SlideShare a Scribd company logo
Electromagnetism University of Twente Department Applied Physics First-year course on Part III: Electromagnetic Waves : Slides © F.F.M. de Mul
Electromagnetic Waves Gauss’ and Faraday’s Laws for  E  ( D ) - field Gauss’ and Maxwell’s Laws for  B  ( H )-field Maxwell’s Equations and   The Wave Equation Harmonic Solution of the Wave Equation Plane waves (1): orientation of field vectors Plane waves (2): complex wave vector Plane waves (3): the  B - E  correspondence The Poynting Vector
Gauss’ and Faraday’s Laws for  E Div  = micro-flux per unit of volume Rot  = micro-circulation per unit of area B c dS Faraday’s Law : S E S V dV Gauss’ Law :
Gauss’ and Maxwell’s Law for  B S V dV B Gauss’ Law : j S L Maxwell’s Fix for Ampere’s Law :
Maxwell’s Equations and the Wave Equation This is a 3-Dimensional Wave Equation  v  = 2.99… x 10 8  m/s = light velocity  In vacuum (    = 0 and  j  = 0): }
Harmonic Solution of the  Wave Equation: Plane Waves E  may have 3 components:  E x  E y  E z  Choose x-axis  //  E     E y  = E z  =  0 (Polarization direction = x-axis). Does a plane-wave expression for  E x   satisfy the wave equation? E x  = E x0   exp{ i  (  t-kz )}  :  E x0  = amplitude + polarization vector  +z-axis = direction of propagation Insertion into wave equation:  k 2  =   0    0   2  =   2  / c 2 k =    / c =  2   /  k  = wave number ;     = wavelength (in 3D-case:  k =  wave vector ) Analogously:  B y  = B y0   exp{ i  (  t-kz )}
Plane waves (1): orientation of fields    -i k  e z  .E  = 0    -i k  e z  .H  = 0    -i k  e z  x E =  -i  H    -i k  e z   x H  =   E +i  E (1)  div  E  = 0 (2)  div  B  = 0 (3)  rot  E =  -  d B/ dt (4)  rot  H  =  j f  +  d D /dt j f  =   E Consequences: (1)+(2):  E  and  H    e z (3)+(4):  E     H If  E  chosen // x-axis, then  H  //  y-axis Suppose :  E  // x-axis;  ..  propagation // +z-axis:  k  //  e z ..  E x  = E x0   exp  i  (  t-kz ) x z y E Propag- ation H
Plane waves (2): complex wave vector e z  x   e z  x  E = -E i k 2 = (  + i  ).  Result:   k  complex:  k = k Re +  i k Im exp (-i kz ) = exp (-i k Re  z ) . exp ( k Im  z ) (1)   -i k  e z  .E  = 0 (2)   -i k  e z  .H  = 0 (3)   -i k  e z  x E =  -i  H (4)   -i k  e z   x H  =   E +i  E (1)+(2):  E  and  H    e z (3)+(4):  E     H Suppose :  E  // x-axis;  ..  propagation // +z-axis:  k  //  e z ..  E x  = E x0   exp  i  (  t-kz ) x z y E Propag- ation H } harmonic } k Im < 0 : absorption >0 : amplification (“laser”)
Plane waves (3):  B-E  correspondence Faraday:  rot  E =  -  d B/ dt Maxwell (for  j =0):  rot  H  = d D /dt: similar result Suppose :  E  // x-axis;  B  // y-axis;  ..  propagation // +z-axis:  k  //  e z ..  E x  = E x0   exp  i  (  t-kz ) ..  B y  = B y0   exp  i  (  t-kz ) x z y E Propag- ation B
The Poynting vector  S Definition  (for free space) :  S = E  x  H   =  H  (-d B /dt) -  E  ( j f + d D /dt) Apply Divergence Theorem to integrate over wave surface A: S  = energy outflux per m 2  =  Intensity   [W/m 2 ]    S =   ( E  H ) =  H  (  E ) -  E  (  H ) = { Change in Electro-  magnetic field energy { Joule heating losses [J/s] { Outflux of energy [J/s] = [W] Direction of  S   : //  k E H k S

