SlideShare a Scribd company logo
2
Most read
3
Most read
5
Most read
Finite Elements: Basis functions
1-D elements
coordinate transformation
1-D elements
linear basis functions
quadratic basis functions
cubic basis functions

2-D elements
coordinate transformation
triangular elements
linear basis functions
quadratic basis functions

rectangular elements
linear basis functions
quadratic basis functions

Scope: Understand the origin and shape of basis functions used in classical
finite element techniques.

Finite element method – basis functions

1
1-D elements: coordinate transformation
We wish to approximate a function u(x) defined in
an interval [a,b] by some set of basis functions
n

u ( x) = ∑ ciϕ i
i =1

where i is the number of grid points (the edges of
our elements) defined at locations xi. As the basis
functions look the same in all elements (apart from
some constant) we make life easier by moving to a
local coordinate system

x − xi
ξ=
xi +1 − xi
so that the element is defined for x=[0,1].

Finite element method – basis functions

2
1-D elements – linear basis functions
There is not much choice for the shape of a
(straight) 1-D element! Notably the length can vary
across the domain.
We require that our function u(ξ) be approximated
locally by the linear function

u (ξ ) = c1 + c2ξ
Our node points are defined at ξ1,2=0,1 and we
require that

u1 = c1
u2 = c1 + c2

⇒ c1 = u1
⇒ c2 = −u1 + u2

c = Au
⎡ 1 0⎤
A= ⎢
- 1 1⎥
⎣
⎦

Finite element method – basis functions

3
1-D elements – linear basis functions
As we have expressed the coefficients ci as a
function of the function values at node points ξ1,2
we can now express the approximate function
using the node values

u (ξ ) = u1 + (−u1 + u 2 )ξ
= u1 (1 − ξ ) + u2ξ
= u1 N1 (ξ ) + N 2 (ξ )ξ

.. and N1,2(x) are the linear
basis functions for 1-D
elements.

Finite element method – basis functions

4
1-D quadratic elements
Now we require that our function u(x) be
approximated locally by the quadratic function

u (ξ ) = c1 + c2ξ + c3ξ 2
Our node points are defined at ξ1,2,3=0,1/2,1 and
we require that

u1 = c1
u2 = c1 + 0.5c2 + 0.25c3

c = Au

u3 = c1 + c2 + c3
0
0⎤
⎡1
A= ⎢− 3 4 − 1⎥
⎢
⎥
⎢ 2 −4 2 ⎥
⎣
⎦
Finite element method – basis functions

5
1-D quadratic basis functions
... again we can now express our approximated
function as a sum over our basis functions
weighted by the values at three node points

u (ξ ) = c1 + c2ξ + c3ξ 2 = u1 (1 − 3ξ + 2ξ 2 ) + u2 (4ξ − 4ξ 2 ) + u3 (−ξ + 2ξ 2 )
3

= ∑ ui N i (ξ )
i =1

... note that now we re
using three grid points
per element ...
Can we approximate a
constant function?

Finite element method – basis functions

6
1-D cubic basis functions
... using similar arguments the cubic basis
functions can be derived as

u (ξ ) = c1 + c2ξ + c3ξ 2 + c4ξ 3
N1 (ξ ) = 1 − 3ξ 2 + 2ξ 3
N 2 (ξ ) = ξ − 2ξ 2 + ξ 3
N 3 (ξ ) = 3ξ 2 − 2ξ 3
N 4 (ξ ) = −ζ 2 + ξ 3
... note that here we
need derivative
information at the
boundaries ...
How can we
approximate a constant
function?
Finite element method – basis functions

