SlideShare a Scribd company logo
2
Most read
Concordia University                                                                 March 23, 2010

                         Applied Ordinary Differential Equations
                                 ENGR 213 - Section F
                                    Prof. Alina Stancu

                                           Exam II (A)



   (1) (6 points) Solve the homogeneous ODE


                                       x2 y + 5xy + 4y = 0.

        Solution: The characteristic equation of this homogeneous Cauchy-Euler ODE is
      m(m − 1) + 5m + 4 = 0 or m2 + 4m + 4 = 0. It has a double root r = −2. Hence the
      general solution of the ODE on x > 0 (or x < 0) is
                           y(x) = c1 x−2 + c2 x−2 ln x, c1,2 = constants.

   (2) (14 points) Solve the initial value problem


                           y + 4y + 5y = e−2x ,       y(0) = 0, y (0) = 1.

        Solution: Consider first the associated homogeneous ODE: y + 4y + 5y = 0 with
      the characteristic equation r2 + 4r + 5 = 0 whose roots are r1,2 = −2 ± i. Hence
                      yc (x) = c1 e−2x cos x + c2 e−2x sin x, c1,2 = constants.

         We now look for a particular solution yp to the non-homogenous ODE. We’ll use here
      the method of undetermined coefficients by setting yp (x) = Ae−2x . As yp (x) = −2Ae−2x
      and yp (x) = 4Ae−2x , we deduce that 4Ae−2x − 8Ae−2x + 5Ae−2x = e−2x ⇒ A = 1 and
      yp (x) = e−2x .
         Thus

                ygeneral (x) = c1 e−2x cos x + c2 e−2x sin x + e−2x , c1,2 = constants.

        We’ll now use the initial conditions to find c1,2 . As y(0) = 0, we have c1 + 1 =
      0 ⇒ c1 = −1. Evaluating y (x) = c1 (−2e−2x cos x − e−2x sin x) + c2 (−2e−2x sin x +
      e−2x cos x) − 2e−2x , thus y (0) = −2c1 + c2 − 2 = c2 = 1.
         Therefore the solution of the IVP is
                              y(x) = −e−2x cos x + e−2x sin x + e−2x .

                                                  1
2

    (3) (10 points) Use the variation of parameters to solve the differential equation

                                            y + y = cos2 x.

           Solution: The complementary part of the solution follows from r2 +1 = 0 ⇒ r = ±i
        and is
                                    yc (x) = c1 cos x + c2 sin x.
           Considering y1 (x) = cos x, y2 (x) = sin x, the Wronskian is W (x) = 1 = 0 for all real
                                                                                   0     sin x
        x’s. To find the complementary solution we calculate W1 (x) = det            2           =
                                                                                cos x cos x
                                            cos x     0
        − sin x cos2 x and W2 (x) = det                      = cos3 x.
                                           − sin x cos2 x
           The method of variation of parameters gives yp (x) = y1 (x)u1 (x) + y2 (x)u2 (x), where
        u1 (x) = W1 (x)/W (x) and u2 (x) = W2 (x)/W (x).
           Integrating (by taking u = cos x du = − sin x dx) and taking the constant of integra-
        tion to be zero, we have
                                                                     u3   cos3 x
                     u1 (x) =    (− sin x cos2 x) dx =     u2 du =      =        .
                                                                     3      3
          On the other hand,

                                                                                u3           sin3 x
    u2 (x) =    cos3 x dx =     cos x (1 − sin2 x) dx =    (1 − u2 ) du = u −      = sin x −        ,
                                                                                3              3
          where above we used the fundamental identity of trigonometry (sin2 x + cos2 x = 1)
        and the substitution u = sin x, du = cos x dx.
          Consequently,
                                            cos3 x                   sin3 x
                         yp (x) = cos x ·          + sin x · sin x −
                                              3                        3
          and
                                       cos4 x            sin4 x
        y(x) = c1 cos x + c2 sin x +          + sin2 x −        , c1,2 = arbitrary constants.
                                         3                 3

    (4) (10 points) A mass weighing 10 pounds stretches a spring 0.5 foot. Determine the
        equation of motion if the mass is initially released from a point 6 inches below the
        equilibrium position with a downward velocity of 4 ft/s. What is the instantaneous
        velocity at the first time when the mass passes through the equilibrium position?

