Fluence 39
  • 40. Irradiation campaign CNA-UCM on COTS SRAM – 65 nm at low bias voltage TID in RadLab (Cobalt-60) DR = 750 rad (Si) / h ; TID = 18 krad (Si) SEE campaign 15 MeV protons in the 18/9 Cyclotron Flux 1 x108 p/cm2s Fluence 1x1010 p/cm2 Estimated TID ~5 krad (Si) M. Rezaei PhD Thesis 40
  • 41. Irradiation campaign CNA-UCM on COTS SRAM & FRAM G.Korkian PhD Thesis 41
  • 42. LEP Applications; Space, Radiation monitors Low energy proton direct ionization testing on FPGAs Single Event Effects (SEE) cross sections 90 & 65 nm COTS and RADSAGA SRAMs (ESR15) SRAM <65 nm MFlux 2E7 – 2E9 p/cm2s PFlux 8E8 – 3E10 p/cm2s Tilts (15º/30º/45º/60º) Fluence 4E8 – 8E11 p/cm2 MFlux 3E4 – 4E8 p/cm2s PFlux 5E7 – 1.3E11 p/cm2s Complementary Si diode system (by ChipIR) MFlux 1.5E2 – 5E5 p/cm2s Fluence 1.1E6 – 1.2E11 p/cm2 42
  • 43. SINGULAR EXPERIMENT AT CNA Proton & neutron irradiation campaigns on the same device First time in our facility performing both, proton and neutron fault injection campaigns, to evaluate and compare the different robustness achieved in a microprocessor via different models of hardening software. Beam Flux (#/scm2) Time (s) Total events Detected events Non detected events Protons 4.3·108 3718 311 85.2% 14.8% Neutrons 1.1·106 27360 135 82.2% 17.8% 15.0 MeV protons - CYCLOTRON Exit window: Mylar® 125 µm; WDD Air 59 cm Flux uniformity >90% in 15 mm diameter area Benchmark based on Matrix multiplication (MMULT) with an additional circuit PDTC to observe and detect microprocessor errors during execution. DUT on Zybo boards, Zynq-7000 Xilinx FPGA 28 nm technology. ARM A9 microprocessor core, 650 MHz clock 6.1 to 8.6 MeV neutrons TANDEM 3MV 2H(d,n)3He Reaction 5.48 MeV deuteron primary beam 10 mm diameter focusing TD1D Air 11 mm; DUT 17mm x 17mm UC3M/UA/CNA 43
  • 44. ID & DDD experiments with low energy beams CMOS Image Sensors Adaptation to perform microdosimetry irradiadiation test (static & dynamic mode) First CNA-SEU experiments with 11 to18 MeV O and C microbeams CNES 0.5 to 6 MeV H+; 0.5 MeV D 8/11 MeV O; 11 MeV Al; 6/10 MeV C Another particles applications ETSI-US 44
  • 45. APPLICATIONS FOR USE Previous contact (Yolanda Morilla; [email protected]) is recommended to know in advance the test feasibility and to obtain custom budget The use of CNA facilities requires the approval of the Scientific Committee. – FILL IN THE CORRESPONDING “BEAM TIME REQUEST”. The template are available in www.cna.us.es http://institucionales.us.es/solicitudescna/index.php/en/information-and-documents-for-use-of-accelerators Facilitates the tedious procedure through your contact – SEND THE APPLICATION TO [email protected]. Your contact will keep you informed of the procedure progress. – When the application is accepted, the experiment date is planned according to the user and depending on the staff and facility availability. – Usually, the full process is completed in less than two months. – The current tariffs charged will be a day of using the accelerator/irradiator system http://institucionales.us.es/solicitudescna/index.php/en/rates 300-600 €/day [24 h (gamma lab); less staff involvement on real time; specific use] 400-1000 €/day [8 h (particle labs); Staff limitations; multidisciplinary use; time limitation] 45
  • 46. Acknowledgements Projects PRECEDER-2020/00000158 ESP2015-68245-C4-4-P & IPT-2011-1603-370000 To the users and collaborators from public institutions and private companies Your requirements are our improvements !!! 46