7
2-D elements: coordinate transformation
Let us now discuss the geometry and basis
functions of 2-D elements, again we want to
consider the problems in a local coordinate
system, first we look at triangles

y

η

P3

P3
P2

P1
x
before

Finite element method – basis functions

P1

P2

ξ

after

8
2-D elements: coordinate transformation
Any triangle with corners Pi(xi,yi), i=1,2,3 can be
transformed into a rectangular, equilateral triangle
with

x = x1 + ( x2 − x1 )ξ + ( x3 − x1 )η

η
P3

P1 (0,0)
P2 (1,0)
P3 (0,1)
P2

P1

ξ

y = y1 + ( y2 − y1 )ξ + ( y3 − y1 )η
using counterclockwise numbering. Note that if
η=0, then these equations are equivalent to the 1D tranformations. We seek to approximate a
function by the linear form

u (ξ ,η ) = c1 + c2ξ + c3η
we proceed in the same way as in the 1-D case

Finite element method – basis functions

9
2-D elements: coefficients
η
P3

... and we obtain

u1 = u (0,0) = c1

P1 (0,0)
P2 (1,0)
P3 (0,1)
P2

u2 = u (1,0) = c1 + c2

P1

u3 = u (0,1) = c1 + c3

ξ

... and we obtain the coefficients as a function of the
values at the grid nodes by matrix inversion

c = Au
⎡ 1 0 0⎤
A= ⎢− 1 1 0⎥
⎢
⎥
⎢− 1 0 1⎥
⎣
⎦
Finite element method – basis functions

containing the
1-D case

⎡ 1 0⎤
A= ⎢
- 1 1⎥
⎣
⎦
10
triangles: linear basis functions
from matrix A we can calculate the linear basis
functions for triangles

N1 (ξ ,η ) = 1 − ξ − η
N 2 (ξ ,η ) =
N 3 (ξ ,η ) =

Finite element method – basis functions

ξ
η

η
P3

P1 (0,0)
P2 (1,0)
P3 (0,1)
P2

P1

ξ

11
triangles: quadratic elements
Any function defined on a triangle can be approximated by the quadratic
function
2
2

u ( x, y ) = α1 + α 2 x + α 3 y + α 4 x + α 5 xy + α 6 y

and in the transformed system we obtain

u (ξ ,η ) = c1 + c2ξ + c3η + c4ξ 2 + c5ξη + c6η 2
η

P1 (0,0)
P2 (1,0)

P3

P3 (0,1)

+
P6

P1

+

+

as in the 1-D case
we need additional
points on the
element.

P4 (1/2,0)

+

+

P4

Finite element method – basis functions

P5 (1/2,1/2)

P5

P6 (0,1/2)

+

P2

ξ

12
triangles: quadratic elements
To determine the coefficients we calculate the
function u at each grid point to obtain

u1 = c1

η
P3

+

P6
+

u2 = c1 + c2 + c4
u3 = c1 + c3 + c6
u4 = c1 + 1 / 2c2 + 1 / 4c4

P1 (0,0)
P2 (1,0)
P3 (0,1)
P4 (1/2,0)
P5 (1/2,1/2)
P6 (0,1/2)

+

P+
1

+

P4

P5

P2

+

ξ

u5 = c1 + 1 / 2c2 + 1 / 2c3 + 1 / 4c4 + 1 / 4c5 + 1 / 4c6
u6 = c1 + 1 / 2c3 + 1 / 6c6
... and by matrix inversion we can calculate the coefficients as a function of
the values at Pi

c = Au

Finite element method – basis functions

13
triangles: basis functions

c = Au

0 0
0 0 0⎤
⎡1
⎢− 3 − 1 0
4 0 0⎥
⎢
⎥
⎢− 3 0 − 1 0 0 4 ⎥
A=⎢
⎥
2
2 0 −4 0 0 ⎥
⎢
⎢4
0 0 − 4 4 − 4⎥
⎢
⎥
0 2
0 0 − 4⎥
⎢2
⎣
⎦

η

P1 (0,0)
P2 (1,0)
P3 (0,1)
P4 (1/2,0)
P5 (1/2,1/2)
P6 (0,1/2)

P3

+

P6
+

+

P+
1

+

P4

P5

P2

+

ξ

... to obtain the basis functions

N1 (ξ ,η ) = (1 − ξ − η )(1 − 2ξ − 2η )
N 2 (ξ ,η ) = ξ (2ξ − 1)
N 3 (ξ ,η ) = η (2η − 1)
N 4 (ξ ,η ) = 4ξ (1 − ξ − η )
N 5 (ξ ,η ) = 4ξη
N 2 (ξ ,η ) = 4η (1 − ξ − η )
... and they look like ...
Finite element method – basis functions

14
triangles: quadratic basis functions
η
P3

+

Finite element method – basis functions

P6
+

+

P+
1

The first three quadratic basis functions ...

