SlideShare a Scribd company logo
IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 10, 2015 | ISSN (online): 2321-0613
All rights reserved by www.ijsrd.com 999
Fault Tolerance in Big Data Processing using Heartbeat Messages and
Data Replication
T.Cowsalya1 N.Gomathi2 R.Arunkumar3
1,2,3
Assistant Professor
1,2,3
Department of Computer Science and Engineering
1,2,3
SVS College of Engineering, Coimbatore, Tamil Nadu, India, Pincode-642109
Abstract— Big data is a popular term used to define the
exponential evolution and availability of data, includes both
structured and unstructured data. The volatile progression of
demands on big data processing imposes heavy burden on
computation, communication and storage in geographically
distributed data centers. Hence it is necessary to minimize
the cost of big data processing, which also includes fault
tolerance cost. Big Data processing involves two types of
faults: node failure and data loss. Both the faults can be
recovered using heartbeat messages. Here heartbeat
messages acts as an acknowledgement messages between
two servers. This paper depicts about the study of node
failure and recovery, data replication and heartbeat
messages.
Key words: Big data, Fault Tolerance, Heartbeat Messages,
Node Recovery, Data Replication
I. INTRODUCTION
Big data is a slogan, used to define a gigantic measurement
of both structured and Unstructured data that is so large and
difficult to process using traditional database architecture.
Due to its explosive growth the volatile progression of
demands on big data processing imposes heavy burden on
computation, communication and storage in geographically
distributed data centers. The incoming large data set is
broken up into multiple chunks and each individual multiple
chunks are placed in different data canters with the help of
volley system. The Volley System [2] makes use of logs to
submit the jobs to the data center. Cloud users make use of
volley system foe automatic data placement.
A. Geo-Distributed Data Center:
The data centers distributed at multiple geographical regions
are known as geographically distributed data centers [1].For
example Google has 13 datacenters over 8 countries and 4
continents.
Fig. 1: Data Center Topology
II. FAULT TOLERANCE
The challenge of big data includes analysis, capture, search,
sharing, storage, transfer, visualization and privacy
violations. Among these challenges fault tolerance is one of
the main challenge in big data. There are possibly two faults
that can occur while processing big data. First the data
chunk may loss while transferring the data to multiple data
center. Second the server may fail or slows down.
A. Heartbeat Messages;
The solution for the above two problems are heartbeat
messages. Here heartbeat message is a message sent from an
inventor to the endpoint to identify if and when the inventor
fails or is no longer available. Heartbeat messages are non-
stop on a periodic recurring basis from the inventor’s startup
until the inventor’s shutdown. When the receiver identifies
lack of heartbeat messages during an anticipated arrival
period, the destination may determine that the inventor has
failed, shutdown, or is generally no longer available.
The developmentrelays to fault recovery in
multiprocessor system, where the processors constantly
monitor heartbeat messages from the other processor is
capable of taking autonomous recovery action in response to
a failure to receive heartbeat messages, advantageously
without the overall guidance of an executive processor.
B. Data Loss Prevention:
When transmitting the jobs to multiple data centers, there
may be chance of data loss. Data loss may occur due to
network link failure. The links in networks may vary on
transmissionrates according to their unique features. For
example the distances and optical fiber facilities between
multiple
data centers. Due to capacity constraints, all tasks
are not placedonto the same server, on which
theconsistentdata exist in. It is unavoidable when certain
data must bedownloaded from a remote server. In this case,
routingplan matters on the transmission cost.
C. Hadoop Architecture:
Hadoop is a software framework used for processing big
data in parallel. It consists of two important components
called Hadoop Distributed File System and MapReduce
1) Hadoop Distributed File System:
The Hadoop Distributed File System (HDFS)[3] is a
distributed, highly fault-tolerant file system designed to run
on low-cost commodity hardware. HDFS provides high-
throughput access to application data and it is suitable for
applications with large data sets. HDFS consists of two
nodes called name node and data node.Name node manages
file system namespace operations like opening, closing, and
renaming files and directories. A name node also maps data
blocks to data nodes, which handle read and write requests
from HDFS clients. Data nodes also create, delete, and
replicate data blocks according to instructions from the
governing name node. Name Node and Data Node send
messages to prove their identity.
Fault Tolerance in Big Data Processing using Heartbeat Messages and Data Replication
(IJSRD/Vol. 3/Issue 10/2015/227)
All rights reserved by www.ijsrd.com 1000
2) Mapreduce:
MapReduce [12] is a programming model and its associated
implementation for processing and generating large data sets
with parallel, distributed algorithm on a cluster. MapReduce
also consists of two nodes called job tracker and task
tracker. The JobTracker talks to the NameNode to determine
the location of the data. The Task Tracker node executes the
assigned tasks in the data nodes.
III. FAILURES
One of the major benefits of using Hadoop is its ability to
handle these failures and allow our job to complete.
A. Task Failure:
