Finding the general term
EXAMPLE:
FIND THE GENERAL TERM OF
THE SEQUENCE
5, 12, 19, 26, 33, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 5 12 19 26 33 . . . ?
GET THE DIFFERENCE
𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟕
SOLVE FOR a AND b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓
𝑎 1 + 𝑏 = 5
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟐
𝑎 2 + 𝑏 = 12
𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐
𝒂 = 𝟕
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟕 + 𝒃 = 𝟓
𝒃 = 𝟓 − 𝟕
𝒃 = −𝟐
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟕𝒏 − 𝟐 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is
𝒂 𝒏 = 𝟕𝐧 − 𝟐
EXAMPLE:
FIND THE GENERAL TERM OF
THE SEQUENCE
7, 11, 15, 19, 23, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 7 11 15 19 23 . . . ?
GET THE DIFFERENCE
𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕
𝑎 1 + 𝑏 = 7
𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟏
𝑎 2 + 𝑏 = 11
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟒
𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟒 + 𝒃 = 𝟕
𝒃 = 𝟕 − 𝟒
𝒃 = 𝟑
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒𝒏 + 𝟑 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is
𝒂 𝒏 = 𝟒𝐧 + 𝟑
QUIZ:
1. FIND THE GENERAL
TERM OF THE SEQUENCE
1, 3, 5, 7, 9, . . .
2. FIND THE GENERAL
TERM OF THE SEQUENCE
-2, 1, 4, 7, 10, . . .
3. FIND THE GENERAL
TERM OF THE SEQUENCE
-1, 1, 3, 5, 7, 9, . . .
QUIZ:
FIND THE GENERAL TERM OF
THE SEQUENCE
1, 3, 5, 7, 9, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 1 3 5 7 9 . . . ?
GET THE DIFFERENCE
𝟏, 𝟑, 𝟓, 𝟕, 𝟗, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
2
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏
𝑎 1 + 𝑏 = 1
𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑
𝑎 2 + 𝑏 = 3
𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐
𝒂 = 𝟐
𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟐 + 𝒃 = 𝟏
𝒃 = 𝟏 − 𝟐
𝒃 = −𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟐𝒏 − 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is
𝒂 𝒏 = 𝟐𝐧 − 𝟏
QUIZ:
FIND THE GENERAL TERM OF
THE SEQUENCE
-2, 1, 4, 7, 10, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 -2 1 4 7 10 . . . ?
GET THE DIFFERENCE
−𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
3
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐
𝑎 1 + 𝑏 = −2
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏
𝑎 2 + 𝑏 = 1
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟑
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟑 + 𝒃 = −𝟐
𝒃 = −𝟐 − 𝟑
𝒃 = −𝟓
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟑𝒏 − 𝟓 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
−𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, . . . is
𝒂 𝒏 = 𝟑𝐧 − 𝟓
QUIZ:
FIND THE GENERAL TERM OF
THE SEQUENCE
-1, 1, 3, 5, 7, 9, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 -1 1 3 5 7 . . . ?
GET THE DIFFERENCE
−𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
2
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟏
𝑎 1 + 𝑏 = −1
𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏
𝑎 2 + 𝑏 = 1
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟐
𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟐 + 𝒃 = −𝟏
𝒃 = −𝟏 − 𝟐
𝒃 = −𝟑
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟐𝒏 − 𝟑 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
−𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is
𝒂 𝒏 = 𝟐𝐧 − 𝟑
ASSIGNMENT!
FIND THE GENERAL TERM OF THE FOLLOWING.
1. 3, 7, 11, 15, . . .
2. 2, 6, 10, 14, . . .
3. 5, 11, 17, 23, . . .
4. 9, 11, 13, 15, . . .
5. -2, -5, -8, -11, . . .
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
1. 3, 7, 11, 15, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 3 7 11 15 . . . ?
GET THE DIFFERENCE
𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
4
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑
𝑎 1 + 𝑏 = 3
𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕
𝑎 2 + 𝑏 = 7
𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐
𝒂 = 𝟒
𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟒 + 𝒃 = 𝟑
𝒃 = 𝟑 − 𝟒
𝒃 = −𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒𝒏 − 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, . . . is
𝒂 𝒏 = 𝟒𝐧 − 𝟏
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
2. 2, 6, 10, 14, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 2 6 10 14 . . . ?
GET THE DIFFERENCE
𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
4
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟐
𝑎 1 + 𝑏 = 2
𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟔
𝑎 2 + 𝑏 = 6
𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐
𝒂 = 𝟒
𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟒 + 𝒃 = 𝟐
𝒃 = 𝟐 − 𝟒
𝒃 = −𝟐
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒𝒏 − 𝟐 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . . is
𝒂 𝒏 = 𝟒𝐧 − 𝟐
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
3. 5, 11, 17, 23, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 5 11 17 23 . . . ?
GET THE DIFFERENCE
𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
6
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓
𝑎 1 + 𝑏 = 5
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏
𝑎 2 + 𝑏 = 11
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟔
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟔 + 𝒃 = 𝟓
𝒃 = 𝟓 − 𝟔
𝒃 = −𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟔𝒏 − 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . . is
𝒂 𝒏 = 𝟔𝐧 − 𝟏
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
4. 9, 11, 13, 15, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 9 11 13 15 . . . ?
GET THE DIFFERENCE
𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
2
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟗
𝑎 1 + 𝑏 = 9
𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏
𝑎 2 + 𝑏 = 11
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟐
𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟔 + 𝒃 = 𝟗
𝒃 = 𝟗 − 𝟔
𝒃 = 𝟕
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟐𝒏 + 𝟕 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . . is
𝒂 𝒏 = 𝟐𝐧 + 𝟕
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
5. -2, -5, -8, -11, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 -2 -5 -8 -11 . . . ?
GET THE DIFFERENCE
−𝟐, −𝟓, −𝟖, −𝟏𝟏, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
−3
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐
𝑎 1 + 𝑏 = −2
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = −𝟓
𝑎 2 + 𝑏 = −5
𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐
𝒂 = −𝟑
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
−𝟑 + 𝒃 = −𝟐
𝒃 = −𝟐 + 𝟑
𝒃 = 𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
−𝟑𝒏 + 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
−𝟐, −𝟓, −𝟖, −𝟏𝟏, . . . is
𝒂 𝒏 = 𝟏 − 𝟑𝐧