+
P

P5

4

P1 (0,0)
P2 (1,0)
P3 (0,1)
P4 (1/2,0)
P5 (1/2,1/2
P6 (0,1/2)
P

+2

ξ

15
triangles: quadratic basis functions
η
P3

+

Finite element method – basis functions

P6
+

+

P+
1

.. and the rest ...

+
P

P5

4

P1 (0,0)
P2 (1,0)
P3 (0,1)
P4 (1/2,0)
P5 (1/2,1/2
P6 (0,1/2)
P

+2

ξ

16
rectangles: transformation
Let us consider rectangular elements, and transform them into a local
coordinate system

y

η

P3

P4

P4

P3

P2

P1

x
before

Finite element method – basis functions

P1

P2

ξ

after

17
rectangles: linear elements
With the linear Ansatz

u (ξ ,η ) = c1 + c2ξ + c3η + c4ξη
we obtain matrix A as

⎡1 0
⎢− 1 1
A=⎢
⎢− 1 0
⎢
⎣ 1 −1

0⎤
0⎥
⎥
0 1⎥
⎥
1 − 1⎦
0
0

and the basis functions

N1 (ξ ,η ) = (1 − ξ )(1 − η )
N 2 (ξ ,η ) = ξ (1 − η )
N 3 (ξ ,η ) = ξη
N 4 (ξ ,η ) = (1 − ξ )η
Finite element method – basis functions

18
rectangles: quadratic elements
With the quadratic Ansatz

u (ξ ,η ) = c1 + c2ξ + c3η + c4ξ 2 + c5ξη + c6η 2 + c7ξ 2η + c8ξη 2
we obtain an 8x8 matrix A ... and a basis function looks
e.g. like

N1 (ξ ,η ) = (1 − ξ )(1 − η )(1 − 2ξ − 2η )
N 5 (ξ ,η ) = 4ξ (1 − ξ )(1 − η )
N1

Finite element method – basis functions

η
P4

P7

+

+
P8
P1

N2

P3

+ P6
+

P5

P2

ξ

19
1-D and 2-D elements: summary

The basis functions for finite element problems can be obtained by:
Transforming the system in to a local (to the element) system
Making a linear (quadratic, cubic) Ansatz for a function defined across
the element.
Using the interpolation condition (which states that the particular basis
functions should be one at the corresponding grid node) to obtain the
coefficients as a function of the function values at the grid nodes.
Using these coefficients to derive the n basis functions for the n node
points (or conditions).

Finite element method – basis functions

20

More Related Content

PPT
Pythagoras' Theorem
stephenb
 
PPTX
LU decomposition
Mayankkumar530
 
PPT
Coordinate geometry
Ravichandran Keerthi
 
PPT
Section 1.2 Quadratic Equations
bgb02burns
 
PDF
Unit-1 basics of computer graphics
Amol Gaikwad
 
PPTX
Projection In Computer Graphics
Sanu Philip
 
PPTX
Jacobi method
Grishma Maravia
 
PPTX
Euler's Method
dmidgette
 
Pythagoras' Theorem
stephenb
 
LU decomposition
Mayankkumar530
 
Coordinate geometry
Ravichandran Keerthi
 
Section 1.2 Quadratic Equations
bgb02burns
 
Unit-1 basics of computer graphics
Amol Gaikwad
 
Projection In Computer Graphics
Sanu Philip
 
Jacobi method
Grishma Maravia
 
Euler's Method
dmidgette
 

What's hot (20)

PPTX
Lecture 5 (solving simultaneous equations)
HarithaRanasinghe
 
PPTX
GATE Engineering Maths : System of Linear Equations
ParthDave57
 
PPT
CS 354 Texture Mapping
Mark Kilgard
 
PPT
Function transformations
Terry Gastauer
 
PPTX
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
PPT
Rectangular Coordinate System & Graphs
mobart02
 
PPT
Bezier and Spline Curves and Surfaces
Syed Zaid Irshad
 
PDF
Math academy-partial-fractions-notes
Math Academy Singapore
 
PDF
Lesson 18: Maximum and Minimum Values (slides)
Matthew Leingang
 
PPT
Double integral over rectangles, Fubinis theorem, properties of double integral
Burhanuddin Kapadia
 