          Solution: The equation of motion is mx + kx = 0, where m = 10/32 slug and
        k = 10/0.5 = 20 ft/lb. Thus
                 x + 64x = 0 ⇒ x(t) = c1 cos 8t + c2 sin 8t, c1,2 = constants.
         To determine the constants, use the initial conditions. As x(0) = 1/2 ft, c1 = 1/2.
        Additionally, x (t) = −8c1 sin 8t + 8c2 cos 8t, thus x (0) = 4 ft/sec and 8c2 = 4.
3

   Consequently, x(t) = 1 cos 8t + 1 sin 8t and x (t) = −4 sin 8t + 4 cos 8t. To find the
                         2         2
time when the mass passes through the equilibrium position, set x(t) = 0. Note that
this implies tan(8t) = −1 whose first positive solution is for 8t = 3π/4. So
                                   √        √
                                     2        2      √
                   x (3π/32) = −4      −4       = −4 2 ft/sec
                                    2        2
is the answer needed.

More Related Content

PDF
Engr 213 midterm 2b sol 2010
akabaka12
 
PDF
Engr 213 sample midterm 2b sol 2010
akabaka12
 
PDF
Engr 213 midterm 1a sol 2009
akabaka12
 
PDF
Engr 213 final 2009
akabaka12
 
PDF
06. s4 inecuaciones polinómicas y racionales
Carlos Sánchez Chuchón
 
PDF
Algebra problemas teoria de exponentes - cesar vallejo
Xavier Vila Font
 
PPTX
7 sign charts of factorable formulas y
math260
 
PDF
Sistemas de ecuaciones lineales (I)
JIE MA ZHOU
 
Engr 213 midterm 2b sol 2010
akabaka12
 
Engr 213 sample midterm 2b sol 2010
akabaka12
 
Engr 213 midterm 1a sol 2009
akabaka12
 
Engr 213 final 2009
akabaka12
 
06. s4 inecuaciones polinómicas y racionales
Carlos Sánchez Chuchón
 
Algebra problemas teoria de exponentes - cesar vallejo
Xavier Vila Font
 
7 sign charts of factorable formulas y
math260
 
Sistemas de ecuaciones lineales (I)
JIE MA ZHOU
 

What's hot (20)

PPTX
8 inequalities and sign charts x
math260
 
DOCX
Maths formulas
Shinam Uppal
 
PPTX
Teorema de la tangente
Juan Esteban Villablanca Obreque
 
PDF
סיכום קצר בקורס חדו"א 2 (נספח נוסחאות למבחן)
csnotes
 
PDF
Sol integrales
Marcela Mora
 
PDF
Ejercicios cap 003
Bleakness
 
PDF
Int superficie
Eurin Sepulveda
 
PPTX
5 complex numbers y
math260
 
PPS
Ecuaciones de la recta
eldocenteactual
 
PDF
Limites exponenciales y logaritmicos
kevin lopez
 
PDF
Formulas para Descriptiva
Juan de Jesus Sandoval
 
PDF
Derivadas ejercicos 1
roberteello
 
PDF
01 Electricidad Alumbrado Electromagnetismo
F Blanco
 
PPTX
Ecuación de segundo grado particular
María Pizarro
 
PPT
Integrales
Ángel Leonardo Torres
 
PPTX
1.0 factoring trinomials the ac method and making lists-x
math260
 
PDF
Conjuntos y subconjuntos
Sergio Coz
 
PDF
Functions (Theory)
Eduron e-Learning Private Limited
 
DOCX
Trabajo de coordenadas polares
Miguel Antonio Bula Picon
 
PPTX
1 exponents yz
math260
 
8 inequalities and sign charts x
math260
 
Maths formulas
Shinam Uppal
 
Teorema de la tangente
Juan Esteban Villablanca Obreque
 
סיכום קצר בקורס חדו"א 2 (נספח נוסחאות למבחן)
csnotes
 
Sol integrales
Marcela Mora
 
Ejercicios cap 003
Bleakness
 
Int superficie
Eurin Sepulveda
 
5 complex numbers y
math260
 
Ecuaciones de la recta
eldocenteactual
 
Limites exponenciales y logaritmicos
kevin lopez
 
Formulas para Descriptiva
Juan de Jesus Sandoval
 
Derivadas ejercicos 1
roberteello
 
01 Electricidad Alumbrado Electromagnetismo
F Blanco
 
Ecuación de segundo grado particular
María Pizarro
 
1.0 factoring trinomials the ac method and making lists-x
math260
 
Conjuntos y subconjuntos
Sergio Coz
 
Trabajo de coordenadas polares
Miguel Antonio Bula Picon
 
1 exponents yz
math260
 
Ad

Viewers also liked (6)