When the user code in the map or reduce tasks throws
runtime exception, then the child task fails. Another failure
mode is the sudden exit of child JVM. In this case the task
tracker notices the process has exited and marks the attempt
as failed. A task may also be killed, which is different from
failing.
B. Task Tracker Failure:
If a task tracker fails by crashing or running very slowly, it
will stop sending heartbeat messages to the job tracker. The
job tracker notice that the task trackers has stopped sending
heartbeat and remove it from its pool of task trackers to
schedule tasks on.
C. Job Tracker Failure:
Failure of job tracker is the most serious failure mode. It is a
single point of failure. This failure mode has low chance of
occurring, since the chance of particular machine failing is
low.
D. Name Node Failure:
The name node was a single point of failure, so if it failed
that meant your cluster became unstable. Even the
secondary name node doesn’t help in this case since it is
only used for checkpoints, not as a backup for the name
node. If the name node fails someone like an administrator
would have to restart the name node.
E. Data Node Failure;
A compute node can fail for any variety of reasons, for
example broken node hardware, a broken network, software
bugs, or inadequate hardware resources
Fig. 2: Name node Schema
When a compute node fails, all jobs running on that node
fail. Even though the running jobs running on other nodes
that weren’t communicating with jobs on the failed node
will continue to run without a problem.
IV. SOLUTION
A. Data Replication:
An application can specify the number of replicas of a file at
the time it is created, and this number can be changed any
time after that. [6] The name node makes all decisions
concerning block replication. HDFS uses an intelligent
replica placement model for reliability and performance.
Optimizing replica placement makes HDFS unique from
most other distributed file systems, and is facilitated by a
rack-aware replica placement policy that uses network
bandwidth efficiently.
Fig. 3: Data Replication in DFS
The name node makes all decisions regarding replications of
blocks. It periodically receives a heartbeat and a block
report from each of the data nodes in the cluster. Receipt of
a heartbeat implies that the data node is functioning
properly. A block report contains a list of all blocks on a
data node.
Fault Tolerance in Big Data Processing using Heartbeat Messages and Data Replication
(IJSRD/Vol. 3/Issue 10/2015/227)
All rights reserved by www.ijsrd.com 1001
B. Replica Selection:
To minimize global bandwidth consumption and read
latency, HDFS tries to satisfy a read request from a replica
that is closest to the reader. If there exists a replica on the
same rack as the reader node, then the replica is preferred to
satisfy the read request. If HDFS clusters spans multiple
data centers, then a replica that is resident in the local data
center is preferred over any remote replica.
V. CONCLUSION
Thus the failure in big data processing has been studied.
Data replication and heartbeat messages are used as a fault
tolerant mechanism. In future practical setups can be
executed and the computation and communication cost can
be computed. Result can be compared with the cost of data
processing in non- failure node
REFERENCES
[1] Data Center Locations,”
http://www.google.com/about/data
centers/inside/locations/index.html.
[2] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman,
and H. Bhogan, “Volley: Automated Data Placement
for Geo-DistributedCloud Services,” in The 7th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2010, pp. 17–32.
[3] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing
Electricity Cost: Optimization of Distributed Internet
Data Centers in a Multi-Electricity-Market
Environment,” in Proceedings of the 29th International
Conference on Computer Communications
(INFOCOM). IEEE, 2010, pp. 1–9.
[4] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and
B. Maggs, “Cutting the Electric Bill for Internet-scale
Systems,” in Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM). ACM,
2009, pp. 123–134.
[5] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A.
Sivasubramaniam, “Optimal Power Cost Management
Using Stored Energyin Data Centers,” in Proceedings of
International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS).ACM,
2011, pp. 221–232.
[6] X. Fan, W.-D.Weber, and L. A. Barroso, “Power
Provisioning for A Warehouse-sized Computer,” in
Proceedings of the 34th Annual International
Symposium on Computer Architecture (ISCA). ACM,
2007, pp. 13–23.
[7] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar,
“Benefits and Limitations of Tapping Into Stored
Energy for Datacenters,”in Proceedings of the 38th
Annual International Symposium on Computer
Architecture (ISCA). ACM, 2011, pp. 341–352
[8] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s
Not Easy Being Green,” in Proceedings of the ACM
Special Interest Group on Data Communication
(SIGCOMM). ACM, 2012, pp. 211–222.
[9] S. A. Yazd, S. Venkatesan, and N. Mittal, “Boosting
energy efficiency with mirrored data block replication
policy and energyscheduler,” SIGOPS Oper. Syst. Rev.,
vol. 47, no. 2, pp. 33–40, 2013.
[10]J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton, “Mad skills: new analysis practices for big
data,” Proc. VLDBEndow., vol. 2, no. 2, pp. 1481–
1492, 2009.
[11]R. Kaushik and K. Nahrstedt, “T*: A data-centric
cooling energy costs reduction approach for Big Data
analytics cloud,” in 2012 International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC), 2012, pp. 1–11.
[12]MapReduce: Simpli_ed Data Processing on Large
Clusters, Jeffrey Dean and Sanjay Ghemawat,
jeff@google.com, sanjay@google.com, Google, Inc.

