Energy Balance
Krubha D N
Process Engineer
Chemsys Innovative Solutions Pvt Ltd
PA
d
Work = Force * displacement
Wf= PA * d
= P * V
H = U+PV
Closed system
ΔIE + ΔPE+ΔKE = Q-W
Open system
ΔIE + ΔPE+ ΔKE = Q –(Ws+Wf)
Q < 0
Energy balance.pptx
500 kg/h of steam drives a turbine. The steam enters the turbine at 44 atm, 450° C, with linear velocity 60 m/s
and leaves at a point 5 m below the turbine inlet at velocity of 360 m/s.The turbine delivers shaft work of
70kW and heat loss from turbine is estimated to be 10^4 kcal/h.Calculate the specific enthalpy change
associated with the process. Consider this as an open system
ΔKE = ½ m*(v2^2-v1^2)…………..J/s
Δ PE = m*g*(h2-h1)……………..J/s
Ws………………………………..J/s
Q…………………………………J/s
Δ H – PV + ΔPE+ΔKE= -Q-Ws-PV
ΔH = ?.................................................J/s
ΔH/kg=?.............................................J/kg
Answer:
ΔKE= 8750 J/s
ΔPE= 6.805 J/s
Ws = 70000 J/s
Q = 11622.22 J/s
ΔH = - 90365.415 J/s
ΔH/kg = - 6.50630*10^5 J/kg
A textile dryer is found to consume 4 m3/h of natural gas. Net calorific value of 800 kJ/mole. The throughput of
dryer is 60 kg of wet cloth/hr. Drying it from 55% moisture to 10% moisture. Estimate the overall thermal
efficiency of dryer considering the latent of evaporation only. Latent heat of H2O 970 BTU/lb
Water (z)
Dry cloth(y) , 10%
moisture
60kg/h
55% moisture Natural gas- energy
supplied-4 m3/h
Dry basis
60*(1-0.55) = y*(1-0.1)
y=?.........................................kg/h
z=?.........................................kg/h
Latent heat = m*λ
= ?.....................kJ/h
Volumetric flow rate of natural gas = 4 m3/h
Convert to moles/h
Use the relation 1 mole/h occupies 22.414*10^-3 m3/h
Energy supplied = ?..................................kJ/h
Thermal efficiency = Theoretical/Actual or Latent heat/Energy supplied
= ?..............................%
Answers:
Y= 30kg/h
Z= 30 kg/h
mλ= 67771.522 kJ/h
Energy supplied = 142767.2 kJ/h
Thermal efficiency = 47.46%
Calculate standard heat of reaction given enthalpy of formation:
Component ΔHf° (kJ/mole)
NH3(g) -46.2
NO(g) 90.2
H2O(g) -241.6
4NH3+5O2 4NO+6H2O
Enthalpy of rxn:
ΔHr°=Σ ΔHf°(pdts)-Σ ΔHf°(reactants)
=((4*90.2)+(6*-241.6))-((0*5)+(4*-46.2))………………………for elements heat of formation is 0
=?kJ/mole
Answer:
ΔHr°= -904 kJ/mole
A gas phase reaction CO2+4H2 CH4+2H2O proceeds to 100% conversion. Estimate the heat that must
be removed when the reactants and products are at 500°C
Component ΔHf°(kcal/kmole)
CO2 -94052
CH4 -17889
H2O -57798
Cp for CO2=6.339+10.14*10^-3*T-3.415*10^-6*T^2
Cp for H2= 6.424+1.039*10^-3*T-0.0078*10^-6*T^2
Cp for H2O= 6.97+3.464*10^-3*T-0.483*10^-6*T^2
Cp for CH4= 3.204+18.41*10^-3*T-4.48*10^-6*T^2
ΔHr(500°C)= ΔHr°+ΣΔHs,p - ΣΔHs,r
ΔHr°=Σ ΔHf°(pdts)-Σ ΔHf°(reactants)
=((1*-17889)+(2*-57798))-((4*0)+(1*-94052))………………………for elements heat of formation is 0
=?kcal/mole
ΔHr(500°C)= ΔHr°+ΣΔHs,p - ΣΔHs,r
=?kcal/kmole
Answers:
ΔHr° = -39433 kcal/mole
ΔHs,p=13815.09 kcal/mole
ΔHs,r= 18352.71 kcal/mole
ΔHr(500°C)= - 43970 kcal/mole

