This document discusses how deep learning techniques can be applied to natural language processing tasks. It begins by explaining some of the limitations of traditional rule-based and machine learning approaches to NLP, such as the lack of semantic understanding and difficulty of feature engineering. Deep learning approaches can learn features automatically from large amounts of unlabeled text and better capture semantic and syntactic relationships between words. Recurrent neural networks are well-suited for NLP because they can model sequential data like text, and convolutional neural networks can learn hierarchical patterns in text.