PDF
Engr 213 midterm 2b 2009
akabaka12
 
PDF
Engr 213 midterm 2a sol 2009
akabaka12
 
PDF
Engr 213 midterm 1a sol 2010
akabaka12
 
PDF
Engr 213 midterm 2a 2009
akabaka12
 
PDF
Engr 213 midterm 1b 2009
akabaka12
 
PDF
Emat 213 study guide
akabaka12
 
Engr 213 midterm 2b 2009
akabaka12
 
Engr 213 midterm 2a sol 2009
akabaka12
 
Engr 213 midterm 1a sol 2010
akabaka12
 
Engr 213 midterm 2a 2009
akabaka12
 
Engr 213 midterm 1b 2009
akabaka12
 
Emat 213 study guide
akabaka12
 
Ad

Similar to Engr 213 midterm 2a sol 2010 (20)

PDF
Engr 213 final sol 2009
akabaka12
 
PDF
Engr 213 midterm 2b sol 2009
akabaka12
 
PDF
Engr 213 midterm 1b sol 2010
akabaka12
 
PDF
Week 3 [compatibility mode]
Hazrul156
 
PDF
Maths assignment
Ntshima
 
PDF
Advanced Engineering Mathematics Solutions Manual.pdf
Whitney Anderson
 
PDF
Calculus Final Exam
Kuan-Lun Wang
 
PDF
Nonlinear_system,Nonlinear_system, Nonlinear_system.pdf
FaheemAbbas82
 
PDF
Week 2
Hazrul156
 
PDF
整卷
Kuan-Lun Wang
 
PPTX
Ordinary differential equations
Ahmed Haider
 
PDF
Sect1 1
inKFUPM
 
PDF
Emat 213 midterm 2 fall 2005
akabaka12
 
PDF
Sect1 2
inKFUPM
 
PDF
Imc2016 day2-solutions
Christos Loizos
 
PDF
Week 8 [compatibility mode]
Hazrul156
 
PDF
Hw2 s
Nick Nick
 
PDF
Linear Differential Equations1
Sebastian Vattamattam
 
PDF
Applications of Differential Calculus in real life
OlooPundit
 
PDF
Engr 213 midterm 1b sol 2009
akabaka12
 
Engr 213 final sol 2009
akabaka12
 
Engr 213 midterm 2b sol 2009
akabaka12
 
Engr 213 midterm 1b sol 2010
akabaka12
 
Week 3 [compatibility mode]
Hazrul156
 
Maths assignment
Ntshima
 
Advanced Engineering Mathematics Solutions Manual.pdf
Whitney Anderson
 
Calculus Final Exam
Kuan-Lun Wang
 
Nonlinear_system,Nonlinear_system, Nonlinear_system.pdf
FaheemAbbas82
 
Week 2
Hazrul156
 
Ordinary differential equations
Ahmed Haider
 
Sect1 1
inKFUPM
 
Emat 213 midterm 2 fall 2005
akabaka12
 
Sect1 2
inKFUPM
 
Imc2016 day2-solutions
Christos Loizos
 
Week 8 [compatibility mode]
Hazrul156
 
Hw2 s
Nick Nick
 
Linear Differential Equations1
Sebastian Vattamattam
 
Applications of Differential Calculus in real life
OlooPundit
 
Engr 213 midterm 1b sol 2009
akabaka12
 

More from akabaka12 (7)