PPT
Numerical method
Kumar Gaurav
 
PPSX
Factorising algebraic expressions
MrGarvey
 
PDF
Completeness axiom
Leo Crisologo
 
PPTX
Gaussian Elimination Method
Andi Firdaus
 
PPTX
GAUSS ELIMINATION METHOD
reach2arkaELECTRICAL
 
PPT
Chapter 17 - Multivariable Calculus
Muhammad Bilal Khairuddin
 
PPTX
Numerical solution of system of linear equations
reach2arkaELECTRICAL
 
PPTX
Ordinary differential equations
Ahmed Haider
 
PPTX
Applications of graph theory
NilaNila16
 
PPT
Surface Area and Volume
Josel Jalon
 
Lecture 5 (solving simultaneous equations)
HarithaRanasinghe
 
GATE Engineering Maths : System of Linear Equations
ParthDave57
 
CS 354 Texture Mapping
Mark Kilgard
 
Function transformations
Terry Gastauer
 
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
Rectangular Coordinate System & Graphs
mobart02
 
Bezier and Spline Curves and Surfaces
Syed Zaid Irshad
 
Math academy-partial-fractions-notes
Math Academy Singapore
 
Lesson 18: Maximum and Minimum Values (slides)
Matthew Leingang
 
Double integral over rectangles, Fubinis theorem, properties of double integral
Burhanuddin Kapadia
 
Numerical method
Kumar Gaurav
 
Factorising algebraic expressions
MrGarvey
 
Completeness axiom
Leo Crisologo
 
Gaussian Elimination Method
Andi Firdaus
 
GAUSS ELIMINATION METHOD
reach2arkaELECTRICAL
 
Chapter 17 - Multivariable Calculus
Muhammad Bilal Khairuddin
 
Numerical solution of system of linear equations
reach2arkaELECTRICAL
 
Ordinary differential equations
Ahmed Haider
 
Applications of graph theory
NilaNila16
 
Surface Area and Volume
Josel Jalon
 
Ad

Viewers also liked (20)

PPT
The beauty of mathematics
Tarun Gehlot
 
PDF
Introduction to finite element analysis
Tarun Gehlot
 
PPT
Constant strain triangular
rahul183
 
PPTX
Numerical conformal mapping of an irregular area
Tarun Gehlot
 
PPT
basic concepts of Functions
Tarun Gehlot
 
PPTX
Theories of change and logic models
Tarun Gehlot
 
PPTX
Graphing inverse functions
Tarun Gehlot
 
PDF
Finite elements for 2‐d problems
Tarun Gehlot
 
PDF
Venn diagram
Tarun Gehlot
 
PDF
Basic concepts of curve fittings
Tarun Gehlot
 
PPT
Applications of numerical methods
Tarun Gehlot
 
PDF
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
PDF
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
Alex Pinto
 
PDF
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
PDF
Beyond Matching: Applying Data Science Techniques to IOC-based Detection
Alex Pinto
 
PDF
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
Alex Pinto
 
PPTX
Section 2 part 1 coordinate transformation
EJDamman
 
PDF
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
PDF
Numerical and experimental demonstration of a coordinate transformation-based...
Xinying Wu
 
PDF
Coordinate system & transformation
Paramjeet Singh Jamwal
 
The beauty of mathematics
Tarun Gehlot
 
Introduction to finite element analysis
Tarun Gehlot
 
Constant strain triangular
rahul183
 
Numerical conformal mapping of an irregular area
Tarun Gehlot
 
basic concepts of Functions
Tarun Gehlot
 
Theories of change and logic models
Tarun Gehlot
 
Graphing inverse functions
Tarun Gehlot
 
Finite elements for 2‐d problems
Tarun Gehlot
 
Venn diagram
Tarun Gehlot
 
Basic concepts of curve fittings
Tarun Gehlot
 
Applications of numerical methods
Tarun Gehlot
 
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
Alex Pinto
 
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
Beyond Matching: Applying Data Science Techniques to IOC-based Detection
Alex Pinto
 
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
Alex Pinto
 
Section 2 part 1 coordinate transformation
EJDamman
 
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
Numerical and experimental demonstration of a coordinate transformation-based...
Xinying Wu
 