More Related Content

What's hot (20)

PPSX
MapReduce Scheduling Algorithms
Leila panahi
 
PPT
Load Balancing In Cloud Computing newppt
Utshab Saha
 
PPTX
Simulation of Heterogeneous Cloud Infrastructures
CloudLightning
 
PPT
REVIEW PAPER on Scheduling in Cloud Computing
Jaya Gautam
 
PPTX
Optimal load balancing in cloud computing
Priyanka Bhowmick
 
PPTX
Genetic Algorithm for task scheduling in Cloud Computing Environment
Swapnil Shahade
 
PDF
Task Scheduling in Grid Computing.
Ramandeep Kaur
 
PPTX
Energy-aware Task Scheduling using Ant-colony Optimization in cloud
Linda J
 
PDF
A Review on Scheduling in Cloud Computing
ijujournal
 
PDF
Performance Comparision of Dynamic Load Balancing Algorithm in Cloud Computing
Eswar Publications
 
DOCX
Load rebalancing
IMPULSE_TECHNOLOGY
 
PPTX
cloud schedualing
twomarkopolo
 
PPTX
Job sequence scheduling for cloud computing
Samruddhi Gaikwad
 
PPTX
Task Scheduling methodology in cloud computing
Qutub-ud- Din
 
PPTX
Sawmill - Integrating R and Large Data Clouds
Robert Grossman
 
PPTX
(Slides) Task scheduling algorithm for multicore processor system for minimiz...
Naoki Shibata
 
PDF
dynamic resource allocation using virtual machines for cloud computing enviro...
Kumar Goud
 