More Related Content

PPTX
Finding the general term (not constant)
PDF
Geometric Series and Finding the Sum of Finite Geometric Sequence
PDF
Geometric Sequence
PDF
Infinite Geometric Series
PDF
Geometric Mean
PPTX
M3L2
PDF
Semana 10 numeros complejos i álgebra-uni ccesa007
Finding the general term (not constant)
Geometric Series and Finding the Sum of Finite Geometric Sequence
Geometric Sequence
Infinite Geometric Series
Geometric Mean
M3L2
Semana 10 numeros complejos i álgebra-uni ccesa007

Similar to Finding the general term (20)

PDF
Hsc maths formulae for board exam
PDF
Hsc maths formulae for board exam
PPTX
090799768954
PPTX
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
PDF
WEEK 3.pdf
PPTX
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
PPTX
Ecuacion diferencial de la forma u=ax+bx+c
PDF
INTEGRAL CALCULUS .pdf hahahahahahhwwhhwh
PDF
Ley de composición interna algebra ii
PPTX
PPTX
Functions ppt Dr Frost Maths Mixed questions
PPTX
Unit 1 Set Theory-Engineering Mathematics.pptx
PDF
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
PPTX
Strategic intervention material
PPTX
TRANSFORMACIONES LINEALES
PPTX
WEEK 1 QUADRATIC EQUATION.pptx
PPTX
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
PPTX
06_Complex Numbers_Hyperbolic Functions.pptx
PPTX
Surds revision card
PPTX
Equations.pptx
Hsc maths formulae for board exam
Hsc maths formulae for board exam
090799768954
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
WEEK 3.pdf
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
Ecuacion diferencial de la forma u=ax+bx+c
INTEGRAL CALCULUS .pdf hahahahahahhwwhhwh
Ley de composición interna algebra ii
Functions ppt Dr Frost Maths Mixed questions
Unit 1 Set Theory-Engineering Mathematics.pptx
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
Strategic intervention material
TRANSFORMACIONES LINEALES
WEEK 1 QUADRATIC EQUATION.pptx
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
06_Complex Numbers_Hyperbolic Functions.pptx
Surds revision card
Equations.pptx
Ad

More from AjayQuines (20)

PPTX
The cardiac cycle 9
PPTX
Set relationships
PPTX
Scientific method
PPTX
Respiratory system 9
PPTX
Rational function 11
PPTX
Radicals
PPTX
Pure substance and mixtures 7
PPTX
Properties of whole numbers
PPTX
Properties of radicals 9
PPTX
Properties of matter
PPTX
Product of a monomial, square of binomial, sum and difference of two squares ...
PPTX
Polynomial function 10
PPTX
Other roots grade 9
PPTX
Order of operations in math 5
PPTX
Operations on integers 7
PPTX
Multiplying and dividing decimals 6
PPTX
Mathematics 7 week 1
PPTX
Harmonic sequence and fibonacci 10
PPTX
Geometric sequence and series 10
PPTX
Factors & divisibility
The cardiac cycle 9
Set relationships
Scientific method
Respiratory system 9
Rational function 11
Radicals
Pure substance and mixtures 7
Properties of whole numbers
Properties of radicals 9
Properties of matter
Product of a monomial, square of binomial, sum and difference of two squares ...
Polynomial function 10
Other roots grade 9
Order of operations in math 5
Operations on integers 7
Multiplying and dividing decimals 6
Mathematics 7 week 1
Harmonic sequence and fibonacci 10
Geometric sequence and series 10
Factors & divisibility
Ad