More Related Content

PDF
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
xoreq
 
PPT
Magnetism slides
FFMdeMul
 
PPT
Electricity slides
FFMdeMul
 
PPTX
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
Panchal Anand
 
DOC
Line integrals
Tarun Gehlot
 
PDF
Deflection in beams 1
Satya Narayan Kunwar
 
PDF
William hyatt-7th-edition-drill-problems-solution
Salman Salman
 
PDF
Chapter 16 2
EasyStudy3
 
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
xoreq
 
Magnetism slides
FFMdeMul
 
Electricity slides
FFMdeMul
 
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
Panchal Anand
 
Line integrals
Tarun Gehlot
 
Deflection in beams 1
Satya Narayan Kunwar
 
William hyatt-7th-edition-drill-problems-solution
Salman Salman
 
Chapter 16 2
EasyStudy3
 

What's hot (20)

PDF
Week 7
EasyStudy3
 
PPTX
Divergence,curl,gradient
Kunj Patel
 
PDF
Capitulo 1, 7ma edición
Sohar Carr
 
PDF
Capitulo 10, 7ma edición
Sohar Carr
 
PPTX
vcla
Kunj Patel
 
PDF
Directional derivative and gradient
Jhonatan Gerardo Soto Puelles
 
PPS
M1 unit vii-jntuworld
mrecedu
 
PDF
Tutorial no. 2
Shankar Gangaju
 
PDF
Capitulo 3, 7ma edición
Sohar Carr
 
PPT
Bellman ford algorithm
Ruchika Sinha
 
PPT
Electric field of a hollow sphere
FFMdeMul
 
PDF
Daa chpater14
B.Kirron Reddi
 
DOCX
Application of vector integration
Varuna Kapuge
 
PDF
Smith chart basics
Mahamed Gamal
 
PDF
2 4 the_smith_chart_package
Rahul Vyas
 
PPT
Concept of-complex-frequency
Vishal Thakur
 
PDF
Ch27 ssm
Marta Díaz
 
PPT
Bellman Ford's Algorithm
Tanmay Baranwal
 
PPTX
Vector operators
rajaganapathi rajappan
 
Week 7
EasyStudy3
 
Divergence,curl,gradient
Kunj Patel
 
Capitulo 1, 7ma edición
Sohar Carr
 
Capitulo 10, 7ma edición
Sohar Carr
 
Directional derivative and gradient
Jhonatan Gerardo Soto Puelles
 
M1 unit vii-jntuworld
mrecedu
 
Tutorial no. 2
Shankar Gangaju
 
Capitulo 3, 7ma edición
Sohar Carr
 
Bellman ford algorithm
Ruchika Sinha
 
Electric field of a hollow sphere
FFMdeMul
 
Daa chpater14
B.Kirron Reddi
 
Application of vector integration
Varuna Kapuge
 
Smith chart basics
Mahamed Gamal
 
2 4 the_smith_chart_package
Rahul Vyas
 
Concept of-complex-frequency
Vishal Thakur
 
Ch27 ssm
Marta Díaz
 
Bellman Ford's Algorithm
Tanmay Baranwal
 
Vector operators
rajaganapathi rajappan
 
Ad

Viewers also liked (16)

PPT
Capacitor partial filling
FFMdeMul
 
PPT
Electromagnetism history
FFMdeMul
 
PPT
Inductance of transmission line
vishalgohel12195
 
PPT
inductance
vishal gupta
 
PPT
amplifier basics
vishal gupta
 
PPT
Inductance and capacitance
Susmitharoy Vatturi
 
PPT
AST 406 Conductance & Resistance
Neil MacIntosh
 
PPT
26 Transmission Lines
Lee Jennings
 
PPT
Transmission line analysis
Anurag Anupam
 
PPT
Transmission lines
umavijay
 
PPT
Transmission Line Basics
John Williams
 
PPTX
Electric Circuits
ZBTHS
 
PPT
Inductance
Mohsin Gondal
 
PPT
Electromagnetic Waves presentation
Institute of Physics
 
PPTX
Transmission lines
maryam khan
 
PPT
transmission line
singh1515
 
Capacitor partial filling
FFMdeMul
 
Electromagnetism history
FFMdeMul
 
Inductance of transmission line
vishalgohel12195
 
inductance
vishal gupta
 
amplifier basics
vishal gupta
 
Inductance and capacitance
Susmitharoy Vatturi
 
AST 406 Conductance & Resistance
Neil MacIntosh
 
26 Transmission Lines
Lee Jennings
 
Transmission line analysis
Anurag Anupam
 
Transmission lines
umavijay
 
Transmission Line Basics
John Williams
 
Electric Circuits
ZBTHS
 
Inductance
Mohsin Gondal
 
Electromagnetic Waves presentation
Institute of Physics
 
Transmission lines
maryam khan
 
transmission line
singh1515
 
Ad

Similar to Electromagnetic fields (20)