PPT
Scheduling in cloud
Dr.Manjunath Kotari
 
PPT
Scheduling in CCE
Mayuri Saxena
 
MapReduce Scheduling Algorithms
Leila panahi
 
Load Balancing In Cloud Computing newppt
Utshab Saha
 
Simulation of Heterogeneous Cloud Infrastructures
CloudLightning
 
REVIEW PAPER on Scheduling in Cloud Computing
Jaya Gautam
 
Optimal load balancing in cloud computing
Priyanka Bhowmick
 
Genetic Algorithm for task scheduling in Cloud Computing Environment
Swapnil Shahade
 
Task Scheduling in Grid Computing.
Ramandeep Kaur
 
Energy-aware Task Scheduling using Ant-colony Optimization in cloud
Linda J
 
A Review on Scheduling in Cloud Computing
ijujournal
 
Performance Comparision of Dynamic Load Balancing Algorithm in Cloud Computing
Eswar Publications
 
Load rebalancing
IMPULSE_TECHNOLOGY
 
cloud schedualing
twomarkopolo
 
Job sequence scheduling for cloud computing
Samruddhi Gaikwad
 
Task Scheduling methodology in cloud computing
Qutub-ud- Din
 
Sawmill - Integrating R and Large Data Clouds
Robert Grossman
 
(Slides) Task scheduling algorithm for multicore processor system for minimiz...
Naoki Shibata
 
dynamic resource allocation using virtual machines for cloud computing enviro...
Kumar Goud
 
Scheduling in cloud
Dr.Manjunath Kotari
 
Scheduling in CCE
Mayuri Saxena
 

Similar to Fault Tolerance in Big Data Processing Using Heartbeat Messages and Data Replication (20)

PDF
An experimental evaluation of performance
ijcsa
 
PDF
IJSRED-V2I3P84
IJSRED
 
PPTX
Managing Big data with Hadoop
Nalini Mehta
 
PPTX
Hadoop
Esraa El Ghoul
 
PPTX
Hdfs
dash-javad
 
PPTX
Cloud schedulers and Scheduling in Hadoop
Pallav Jha
 
PPTX
HADOOP.pptx
Bharathi567510
 
PDF
Exploring Fault Tolerance Strategies in Big Data Infrastructures and Their Im...
AIRCC Publishing Corporation
 
PPTX
MOD-2 presentation on engineering students
rishavkumar1402
 
PDF
Big Data Analysis and Its Scheduling Policy – Hadoop
IOSR Journals
 
PDF
G017143640
IOSR Journals
 
PDF
Earlier stage for straggler detection and handling using combined CPU test an...
IJECEIAES
 
PPTX
Hadoop BRamamurthy ajjaahdvddvdnsmsjdjfj
Prateek Rathore
 
PDF
HDFS NameNode High Availability
DataWorks Summit
 
PPTX
Bigdata and Hadoop Introduction
umapavankumar kethavarapu
 
PPTX
Introduction to hadoop and hdfs
shrey mehrotra
 
PDF
IRJET - Evaluating and Comparing the Two Variation with Current Scheduling Al...
IRJET Journal
 
PDF
Geo distributed parallelization pacts in map reduce
eSAT Publishing House
 
An experimental evaluation of performance
ijcsa
 
IJSRED-V2I3P84
IJSRED
 
Managing Big data with Hadoop
Nalini Mehta
 
Cloud schedulers and Scheduling in Hadoop
Pallav Jha
 
HADOOP.pptx
Bharathi567510
 
Exploring Fault Tolerance Strategies in Big Data Infrastructures and Their Im...
AIRCC Publishing Corporation
 
MOD-2 presentation on engineering students
rishavkumar1402
 
Big Data Analysis and Its Scheduling Policy – Hadoop
IOSR Journals
 
G017143640
IOSR Journals
 
Earlier stage for straggler detection and handling using combined CPU test an...
IJECEIAES
 