More Related Content

PDF
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
PDF
Electric power generation excercises
PPT
HdhdPM3125_Lectures_16to17_Evaporation.ppt
PDF
Engineering thermodynamics-solutions-manual
PDF
Design of Bagasse Dryer to Recover Energy of Water Tube Boiler in a Sugar Fac...
PDF
Comparison of Thermal Performance of Rankine Cycle, Reheat Cycle, Regenerativ...
PDF
Cooling Tower & Dryer Fundamentals
PDF
UNIT-2_Part3_RANKINE CYCLE.pdf
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Electric power generation excercises
HdhdPM3125_Lectures_16to17_Evaporation.ppt
Engineering thermodynamics-solutions-manual
Design of Bagasse Dryer to Recover Energy of Water Tube Boiler in a Sugar Fac...
Comparison of Thermal Performance of Rankine Cycle, Reheat Cycle, Regenerativ...
Cooling Tower & Dryer Fundamentals
UNIT-2_Part3_RANKINE CYCLE.pdf

Similar to Energy balance.pptx (20)

PPT
chap4secondlawofthermodynamics-130703012656-phpapp01.ppt
PDF
Boiler design-calculation 3
PPT
Thermodynamics Examples and Class test
PPTX
Thermodynamics part 1.pptx
PDF
1. ejemplos y problemas evaporadores
PPTX
Steam Power Cycle and Basics of Boiler
PPT
Proc sim escape21
PPTX
Prof. beck 'renewable energy- a short (and cynical) approach
PPTX
Thermodynamics process sand mollier chart
PPTX
Brayton + Rankine Cycles forheattransfer.pptx
PDF
Chapter 5 gen chem
PDF
Methods of handling Supply air in HVAC
PPT
Thermodynamics Problems Chapter 1
PPTX
Waste Heat Recovery Devices by Varun Pratap Singh
PDF
steam Power Plant Lectures h.pdf
PPTX
Boiler Performance pdf notes thermodynamics
PDF
Me6301 engineering thermodynamics uq - nov dec 2018
PPT
Probs5,11,17
PPT
Fan and blowers (mech 326)
PPTX
integrated brayton and rankine cycle
chap4secondlawofthermodynamics-130703012656-phpapp01.ppt
Boiler design-calculation 3
Thermodynamics Examples and Class test
Thermodynamics part 1.pptx
1. ejemplos y problemas evaporadores
Steam Power Cycle and Basics of Boiler
Proc sim escape21
Prof. beck 'renewable energy- a short (and cynical) approach
Thermodynamics process sand mollier chart
Brayton + Rankine Cycles forheattransfer.pptx
Chapter 5 gen chem
Methods of handling Supply air in HVAC
Thermodynamics Problems Chapter 1
Waste Heat Recovery Devices by Varun Pratap Singh
steam Power Plant Lectures h.pdf
Boiler Performance pdf notes thermodynamics
Me6301 engineering thermodynamics uq - nov dec 2018
Probs5,11,17
Fan and blowers (mech 326)
integrated brayton and rankine cycle
Ad

Recently uploaded (20)

PDF
FAMILY PLANNING (preventative and social medicine pdf)
PDF
Kalaari-SaaS-Founder-Playbook-2024-Edition-.pdf
PDF
African Communication Research: A review
PPTX
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
PPTX
Power Point PR B.Inggris 12 Ed. 2019.pptx
PDF
Diabetes Mellitus , types , clinical picture, investigation and managment
PPSX
namma_kalvi_12th_botany_chapter_9_ppt.ppsx
PPTX
Approach to a child with acute kidney injury
PPTX
growth and developement.pptxweeeeerrgttyyy
PDF
GSA-Past-Papers-2010-2024-2.pdf CSS examination
PPTX
Copy of ARAL Program Primer_071725(1).pptx
PPTX
Theoretical for class.pptxgshdhddhdhdhgd
PPTX
ACFE CERTIFICATION TRAINING ON LAW.pptx
PPTX
Cite It Right: A Compact Illustration of APA 7th Edition.pptx
DOCX
THEORY AND PRACTICE ASSIGNMENT SEMESTER MAY 2025.docx
PDF
Physical pharmaceutics two in b pharmacy
PDF
FYJC - Chemistry textbook - standard 11.
PPTX
principlesofmanagementsem1slides-131211060335-phpapp01 (1).ppt
PPTX
Neurology of Systemic disease all systems
PPTX
MMW-CHAPTER-1-final.pptx major Elementary Education
FAMILY PLANNING (preventative and social medicine pdf)
Kalaari-SaaS-Founder-Playbook-2024-Edition-.pdf
African Communication Research: A review
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
Power Point PR B.Inggris 12 Ed. 2019.pptx
Diabetes Mellitus , types , clinical picture, investigation and managment
namma_kalvi_12th_botany_chapter_9_ppt.ppsx
Approach to a child with acute kidney injury
growth and developement.pptxweeeeerrgttyyy
GSA-Past-Papers-2010-2024-2.pdf CSS examination
Copy of ARAL Program Primer_071725(1).pptx
Theoretical for class.pptxgshdhddhdhdhgd
ACFE CERTIFICATION TRAINING ON LAW.pptx
Cite It Right: A Compact Illustration of APA 7th Edition.pptx
THEORY AND PRACTICE ASSIGNMENT SEMESTER MAY 2025.docx
Physical pharmaceutics two in b pharmacy
FYJC - Chemistry textbook - standard 11.
principlesofmanagementsem1slides-131211060335-phpapp01 (1).ppt
Neurology of Systemic disease all systems
MMW-CHAPTER-1-final.pptx major Elementary Education
Ad