Coordinate system & transformation
Paramjeet Singh Jamwal
 
Ad

Similar to Finite elements : basis functions (20)

PDF
Natural and Clamped Cubic Splines
Mark Brandao
 
PPTX
Nbvtalkatbzaonencryptionpuzzles
Nagasuri Bala Venkateswarlu
 
PPTX
Nbvtalkatbzaonencryptionpuzzles
Nagasuri Bala Venkateswarlu
 
PDF
engineeringmathematics-iv_unit-ii
Kundan Kumar
 
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Rai University
 
PPT
Computer_Graphics_circle_drawing_techniq.ppt
AliZaib71
 
PPT
10994479.ppt
ALIZAIB KHAN
 
PPTX
L-6 (Circle Drawing Algorithm Computer graphics).pptx
JatinSareen6
 
PDF
Informe laboratorio n°1
luisescobedo38
 
PDF
Introduction to Artificial Neural Networks
Stratio
 
PDF
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
 
PPTX
Digital Signal Processing
aj ahmed
 
PPT
AsymptoticAnalysis.ppt
SiddheshUpadhyay3
 
PDF
Solving the energy problem of helium final report
JamesMa54
 
PPTX
Introduction to Algorithms
pppepito86
 
PDF
Integration techniques
Krishna Gali
 
PPT
04-Induction and Recursion.ppt ppt bai tap
15LThThuHuyn
 
PDF
SL Formulabooklet
nayaks3
 
PDF
Unit-2 raster scan graphics,line,circle and polygon algorithms
Amol Gaikwad
 
Natural and Clamped Cubic Splines
Mark Brandao
 
Nbvtalkatbzaonencryptionpuzzles
Nagasuri Bala Venkateswarlu
 
Nbvtalkatbzaonencryptionpuzzles
Nagasuri Bala Venkateswarlu
 
engineeringmathematics-iv_unit-ii
Kundan Kumar
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Rai University
 
Computer_Graphics_circle_drawing_techniq.ppt
AliZaib71
 
10994479.ppt
ALIZAIB KHAN
 
L-6 (Circle Drawing Algorithm Computer graphics).pptx
JatinSareen6
 
Informe laboratorio n°1
luisescobedo38
 
Introduction to Artificial Neural Networks
Stratio
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
 
Digital Signal Processing
aj ahmed
 
AsymptoticAnalysis.ppt
SiddheshUpadhyay3
 
Solving the energy problem of helium final report
JamesMa54
 
Introduction to Algorithms
pppepito86
 
Integration techniques
Krishna Gali
 
04-Induction and Recursion.ppt ppt bai tap
15LThThuHuyn
 
SL Formulabooklet
nayaks3
 
Unit-2 raster scan graphics,line,circle and polygon algorithms
Amol Gaikwad
 

More from Tarun Gehlot (20)

PDF
Materials 11-01228
Tarun Gehlot
 
PDF
Binary relations
Tarun Gehlot
 
PDF
Continuity and end_behavior
Tarun Gehlot
 
PDF
Continuity of functions by graph (exercises with detailed solutions)
Tarun Gehlot
 
PDF
Factoring by the trial and-error method
Tarun Gehlot
 
PDF
Error analysis statistics
Tarun Gehlot
 
PDF
Matlab commands
Tarun Gehlot
 
PPT
Introduction to matlab
Tarun Gehlot
 
PDF
Linear approximations and_differentials
Tarun Gehlot
 
PDF
Local linear approximation
Tarun Gehlot
 
PPT
Interpolation functions
Tarun Gehlot
 
PDF
Propeties of-triangles
Tarun Gehlot
 
PDF
Gaussian quadratures
Tarun Gehlot
 
PDF
Basics of set theory
Tarun Gehlot
 
PPT
Numerical integration
Tarun Gehlot
 
PPT
Applications of set theory
Tarun Gehlot
 
PDF
Miscellneous functions
Tarun Gehlot
 
PPTX
Dependent v. independent variables
Tarun Gehlot
 
PDF
Intervals of validity
Tarun Gehlot
 
PDF
Modelling with first order differential equations
Tarun Gehlot
 
Materials 11-01228
Tarun Gehlot
 
Binary relations
Tarun Gehlot
 
Continuity and end_behavior
Tarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Tarun Gehlot
 