Hadoop BRamamurthy ajjaahdvddvdnsmsjdjfj
Prateek Rathore
 
HDFS NameNode High Availability
DataWorks Summit
 
Bigdata and Hadoop Introduction
umapavankumar kethavarapu
 
Introduction to hadoop and hdfs
shrey mehrotra
 
IRJET - Evaluating and Comparing the Two Variation with Current Scheduling Al...
IRJET Journal
 
Geo distributed parallelization pacts in map reduce
eSAT Publishing House
 
Ad

More from IJSRD (20)

PPTX
#IJSRD #Research Paper Publication
IJSRD
 
PDF
Maintaining Data Confidentiality in Association Rule Mining in Distributed En...
IJSRD
 
PDF
Performance and Emission characteristics of a Single Cylinder Four Stroke Die...
IJSRD
 
PDF
Preclusion of High and Low Pressure In Boiler by Using LABVIEW
IJSRD
 
PDF
Prevention and Detection of Man in the Middle Attack on AODV Protocol
IJSRD
 
PDF
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
IJSRD
 
PDF
Evaluation the Effect of Machining Parameters on MRR of Mild Steel
IJSRD
 
PDF
Filter unwanted messages from walls and blocking nonlegitimate user in osn
IJSRD
 
PDF
Keystroke Dynamics Authentication with Project Management System
IJSRD
 
PDF
Diagnosing lungs cancer Using Neural Networks
IJSRD
 
PDF
A Survey on Sentiment Analysis and Opinion Mining
IJSRD
 
PDF
A Defect Prediction Model for Software Product based on ANFIS
IJSRD
 
PDF
Experimental Investigation of Granulated Blast Furnace Slag ond Quarry Dust a...
IJSRD
 
PDF
Product Quality Analysis based on online Reviews
IJSRD
 
PDF
Solving Fuzzy Matrix Games Defuzzificated by Trapezoidal Parabolic Fuzzy Numbers
IJSRD
 
PDF
Study of Clustering of Data Base in Education Sector Using Data Mining
IJSRD
 
PDF
Investigation of Effect of Process Parameters on Maximum Temperature during F...
IJSRD
 
PDF
Review Paper on Computer Aided Design & Analysis of Rotor Shaft of a Rotavator
IJSRD
 
PDF
A Survey on Data Mining Techniques for Crime Hotspots Prediction
IJSRD
 
PDF
Studies on Physico - Mechanical Properties of Chloroprene Rubber Vulcanizate ...
IJSRD
 
#IJSRD #Research Paper Publication
IJSRD
 
Maintaining Data Confidentiality in Association Rule Mining in Distributed En...
IJSRD
 
Performance and Emission characteristics of a Single Cylinder Four Stroke Die...
IJSRD
 
Preclusion of High and Low Pressure In Boiler by Using LABVIEW
IJSRD
 
Prevention and Detection of Man in the Middle Attack on AODV Protocol
IJSRD
 
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
IJSRD
 
Evaluation the Effect of Machining Parameters on MRR of Mild Steel
IJSRD
 
Filter unwanted messages from walls and blocking nonlegitimate user in osn
IJSRD
 
Keystroke Dynamics Authentication with Project Management System
IJSRD
 
Diagnosing lungs cancer Using Neural Networks
IJSRD
 
A Survey on Sentiment Analysis and Opinion Mining
IJSRD
 
A Defect Prediction Model for Software Product based on ANFIS
IJSRD
 
Experimental Investigation of Granulated Blast Furnace Slag ond Quarry Dust a...
IJSRD
 
Product Quality Analysis based on online Reviews
IJSRD
 
Solving Fuzzy Matrix Games Defuzzificated by Trapezoidal Parabolic Fuzzy Numbers
IJSRD
 
Study of Clustering of Data Base in Education Sector Using Data Mining
IJSRD
 
Investigation of Effect of Process Parameters on Maximum Temperature during F...
IJSRD
 
Review Paper on Computer Aided Design & Analysis of Rotor Shaft of a Rotavator
IJSRD
 