Recently uploaded (20)

PPTX
Macbeth play - analysis .pptx english lit
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
Fun with Grammar (Communicative Activities for the Azar Grammar Series)
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PPTX
Integrated Management of Neonatal and Childhood Illnesses (IMNCI) – Unit IV |...
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
Nurlina - Urban Planner Portfolio (english ver)
PDF
plant tissues class 6-7 mcqs chatgpt.pdf
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PDF
International_Financial_Reporting_Standa.pdf
PDF
Disorder of Endocrine system (1).pdfyyhyyyy
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PPTX
Climate Change and Its Global Impact.pptx
PPTX
2025 High Blood Pressure Guideline Slide Set.pptx
PDF
M.Tech in Aerospace Engineering | BIT Mesra
PDF
1.Salivary gland disease.pdf 3.Bleeding and Clotting Disorders.pdf important
PPTX
Thinking Routines and Learning Engagements.pptx
PDF
semiconductor packaging in vlsi design fab
Macbeth play - analysis .pptx english lit
Climate and Adaptation MCQs class 7 from chatgpt
Fun with Grammar (Communicative Activities for the Azar Grammar Series)
Race Reva University – Shaping Future Leaders in Artificial Intelligence
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
Integrated Management of Neonatal and Childhood Illnesses (IMNCI) – Unit IV |...
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Nurlina - Urban Planner Portfolio (english ver)
plant tissues class 6-7 mcqs chatgpt.pdf
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
International_Financial_Reporting_Standa.pdf
Disorder of Endocrine system (1).pdfyyhyyyy
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Climate Change and Its Global Impact.pptx
2025 High Blood Pressure Guideline Slide Set.pptx
M.Tech in Aerospace Engineering | BIT Mesra
1.Salivary gland disease.pdf 3.Bleeding and Clotting Disorders.pdf important
Thinking Routines and Learning Engagements.pptx
semiconductor packaging in vlsi design fab