PDF
Chapter-4-Plane-Wave-Propagation-pdf.pdf
ShamsAli42
 
PPT
Lecture 31 maxwell's equations. em waves.
Albania Energy Association
 
PDF
ELECTROMAGNETIC WAVES AND FIELDS FOR ENGINEERING STUDENTS
lateefakinyemi1
 
PPTX
Electromagnetic waves
Tonmoy Ibne Arif
 
PDF
Microwave engineering ch1
Muhammad Azwir
 
PPTX
The presence of material bodies complicates Maxwell’s equations. The fields i...
AliALKHAYYAT8
 
PPT
Lecture34e - EM Wave Propopagation.ppt
ssuser88da4c
 
PPT
Unit22 maxwells equation
Amit Rastogi
 
PPT
maxwells equation
Abhinay Potlabathini
 
PDF
Mit6 007 s11_lec20
Bipin Kujur
 
PPT
Microwave PPT.ppt
ssusercc6e98
 
PPTX
Electromagnetic waves
niranjan kumar
 
PDF
EC6602-Antenna fundamentals
krishnamrm
 
PDF
fundamental of photonic
belete fikreselassie
 
PDF
Propagation of electromagnetic waves in weak anisotropic medum
MidoOoz
 
PPTX
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
AIMST University
 
PDF
ch02.pdf
sulien2
 
PDF
WaveEquationDerivation.pdf
ENYUTU ELIA
 
PDF
Electromagnetic.pdf
ManishKumawat77
 
PDF
Lec.3 -COMM 320 Electromagnetic fields.pdf
ssuserf58df5
 
Chapter-4-Plane-Wave-Propagation-pdf.pdf
ShamsAli42
 
Lecture 31 maxwell's equations. em waves.
Albania Energy Association
 
ELECTROMAGNETIC WAVES AND FIELDS FOR ENGINEERING STUDENTS
lateefakinyemi1
 
Electromagnetic waves
Tonmoy Ibne Arif
 
Microwave engineering ch1
Muhammad Azwir
 
The presence of material bodies complicates Maxwell’s equations. The fields i...
AliALKHAYYAT8
 
Lecture34e - EM Wave Propopagation.ppt
ssuser88da4c
 
Unit22 maxwells equation
Amit Rastogi
 
maxwells equation
Abhinay Potlabathini
 
Mit6 007 s11_lec20
Bipin Kujur
 
Microwave PPT.ppt
ssusercc6e98
 
Electromagnetic waves
niranjan kumar
 
EC6602-Antenna fundamentals
krishnamrm
 
fundamental of photonic
belete fikreselassie
 
Propagation of electromagnetic waves in weak anisotropic medum
MidoOoz
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
AIMST University
 
ch02.pdf
sulien2
 
WaveEquationDerivation.pdf
ENYUTU ELIA
 
Electromagnetic.pdf
ManishKumawat77
 
Lec.3 -COMM 320 Electromagnetic fields.pdf
ssuserf58df5
 

More from FFMdeMul (16)

PPT
Laplace and Earnshaw
FFMdeMul
 
PPT
Integration elements
FFMdeMul
 
PPT
Gauss law for planes
FFMdeMul
 
PPT
Gauss law for cylinders
FFMdeMul
 
PPT
EM integrations
FFMdeMul
 
PPT
Electric field of a wire
FFMdeMul
 
PPT
E field polarized-object
FFMdeMul
 
PPT
E field line of dipoles
FFMdeMul
 
PPT
E field energy
FFMdeMul
 
PPT
E field disk
FFMdeMul
 
PPT
E field dipole
FFMdeMul
 
PPT
Divergence theorem
FFMdeMul
 
PPT
Capacitor filling
FFMdeMul
 
PPT
B field wire
FFMdeMul
 
PPT
B field homogenous sphere
FFMdeMul
 
PPT
B field conducting sphere
FFMdeMul
 
Laplace and Earnshaw
FFMdeMul
 
Integration elements
FFMdeMul
 
Gauss law for planes
FFMdeMul
 
Gauss law for cylinders
FFMdeMul
 
EM integrations
FFMdeMul
 
Electric field of a wire
FFMdeMul
 
E field polarized-object
FFMdeMul
 
E field line of dipoles
FFMdeMul
 
E field energy
FFMdeMul
 
E field disk
FFMdeMul
 
E field dipole
FFMdeMul
 
Divergence theorem
FFMdeMul
 
Capacitor filling
FFMdeMul
 
B field wire
FFMdeMul
 
B field homogenous sphere
FFMdeMul
 
B field conducting sphere
FFMdeMul
 

Recently uploaded (20)