A Survey on Data Mining Techniques for Crime Hotspots Prediction
IJSRD
 
Studies on Physico - Mechanical Properties of Chloroprene Rubber Vulcanizate ...
IJSRD
 
Ad

Recently uploaded (20)

PPTX
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
PPTX
How to Set Up Tags in Odoo 18 - Odoo Slides
Celine George
 
PPTX
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
PPTX
How to Handle Salesperson Commision in Odoo 18 Sales
Celine George
 
PPTX
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
PDF
The Different Types of Non-Experimental Research
Thelma Villaflores
 
PPTX
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
PPTX
CATEGORIES OF NURSING PERSONNEL: HOSPITAL & COLLEGE
PRADEEP ABOTHU
 
PDF
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
PDF
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
PDF
Generative AI: it's STILL not a robot (CIJ Summer 2025)
Paul Bradshaw
 
PDF
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PDF
QNL June Edition hosted by Pragya the official Quiz Club of the University of...
Pragya - UEM Kolkata Quiz Club
 
PDF
community health nursing question paper 2.pdf
Prince kumar
 
PDF
Knee Extensor Mechanism Injuries - Orthopedic Radiologic Imaging
Sean M. Fox
 
PDF
Isharyanti-2025-Cross Language Communication in Indonesian Language
Neny Isharyanti
 
PDF
Stokey: A Jewish Village by Rachel Kolsky
History of Stoke Newington
 
PPTX
How to Set Maximum Difference Odoo 18 POS
Celine George
 
PDF
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
How to Set Up Tags in Odoo 18 - Odoo Slides
Celine George
 
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
How to Handle Salesperson Commision in Odoo 18 Sales
Celine George
 
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
The Different Types of Non-Experimental Research
Thelma Villaflores
 
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
CATEGORIES OF NURSING PERSONNEL: HOSPITAL & COLLEGE
PRADEEP ABOTHU
 
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
Generative AI: it's STILL not a robot (CIJ Summer 2025)
Paul Bradshaw
 
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
QNL June Edition hosted by Pragya the official Quiz Club of the University of...
Pragya - UEM Kolkata Quiz Club
 
community health nursing question paper 2.pdf
Prince kumar
 
Knee Extensor Mechanism Injuries - Orthopedic Radiologic Imaging
Sean M. Fox
 
Isharyanti-2025-Cross Language Communication in Indonesian Language
Neny Isharyanti
 
Stokey: A Jewish Village by Rachel Kolsky
History of Stoke Newington
 
How to Set Maximum Difference Odoo 18 POS
Celine George
 
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 

Fault Tolerance in Big Data Processing Using Heartbeat Messages and Data Replication