Finding the general term

  • 2. EXAMPLE: FIND THE GENERAL TERM OF THE SEQUENCE 5, 12, 19, 26, 33, . . .
  • 3. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 5 12 19 26 33 . . . ?
  • 4. GET THE DIFFERENCE 𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟕
  • 5. SOLVE FOR a AND b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓 𝑎 1 + 𝑏 = 5 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟐 𝑎 2 + 𝑏 = 12 𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐
  • 6. 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐 𝒂 = 𝟕 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟕 + 𝒃 = 𝟓 𝒃 = 𝟓 − 𝟕 𝒃 = −𝟐 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 7. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟕𝒏 − 𝟐 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is 𝒂 𝒏 = 𝟕𝐧 − 𝟐
  • 8. EXAMPLE: FIND THE GENERAL TERM OF THE SEQUENCE 7, 11, 15, 19, 23, . . .
  • 9. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 7 11 15 19 23 . . . ?
  • 10. GET THE DIFFERENCE 𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒
  • 11. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕 𝑎 1 + 𝑏 = 7 𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟏 𝑎 2 + 𝑏 = 11 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
  • 12. 𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟒 𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟒 + 𝒃 = 𝟕 𝒃 = 𝟕 − 𝟒 𝒃 = 𝟑 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 13. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒𝒏 + 𝟑 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is 𝒂 𝒏 = 𝟒𝐧 + 𝟑
  • 14. QUIZ: 1. FIND THE GENERAL TERM OF THE SEQUENCE 1, 3, 5, 7, 9, . . . 2. FIND THE GENERAL TERM OF THE SEQUENCE -2, 1, 4, 7, 10, . . . 3. FIND THE GENERAL TERM OF THE SEQUENCE -1, 1, 3, 5, 7, 9, . . .
  • 15. QUIZ: FIND THE GENERAL TERM OF THE SEQUENCE 1, 3, 5, 7, 9, . . .
  • 16. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 1 3 5 7 9 . . . ?
  • 17. GET THE DIFFERENCE 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 2
  • 18. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏 𝑎 1 + 𝑏 = 1 𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑 𝑎 2 + 𝑏 = 3 𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐
  • 19. 𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐 𝒂 = 𝟐 𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟐 + 𝒃 = 𝟏 𝒃 = 𝟏 − 𝟐 𝒃 = −𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 20. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟐𝒏 − 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is 𝒂 𝒏 = 𝟐𝐧 − 𝟏
  • 21. QUIZ: FIND THE GENERAL TERM OF THE SEQUENCE -2, 1, 4, 7, 10, . . .
  • 22. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 -2 1 4 7 10 . . . ?
  • 23. GET THE DIFFERENCE −𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 3
  • 24. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐 𝑎 1 + 𝑏 = −2 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏 𝑎 2 + 𝑏 = 1 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
  • 25. 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟑 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟑 + 𝒃 = −𝟐 𝒃 = −𝟐 − 𝟑 𝒃 = −𝟓 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 26. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟑𝒏 − 𝟓 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 −𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, . . . is 𝒂 𝒏 = 𝟑𝐧 − 𝟓
  • 27. QUIZ: FIND THE GENERAL TERM OF THE SEQUENCE -1, 1, 3, 5, 7, 9, . . .
  • 28. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 -1 1 3 5 7 . . . ?
  • 29. GET THE DIFFERENCE −𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 2
  • 30. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟏 𝑎 1 + 𝑏 = −1 𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏 𝑎 2 + 𝑏 = 1 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
  • 31. 𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟐 𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟐 + 𝒃 = −𝟏 𝒃 = −𝟏 − 𝟐 𝒃 = −𝟑 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 32. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟐𝒏 − 𝟑 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 −𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is 𝒂 𝒏 = 𝟐𝐧 − 𝟑
  • 33. ASSIGNMENT! FIND THE GENERAL TERM OF THE FOLLOWING. 1. 3, 7, 11, 15, . . . 2. 2, 6, 10, 14, . . . 3. 5, 11, 17, 23, . . . 4. 9, 11, 13, 15, . . . 5. -2, -5, -8, -11, . . .
  • 34. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 1. 3, 7, 11, 15, . . .
  • 35. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 3 7 11 15 . . . ?
  • 36. GET THE DIFFERENCE 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 4
  • 37. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑 𝑎 1 + 𝑏 = 3 𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕 𝑎 2 + 𝑏 = 7 𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐
  • 38. 𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐 𝒂 = 𝟒 𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟒 + 𝒃 = 𝟑 𝒃 = 𝟑 − 𝟒 𝒃 = −𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 39. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒𝒏 − 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, . . . is 𝒂 𝒏 = 𝟒𝐧 − 𝟏
  • 40. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 2. 2, 6, 10, 14, . . .
  • 41. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 2 6 10 14 . . . ?
  • 42. GET THE DIFFERENCE 𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 4
  • 43. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟐 𝑎 1 + 𝑏 = 2 𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟔 𝑎 2 + 𝑏 = 6 𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐
  • 44. 𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐 𝒂 = 𝟒 𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟒 + 𝒃 = 𝟐 𝒃 = 𝟐 − 𝟒 𝒃 = −𝟐 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 45. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒𝒏 − 𝟐 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . . is 𝒂 𝒏 = 𝟒𝐧 − 𝟐
  • 46. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 3. 5, 11, 17, 23, . . .
  • 47. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 5 11 17 23 . . . ?
  • 48. GET THE DIFFERENCE 𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 6
  • 49. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓 𝑎 1 + 𝑏 = 5 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏 𝑎 2 + 𝑏 = 11 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
  • 50. 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟔 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟔 + 𝒃 = 𝟓 𝒃 = 𝟓 − 𝟔 𝒃 = −𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 51. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟔𝒏 − 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . . is 𝒂 𝒏 = 𝟔𝐧 − 𝟏
  • 52. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 4. 9, 11, 13, 15, . . .
  • 53. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 9 11 13 15 . . . ?
  • 54. GET THE DIFFERENCE 𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 2
  • 55. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟗 𝑎 1 + 𝑏 = 9 𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏 𝑎 2 + 𝑏 = 11 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
  • 56. 𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟐 𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟔 + 𝒃 = 𝟗 𝒃 = 𝟗 − 𝟔 𝒃 = 𝟕 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 57. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟐𝒏 + 𝟕 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . . is 𝒂 𝒏 = 𝟐𝐧 + 𝟕
  • 58. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 5. -2, -5, -8, -11, . . .
  • 59. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 -2 -5 -8 -11 . . . ?
  • 60. GET THE DIFFERENCE −𝟐, −𝟓, −𝟖, −𝟏𝟏, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 −3
  • 61. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐 𝑎 1 + 𝑏 = −2 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = −𝟓 𝑎 2 + 𝑏 = −5 𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐
  • 62. 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐 𝒂 = −𝟑 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. −𝟑 + 𝒃 = −𝟐 𝒃 = −𝟐 + 𝟑 𝒃 = 𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 63. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 −𝟑𝒏 + 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 −𝟐, −𝟓, −𝟖, −𝟏𝟏, . . . is 𝒂 𝒏 = 𝟏 − 𝟑𝐧