PDF
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
PDF
Doc9.....................................
SofiaCollazos
 
PDF
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
PDF
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
PDF
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
PDF
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
PDF
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
NewMind AI Weekly Chronicles - July'25 - Week IV
NewMind AI
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
PDF
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
PDF
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
PDF
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
Doc9.....................................
SofiaCollazos
 
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
The Future of Artificial Intelligence (AI)
Mukul
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
NewMind AI Weekly Chronicles - July'25 - Week IV
NewMind AI
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 

Electromagnetic fields

  • 1. Electromagnetism University of Twente Department Applied Physics First-year course on Part III: Electromagnetic Waves : Slides © F.F.M. de Mul
  • 2. Electromagnetic Waves Gauss’ and Faraday’s Laws for E ( D ) - field Gauss’ and Maxwell’s Laws for B ( H )-field Maxwell’s Equations and The Wave Equation Harmonic Solution of the Wave Equation Plane waves (1): orientation of field vectors Plane waves (2): complex wave vector Plane waves (3): the B - E correspondence The Poynting Vector
  • 3. Gauss’ and Faraday’s Laws for E Div = micro-flux per unit of volume Rot = micro-circulation per unit of area B c dS Faraday’s Law : S E S V dV Gauss’ Law :
  • 4. Gauss’ and Maxwell’s Law for B S V dV B Gauss’ Law : j S L Maxwell’s Fix for Ampere’s Law :
  • 5. Maxwell’s Equations and the Wave Equation This is a 3-Dimensional Wave Equation v = 2.99… x 10 8 m/s = light velocity In vacuum (  = 0 and j = 0): }
  • 6. Harmonic Solution of the Wave Equation: Plane Waves E may have 3 components: E x E y E z Choose x-axis // E  E y = E z = 0 (Polarization direction = x-axis). Does a plane-wave expression for E x satisfy the wave equation? E x = E x0 exp{ i (  t-kz )} : E x0 = amplitude + polarization vector +z-axis = direction of propagation Insertion into wave equation: k 2 =  0  0  2 =  2 / c 2 k =  / c = 2  /  k = wave number ;  = wavelength (in 3D-case: k = wave vector ) Analogously: B y = B y0 exp{ i (  t-kz )}
  • 7. Plane waves (1): orientation of fields  -i k e z .E = 0  -i k e z .H = 0  -i k e z x E = -i  H  -i k e z x H =  E +i  E (1) div E = 0 (2) div B = 0 (3) rot E = - d B/ dt (4) rot H = j f + d D /dt j f =  E Consequences: (1)+(2): E and H  e z (3)+(4): E  H If E chosen // x-axis, then H // y-axis Suppose : E // x-axis; .. propagation // +z-axis: k // e z .. E x = E x0 exp i (  t-kz ) x z y E Propag- ation H
  • 8. Plane waves (2): complex wave vector e z x e z x E = -E i k 2 = (  + i  ).  Result: k complex: k = k Re + i k Im exp (-i kz ) = exp (-i k Re z ) . exp ( k Im z ) (1)  -i k e z .E = 0 (2)  -i k e z .H = 0 (3)  -i k e z x E = -i  H (4)  -i k e z x H =  E +i  E (1)+(2): E and H  e z (3)+(4): E  H Suppose : E // x-axis; .. propagation // +z-axis: k // e z .. E x = E x0 exp i (  t-kz ) x z y E Propag- ation H } harmonic } k Im < 0 : absorption >0 : amplification (“laser”)
  • 9. Plane waves (3): B-E correspondence Faraday: rot E = - d B/ dt Maxwell (for j =0): rot H = d D /dt: similar result Suppose : E // x-axis; B // y-axis; .. propagation // +z-axis: k // e z .. E x = E x0 exp i (  t-kz ) .. B y = B y0 exp i (  t-kz ) x z y E Propag- ation B
  • 10. The Poynting vector S Definition (for free space) : S = E x H = H  (-d B /dt) - E  ( j f + d D /dt) Apply Divergence Theorem to integrate over wave surface A: S = energy outflux per m 2 = Intensity [W/m 2 ]  S =  ( E  H ) = H  (  E ) - E  (  H ) = { Change in Electro- magnetic field energy { Joule heating losses [J/s] { Outflux of energy [J/s] = [W] Direction of S : // k E H k S