  • 1. IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 10, 2015 | ISSN (online): 2321-0613 All rights reserved by www.ijsrd.com 999 Fault Tolerance in Big Data Processing using Heartbeat Messages and Data Replication T.Cowsalya1 N.Gomathi2 R.Arunkumar3 1,2,3 Assistant Professor 1,2,3 Department of Computer Science and Engineering 1,2,3 SVS College of Engineering, Coimbatore, Tamil Nadu, India, Pincode-642109 Abstract— Big data is a popular term used to define the exponential evolution and availability of data, includes both structured and unstructured data. The volatile progression of demands on big data processing imposes heavy burden on computation, communication and storage in geographically distributed data centers. Hence it is necessary to minimize the cost of big data processing, which also includes fault tolerance cost. Big Data processing involves two types of faults: node failure and data loss. Both the faults can be recovered using heartbeat messages. Here heartbeat messages acts as an acknowledgement messages between two servers. This paper depicts about the study of node failure and recovery, data replication and heartbeat messages. Key words: Big data, Fault Tolerance, Heartbeat Messages, Node Recovery, Data Replication I. INTRODUCTION Big data is a slogan, used to define a gigantic measurement of both structured and Unstructured data that is so large and difficult to process using traditional database architecture. Due to its explosive growth the volatile progression of demands on big data processing imposes heavy burden on computation, communication and storage in geographically distributed data centers. The incoming large data set is broken up into multiple chunks and each individual multiple chunks are placed in different data canters with the help of volley system. The Volley System [2] makes use of logs to submit the jobs to the data center. Cloud users make use of volley system foe automatic data placement. A. Geo-Distributed Data Center: The data centers distributed at multiple geographical regions are known as geographically distributed data centers [1].For example Google has 13 datacenters over 8 countries and 4 continents. Fig. 1: Data Center Topology II. FAULT TOLERANCE The challenge of big data includes analysis, capture, search, sharing, storage, transfer, visualization and privacy violations. Among these challenges fault tolerance is one of the main challenge in big data. There are possibly two faults that can occur while processing big data. First the data chunk may loss while transferring the data to multiple data center. Second the server may fail or slows down. A. Heartbeat Messages; The solution for the above two problems are heartbeat messages. Here heartbeat message is a message sent from an inventor to the endpoint to identify if and when the inventor fails or is no longer available. Heartbeat messages are non- stop on a periodic recurring basis from the inventor’s startup until the inventor’s shutdown. When the receiver identifies lack of heartbeat messages during an anticipated arrival period, the destination may determine that the inventor has failed, shutdown, or is generally no longer available. The developmentrelays to fault recovery in multiprocessor system, where the processors constantly monitor heartbeat messages from the other processor is capable of taking autonomous recovery action in response to a failure to receive heartbeat messages, advantageously without the overall guidance of an executive processor. B. Data Loss Prevention: When transmitting the jobs to multiple data centers, there may be chance of data loss. Data loss may occur due to network link failure. The links in networks may vary on transmissionrates according to their unique features. For example the distances and optical fiber facilities between multiple data centers. Due to capacity constraints, all tasks are not placedonto the same server, on which theconsistentdata exist in. It is unavoidable when certain data must bedownloaded from a remote server. In this case, routingplan matters on the transmission cost. C. Hadoop Architecture: Hadoop is a software framework used for processing big data in parallel. It consists of two important components called Hadoop Distributed File System and MapReduce 1) Hadoop Distributed File System: The Hadoop Distributed File System (HDFS)[3] is a distributed, highly fault-tolerant file system designed to run on low-cost commodity hardware. HDFS provides high- throughput access to application data and it is suitable for applications with large data sets. HDFS consists of two nodes called name node and data node.Name node manages file system namespace operations like opening, closing, and renaming files and directories. A name node also maps data blocks to data nodes, which handle read and write requests from HDFS clients. Data nodes also create, delete, and replicate data blocks according to instructions from the governing name node. Name Node and Data Node send messages to prove their identity.
