ELECTROCHEMICAL
SYNTHESIS
ARUN.M
1ST MSC NANOSCIENCE &TECH
ALAGAPPAUNIVERSITY
KARAIKUDI.
ELECTROCHEMICAL CELL
Electrods
Electrods are usuallymetal/strips wires connectedby an
electricallyconductingwire.
Anode
The electrodewherereductiontakesplace.
Cathode
Theelectrodewherereductiontakesplace.
PRINCIPLE
1.Anelectrochemical synthesiscan bebasicallyinterpretedbypassingan
electriccurrent betweentwo or moreelectrodswhichis calledthe
anodeandcathodelocatedin electrode.
2.Inthistechnique, theanodecan be oxidizedto metal ionspecies in the
electrodeandthe metal ionisolateronreducedto metal bythe cathode
withthe assistanceof stabilizers.
Design of synthesis
Successful electrochemical reaction we need to make suitable choice of a reaction
parameters:
Possibilityto chooseinert or reactivechoiceof electrodeandits
composition.
SuitablepH, temperature, electrodeconcentration.
Possibilityof cells to be dividedor undivided.
Mechanism
1.Electriccurrentis actuallypassing anelectrolytecontainingmetalsaltthemetal sedimented
withinthecathode. Currentextensivelyutilized byplatingtechnologiststo fabricatemetal.
2.However, basedon the appliedpotential,typeof theanionandthechosenph of thesolution,
differenthappento the cathode.
• Product
• Anode
• Power supply
• Cathode
Silver Nanoparticles
1.Electrochemicalsynthesisof silver nanoparticlesElectrochemicaldepositionis a
techniquethat hasbeenwidelyusedfor the synthesisof metal nanoparticles.
2.Electrochemicaldepositionoccursat the interfaceof an electrolytesolutioncontaining
the metalto be depositedandan electricallyconductivemetalsubstrate.
3.Silver nanoparticlesweresynthesizedelectrochemicallyusingan electrolyte
containing0.01 mM concentration ofAgNO3..
4.Theelectrolytewaspreparedfrom doubledeionised waterand the volumeof the
cellwas100 ml.
5.Theglassycarbonelectrodeandthe silvermetal wereemployedasworking
electrodeandcounterelectrodes, respectively.
6.Ag NPsshoweddendriticgrowth andit wasfoundthat high concentrationof the
silverion favoursthe aggregationand dendritic formation.
7.Theoverallcathodic reductionof silverions at room temperaturecanoccur in the
followingway.
Characterization
1.TheformationofAg NPs was confirmedby X-raydiffraction
techniqueusingdiffractometer.
2.Particlesizeandanisotropicnatureof theAg-NPs werecalculated
usingScherrer formulaandWilliamson–Hallequation.
3.Diffusereflectancespectroscopy(DRS)was usedto characterisethe
optical propertiesof theAg NPs.
4. ScanningElectronMicroscopywas usedto determinethesizeand
morphologyof theAgNPsobtainedfromelectrodepositionmethod.
Advantages
• Easily fabricated with advantages of low cost
• Low temperature
• High purity
• Eco-friendly because it avoids the use of reducer agents that usually are
toxic
Disadvantages
• Mass production is not possible
• Can’t predict the structure
• Can’t predict size and shape.
ELECTROCHEMICAL  SYNTHESIS Aj.pptx

ELECTROCHEMICAL SYNTHESIS Aj.pptx

  • 1.
    ELECTROCHEMICAL SYNTHESIS ARUN.M 1ST MSC NANOSCIENCE&TECH ALAGAPPAUNIVERSITY KARAIKUDI.
  • 2.
    ELECTROCHEMICAL CELL Electrods Electrods areusuallymetal/strips wires connectedby an electricallyconductingwire. Anode The electrodewherereductiontakesplace. Cathode Theelectrodewherereductiontakesplace.
  • 3.
    PRINCIPLE 1.Anelectrochemical synthesiscan bebasicallyinterpretedbypassingan electriccurrentbetweentwo or moreelectrodswhichis calledthe anodeandcathodelocatedin electrode. 2.Inthistechnique, theanodecan be oxidizedto metal ionspecies in the electrodeandthe metal ionisolateronreducedto metal bythe cathode withthe assistanceof stabilizers.
  • 4.
    Design of synthesis Successfulelectrochemical reaction we need to make suitable choice of a reaction parameters: Possibilityto chooseinert or reactivechoiceof electrodeandits composition. SuitablepH, temperature, electrodeconcentration. Possibilityof cells to be dividedor undivided.
  • 5.
    Mechanism 1.Electriccurrentis actuallypassing anelectrolytecontainingmetalsaltthemetalsedimented withinthecathode. Currentextensivelyutilized byplatingtechnologiststo fabricatemetal. 2.However, basedon the appliedpotential,typeof theanionandthechosenph of thesolution, differenthappento the cathode.
  • 6.
    • Product • Anode •Power supply • Cathode
  • 7.
    Silver Nanoparticles 1.Electrochemicalsynthesisof silvernanoparticlesElectrochemicaldepositionis a techniquethat hasbeenwidelyusedfor the synthesisof metal nanoparticles. 2.Electrochemicaldepositionoccursat the interfaceof an electrolytesolutioncontaining the metalto be depositedandan electricallyconductivemetalsubstrate. 3.Silver nanoparticlesweresynthesizedelectrochemicallyusingan electrolyte containing0.01 mM concentration ofAgNO3..
  • 8.
    4.Theelectrolytewaspreparedfrom doubledeionised waterandthe volumeof the cellwas100 ml. 5.Theglassycarbonelectrodeandthe silvermetal wereemployedasworking electrodeandcounterelectrodes, respectively. 6.Ag NPsshoweddendriticgrowth andit wasfoundthat high concentrationof the silverion favoursthe aggregationand dendritic formation. 7.Theoverallcathodic reductionof silverions at room temperaturecanoccur in the followingway.
  • 9.
    Characterization 1.TheformationofAg NPs wasconfirmedby X-raydiffraction techniqueusingdiffractometer. 2.Particlesizeandanisotropicnatureof theAg-NPs werecalculated usingScherrer formulaandWilliamson–Hallequation. 3.Diffusereflectancespectroscopy(DRS)was usedto characterisethe optical propertiesof theAg NPs. 4. ScanningElectronMicroscopywas usedto determinethesizeand morphologyof theAgNPsobtainedfromelectrodepositionmethod.
  • 10.
    Advantages • Easily fabricatedwith advantages of low cost • Low temperature • High purity • Eco-friendly because it avoids the use of reducer agents that usually are toxic
  • 11.
    Disadvantages • Mass productionis not possible • Can’t predict the structure • Can’t predict size and shape.