Factoring by the trial and-error method
Tarun Gehlot
 
Error analysis statistics
Tarun Gehlot
 
Matlab commands
Tarun Gehlot
 
Introduction to matlab
Tarun Gehlot
 
Linear approximations and_differentials
Tarun Gehlot
 
Local linear approximation
Tarun Gehlot
 
Interpolation functions
Tarun Gehlot
 
Propeties of-triangles
Tarun Gehlot
 
Gaussian quadratures
Tarun Gehlot
 
Basics of set theory
Tarun Gehlot
 
Numerical integration
Tarun Gehlot
 
Applications of set theory
Tarun Gehlot
 
Miscellneous functions
Tarun Gehlot
 
Dependent v. independent variables
Tarun Gehlot
 
Intervals of validity
Tarun Gehlot
 
Modelling with first order differential equations
Tarun Gehlot
 

Recently uploaded (20)

PDF
Biological Classification Class 11th NCERT CBSE NEET.pdf
NehaRohtagi1
 
PPTX
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
PPTX
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
PPTX
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
PPTX
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
PDF
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PDF
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
PPTX
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
PPTX
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
DOCX
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
DOCX
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
PDF
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
PPTX
Basics and rules of probability with real-life uses
ravatkaran694
 
PPTX
How to Apply for a Job From Odoo 18 Website
Celine George
 
PPTX
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
DOCX
SAROCES Action-Plan FOR ARAL PROGRAM IN DEPED
Levenmartlacuna1
 
PPTX
CDH. pptx
AneetaSharma15
 
PDF
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
PPTX
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 
Biological Classification Class 11th NCERT CBSE NEET.pdf
NehaRohtagi1
 
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
Basics and rules of probability with real-life uses
ravatkaran694
 
How to Apply for a Job From Odoo 18 Website
Celine George
 
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
SAROCES Action-Plan FOR ARAL PROGRAM IN DEPED
Levenmartlacuna1
 