PDF
Emat 213 midterm 2 winter 2006
akabaka12
 
PDF
Engr 213 midterm 1a 2009
akabaka12
 
PDF
Emat 213 midterm 1 winter 2006
akabaka12
 
PDF
Emat 213 midterm 1 fall 2005
akabaka12
 
PDF
Engr 213 final 2007
akabaka12
 
PDF
Emat 213 final fall 2005
akabaka12
 
PDF
Engr 213 final sol 2007
akabaka12
 
Emat 213 midterm 2 winter 2006
akabaka12
 
Engr 213 midterm 1a 2009
akabaka12
 
Emat 213 midterm 1 winter 2006
akabaka12
 
Emat 213 midterm 1 fall 2005
akabaka12
 
Engr 213 final 2007
akabaka12
 
Emat 213 final fall 2005
akabaka12
 
Engr 213 final sol 2007
akabaka12
 

Engr 213 midterm 2a sol 2010

  • 1. Concordia University March 23, 2010 Applied Ordinary Differential Equations ENGR 213 - Section F Prof. Alina Stancu Exam II (A) (1) (6 points) Solve the homogeneous ODE x2 y + 5xy + 4y = 0. Solution: The characteristic equation of this homogeneous Cauchy-Euler ODE is m(m − 1) + 5m + 4 = 0 or m2 + 4m + 4 = 0. It has a double root r = −2. Hence the general solution of the ODE on x > 0 (or x < 0) is y(x) = c1 x−2 + c2 x−2 ln x, c1,2 = constants. (2) (14 points) Solve the initial value problem y + 4y + 5y = e−2x , y(0) = 0, y (0) = 1. Solution: Consider first the associated homogeneous ODE: y + 4y + 5y = 0 with the characteristic equation r2 + 4r + 5 = 0 whose roots are r1,2 = −2 ± i. Hence yc (x) = c1 e−2x cos x + c2 e−2x sin x, c1,2 = constants. We now look for a particular solution yp to the non-homogenous ODE. We’ll use here the method of undetermined coefficients by setting yp (x) = Ae−2x . As yp (x) = −2Ae−2x and yp (x) = 4Ae−2x , we deduce that 4Ae−2x − 8Ae−2x + 5Ae−2x = e−2x ⇒ A = 1 and yp (x) = e−2x . Thus ygeneral (x) = c1 e−2x cos x + c2 e−2x sin x + e−2x , c1,2 = constants. We’ll now use the initial conditions to find c1,2 . As y(0) = 0, we have c1 + 1 = 0 ⇒ c1 = −1. Evaluating y (x) = c1 (−2e−2x cos x − e−2x sin x) + c2 (−2e−2x sin x + e−2x cos x) − 2e−2x , thus y (0) = −2c1 + c2 − 2 = c2 = 1. Therefore the solution of the IVP is y(x) = −e−2x cos x + e−2x sin x + e−2x . 1
  • 2. 2 (3) (10 points) Use the variation of parameters to solve the differential equation y + y = cos2 x. Solution: The complementary part of the solution follows from r2 +1 = 0 ⇒ r = ±i and is yc (x) = c1 cos x + c2 sin x. Considering y1 (x) = cos x, y2 (x) = sin x, the Wronskian is W (x) = 1 = 0 for all real 0 sin x x’s. To find the complementary solution we calculate W1 (x) = det 2 = cos x cos x cos x 0 − sin x cos2 x and W2 (x) = det = cos3 x. − sin x cos2 x The method of variation of parameters gives yp (x) = y1 (x)u1 (x) + y2 (x)u2 (x), where u1 (x) = W1 (x)/W (x) and u2 (x) = W2 (x)/W (x). Integrating (by taking u = cos x du = − sin x dx) and taking the constant of integra- tion to be zero, we have u3 cos3 x u1 (x) = (− sin x cos2 x) dx = u2 du = = . 3 3 On the other hand, u3 sin3 x u2 (x) = cos3 x dx = cos x (1 − sin2 x) dx = (1 − u2 ) du = u − = sin x − , 3 3 where above we used the fundamental identity of trigonometry (sin2 x + cos2 x = 1) and the substitution u = sin x, du = cos x dx. Consequently, cos3 x sin3 x yp (x) = cos x · + sin x · sin x − 3 3 and cos4 x sin4 x y(x) = c1 cos x + c2 sin x + + sin2 x − , c1,2 = arbitrary constants. 3 3 (4) (10 points) A mass weighing 10 pounds stretches a spring 0.5 foot. Determine the equation of motion if the mass is initially released from a point 6 inches below the equilibrium position with a downward velocity of 4 ft/s. What is the instantaneous velocity at the first time when the mass passes through the equilibrium position? Solution: The equation of motion is mx + kx = 0, where m = 10/32 slug and k = 10/0.5 = 20 ft/lb. Thus x + 64x = 0 ⇒ x(t) = c1 cos 8t + c2 sin 8t, c1,2 = constants. To determine the constants, use the initial conditions. As x(0) = 1/2 ft, c1 = 1/2. Additionally, x (t) = −8c1 sin 8t + 8c2 cos 8t, thus x (0) = 4 ft/sec and 8c2 = 4.
  • 3. 3 Consequently, x(t) = 1 cos 8t + 1 sin 8t and x (t) = −4 sin 8t + 4 cos 8t. To find the 2 2 time when the mass passes through the equilibrium position, set x(t) = 0. Note that this implies tan(8t) = −1 whose first positive solution is for 8t = 3π/4. So √ √ 2 2 √ x (3π/32) = −4 −4 = −4 2 ft/sec 2 2 is the answer needed.