  • 2. Fault Tolerance in Big Data Processing using Heartbeat Messages and Data Replication (IJSRD/Vol. 3/Issue 10/2015/227) All rights reserved by www.ijsrd.com 1000 2) Mapreduce: MapReduce [12] is a programming model and its associated implementation for processing and generating large data sets with parallel, distributed algorithm on a cluster. MapReduce also consists of two nodes called job tracker and task tracker. The JobTracker talks to the NameNode to determine the location of the data. The Task Tracker node executes the assigned tasks in the data nodes. III. FAILURES One of the major benefits of using Hadoop is its ability to handle these failures and allow our job to complete. A. Task Failure: When the user code in the map or reduce tasks throws runtime exception, then the child task fails. Another failure mode is the sudden exit of child JVM. In this case the task tracker notices the process has exited and marks the attempt as failed. A task may also be killed, which is different from failing. B. Task Tracker Failure: If a task tracker fails by crashing or running very slowly, it will stop sending heartbeat messages to the job tracker. The job tracker notice that the task trackers has stopped sending heartbeat and remove it from its pool of task trackers to schedule tasks on. C. Job Tracker Failure: Failure of job tracker is the most serious failure mode. It is a single point of failure. This failure mode has low chance of occurring, since the chance of particular machine failing is low. D. Name Node Failure: The name node was a single point of failure, so if it failed that meant your cluster became unstable. Even the secondary name node doesn’t help in this case since it is only used for checkpoints, not as a backup for the name node. If the name node fails someone like an administrator would have to restart the name node. E. Data Node Failure; A compute node can fail for any variety of reasons, for example broken node hardware, a broken network, software bugs, or inadequate hardware resources Fig. 2: Name node Schema When a compute node fails, all jobs running on that node fail. Even though the running jobs running on other nodes that weren’t communicating with jobs on the failed node will continue to run without a problem. IV. SOLUTION A. Data Replication: An application can specify the number of replicas of a file at the time it is created, and this number can be changed any time after that. [6] The name node makes all decisions concerning block replication. HDFS uses an intelligent replica placement model for reliability and performance. Optimizing replica placement makes HDFS unique from most other distributed file systems, and is facilitated by a rack-aware replica placement policy that uses network bandwidth efficiently. Fig. 3: Data Replication in DFS The name node makes all decisions regarding replications of blocks. It periodically receives a heartbeat and a block report from each of the data nodes in the cluster. Receipt of a heartbeat implies that the data node is functioning properly. A block report contains a list of all blocks on a data node.
  • 3. Fault Tolerance in Big Data Processing using Heartbeat Messages and Data Replication (IJSRD/Vol. 3/Issue 10/2015/227) All rights reserved by www.ijsrd.com 1001 B. Replica Selection: To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a read request from a replica that is closest to the reader. If there exists a replica on the same rack as the reader node, then the replica is preferred to satisfy the read request. If HDFS clusters spans multiple data centers, then a replica that is resident in the local data center is preferred over any remote replica. V. CONCLUSION Thus the failure in big data processing has been studied. Data replication and heartbeat messages are used as a fault tolerant mechanism. In future practical setups can be executed and the computation and communication cost can be computed. Result can be compared with the cost of data processing in non- failure node REFERENCES [1] Data Center Locations,” http://www.google.com/about/data centers/inside/locations/index.html. [2] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan, “Volley: Automated Data Placement for Geo-DistributedCloud Services,” in The 7th USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2010, pp. 17–32. [3] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing Electricity Cost: Optimization of Distributed Internet Data Centers in a Multi-Electricity-Market Environment,” in Proceedings of the 29th International Conference on Computer Communications (INFOCOM). IEEE, 2010, pp. 1–9. [4] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting the Electric Bill for Internet-scale Systems,” in Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM). ACM, 2009, pp. 123–134. [5] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam, “Optimal Power Cost Management Using Stored Energyin Data Centers,” in Proceedings of International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS).ACM, 2011, pp. 221–232. [6] X. Fan, W.-D.Weber, and L. A. Barroso, “Power Provisioning for A Warehouse-sized Computer,” in Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA). ACM, 2007, pp. 13–23. [7] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, “Benefits and Limitations of Tapping Into Stored Energy for Datacenters,”in Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA). ACM, 2011, pp. 341–352 [8] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s Not Easy Being Green,” in Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM). ACM, 2012, pp. 211–222. [9] S. A. Yazd, S. Venkatesan, and N. Mittal, “Boosting energy efficiency with mirrored data block replication policy and energyscheduler,” SIGOPS Oper. Syst. Rev., vol. 47, no. 2, pp. 33–40, 2013. [10]J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton, “Mad skills: new analysis practices for big data,” Proc. VLDBEndow., vol. 2, no. 2, pp. 1481– 1492, 2009. [11]R. Kaushik and K. Nahrstedt, “T*: A data-centric cooling energy costs reduction approach for Big Data analytics cloud,” in 2012 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2012, pp. 1–11. [12]MapReduce: Simpli_ed Data Processing on Large Clusters, Jeffrey Dean and Sanjay Ghemawat, [email protected], [email protected], Google, Inc.