Energy balance.pptx

  • 1. Energy Balance Krubha D N Process Engineer Chemsys Innovative Solutions Pvt Ltd
  • 2. PA d Work = Force * displacement Wf= PA * d = P * V H = U+PV Closed system ΔIE + ΔPE+ΔKE = Q-W Open system ΔIE + ΔPE+ ΔKE = Q –(Ws+Wf)
  • 5. 500 kg/h of steam drives a turbine. The steam enters the turbine at 44 atm, 450° C, with linear velocity 60 m/s and leaves at a point 5 m below the turbine inlet at velocity of 360 m/s.The turbine delivers shaft work of 70kW and heat loss from turbine is estimated to be 10^4 kcal/h.Calculate the specific enthalpy change associated with the process. Consider this as an open system ΔKE = ½ m*(v2^2-v1^2)…………..J/s Δ PE = m*g*(h2-h1)……………..J/s Ws………………………………..J/s Q…………………………………J/s Δ H – PV + ΔPE+ΔKE= -Q-Ws-PV ΔH = ?.................................................J/s ΔH/kg=?.............................................J/kg
  • 6. Answer: ΔKE= 8750 J/s ΔPE= 6.805 J/s Ws = 70000 J/s Q = 11622.22 J/s ΔH = - 90365.415 J/s ΔH/kg = - 6.50630*10^5 J/kg
  • 7. A textile dryer is found to consume 4 m3/h of natural gas. Net calorific value of 800 kJ/mole. The throughput of dryer is 60 kg of wet cloth/hr. Drying it from 55% moisture to 10% moisture. Estimate the overall thermal efficiency of dryer considering the latent of evaporation only. Latent heat of H2O 970 BTU/lb Water (z) Dry cloth(y) , 10% moisture 60kg/h 55% moisture Natural gas- energy supplied-4 m3/h Dry basis 60*(1-0.55) = y*(1-0.1) y=?.........................................kg/h z=?.........................................kg/h Latent heat = m*λ = ?.....................kJ/h
  • 8. Volumetric flow rate of natural gas = 4 m3/h Convert to moles/h Use the relation 1 mole/h occupies 22.414*10^-3 m3/h Energy supplied = ?..................................kJ/h Thermal efficiency = Theoretical/Actual or Latent heat/Energy supplied = ?..............................%
  • 9. Answers: Y= 30kg/h Z= 30 kg/h mλ= 67771.522 kJ/h Energy supplied = 142767.2 kJ/h Thermal efficiency = 47.46%
  • 10. Calculate standard heat of reaction given enthalpy of formation: Component ΔHf° (kJ/mole) NH3(g) -46.2 NO(g) 90.2 H2O(g) -241.6 4NH3+5O2 4NO+6H2O Enthalpy of rxn: ΔHr°=Σ ΔHf°(pdts)-Σ ΔHf°(reactants) =((4*90.2)+(6*-241.6))-((0*5)+(4*-46.2))………………………for elements heat of formation is 0 =?kJ/mole Answer: ΔHr°= -904 kJ/mole
  • 11. A gas phase reaction CO2+4H2 CH4+2H2O proceeds to 100% conversion. Estimate the heat that must be removed when the reactants and products are at 500°C Component ΔHf°(kcal/kmole) CO2 -94052 CH4 -17889 H2O -57798 Cp for CO2=6.339+10.14*10^-3*T-3.415*10^-6*T^2 Cp for H2= 6.424+1.039*10^-3*T-0.0078*10^-6*T^2 Cp for H2O= 6.97+3.464*10^-3*T-0.483*10^-6*T^2 Cp for CH4= 3.204+18.41*10^-3*T-4.48*10^-6*T^2 ΔHr(500°C)= ΔHr°+ΣΔHs,p - ΣΔHs,r
  • 12. ΔHr°=Σ ΔHf°(pdts)-Σ ΔHf°(reactants) =((1*-17889)+(2*-57798))-((4*0)+(1*-94052))………………………for elements heat of formation is 0 =?kcal/mole ΔHr(500°C)= ΔHr°+ΣΔHs,p - ΣΔHs,r =?kcal/kmole Answers: ΔHr° = -39433 kcal/mole ΔHs,p=13815.09 kcal/mole ΔHs,r= 18352.71 kcal/mole ΔHr(500°C)= - 43970 kcal/mole