CDH. pptx
AneetaSharma15
 
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 

Finite elements : basis functions

  • 1. Finite Elements: Basis functions 1-D elements coordinate transformation 1-D elements linear basis functions quadratic basis functions cubic basis functions 2-D elements coordinate transformation triangular elements linear basis functions quadratic basis functions rectangular elements linear basis functions quadratic basis functions Scope: Understand the origin and shape of basis functions used in classical finite element techniques. Finite element method – basis functions 1
  • 2. 1-D elements: coordinate transformation We wish to approximate a function u(x) defined in an interval [a,b] by some set of basis functions n u ( x) = ∑ ciϕ i i =1 where i is the number of grid points (the edges of our elements) defined at locations xi. As the basis functions look the same in all elements (apart from some constant) we make life easier by moving to a local coordinate system x − xi ξ= xi +1 − xi so that the element is defined for x=[0,1]. Finite element method – basis functions 2
  • 3. 1-D elements – linear basis functions There is not much choice for the shape of a (straight) 1-D element! Notably the length can vary across the domain. We require that our function u(ξ) be approximated locally by the linear function u (ξ ) = c1 + c2ξ Our node points are defined at ξ1,2=0,1 and we require that u1 = c1 u2 = c1 + c2 ⇒ c1 = u1 ⇒ c2 = −u1 + u2 c = Au ⎡ 1 0⎤ A= ⎢ - 1 1⎥ ⎣ ⎦ Finite element method – basis functions 3
  • 4. 1-D elements – linear basis functions As we have expressed the coefficients ci as a function of the function values at node points ξ1,2 we can now express the approximate function using the node values u (ξ ) = u1 + (−u1 + u 2 )ξ = u1 (1 − ξ ) + u2ξ = u1 N1 (ξ ) + N 2 (ξ )ξ .. and N1,2(x) are the linear basis functions for 1-D elements. Finite element method – basis functions 4
  • 5. 1-D quadratic elements Now we require that our function u(x) be approximated locally by the quadratic function u (ξ ) = c1 + c2ξ + c3ξ 2 Our node points are defined at ξ1,2,3=0,1/2,1 and we require that u1 = c1 u2 = c1 + 0.5c2 + 0.25c3 c = Au u3 = c1 + c2 + c3 0 0⎤ ⎡1 A= ⎢− 3 4 − 1⎥ ⎢ ⎥ ⎢ 2 −4 2 ⎥ ⎣ ⎦ Finite element method – basis functions 5
  • 6. 1-D quadratic basis functions ... again we can now express our approximated function as a sum over our basis functions weighted by the values at three node points u (ξ ) = c1 + c2ξ + c3ξ 2 = u1 (1 − 3ξ + 2ξ 2 ) + u2 (4ξ − 4ξ 2 ) + u3 (−ξ + 2ξ 2 ) 3 = ∑ ui N i (ξ ) i =1 ... note that now we re using three grid points per element ... Can we approximate a constant function? Finite element method – basis functions 6
  • 7. 1-D cubic basis functions ... using similar arguments the cubic basis functions can be derived as u (ξ ) = c1 + c2ξ + c3ξ 2 + c4ξ 3 N1 (ξ ) = 1 − 3ξ 2 + 2ξ 3 N 2 (ξ ) = ξ − 2ξ 2 + ξ 3 N 3 (ξ ) = 3ξ 2 − 2ξ 3 N 4 (ξ ) = −ζ 2 + ξ 3 ... note that here we need derivative information at the boundaries ... How can we approximate a constant function? Finite element method – basis functions 7
  • 8. 2-D elements: coordinate transformation Let us now discuss the geometry and basis functions of 2-D elements, again we want to consider the problems in a local coordinate system, first we look at triangles y η P3 P3 P2 P1 x before Finite element method – basis functions P1 P2 ξ after 8
  • 9. 2-D elements: coordinate transformation Any triangle with corners Pi(xi,yi), i=1,2,3 can be transformed into a rectangular, equilateral triangle with x = x1 + ( x2 − x1 )ξ + ( x3 − x1 )η η P3 P1 (0,0) P2 (1,0) P3 (0,1) P2 P1 ξ y = y1 + ( y2 − y1 )ξ + ( y3 − y1 )η using counterclockwise numbering. Note that if η=0, then these equations are equivalent to the 1D tranformations. We seek to approximate a function by the linear form u (ξ ,η ) = c1 + c2ξ + c3η we proceed in the same way as in the 1-D case Finite element method – basis functions 9
  • 10. 2-D elements: coefficients η P3 ... and we obtain u1 = u (0,0) = c1 P1 (0,0) P2 (1,0) P3 (0,1) P2 u2 = u (1,0) = c1 + c2 P1 u3 = u (0,1) = c1 + c3 ξ ... and we obtain the coefficients as a function of the values at the grid nodes by matrix inversion c = Au ⎡ 1 0 0⎤ A= ⎢− 1 1 0⎥ ⎢ ⎥ ⎢− 1 0 1⎥ ⎣ ⎦ Finite element method – basis functions containing the 1-D case ⎡ 1 0⎤ A= ⎢ - 1 1⎥ ⎣ ⎦ 10
  • 11. triangles: linear basis functions from matrix A we can calculate the linear basis functions for triangles N1 (ξ ,η ) = 1 − ξ − η N 2 (ξ ,η ) = N 3 (ξ ,η ) = Finite element method – basis functions ξ η η P3 P1 (0,0) P2 (1,0) P3 (0,1) P2 P1 ξ 11
  • 12. triangles: quadratic elements Any function defined on a triangle can be approximated by the quadratic function 2 2 u ( x, y ) = α1 + α 2 x + α 3 y + α 4 x + α 5 xy + α 6 y and in the transformed system we obtain u (ξ ,η ) = c1 + c2ξ + c3η + c4ξ 2 + c5ξη + c6η 2 η P1 (0,0) P2 (1,0) P3 P3 (0,1) + P6 P1 + + as in the 1-D case we need additional points on the element. P4 (1/2,0) + + P4 Finite element method – basis functions P5 (1/2,1/2) P5 P6 (0,1/2) + P2 ξ 12
  • 13. triangles: quadratic elements To determine the coefficients we calculate the function u at each grid point to obtain u1 = c1 η P3 + P6 + u2 = c1 + c2 + c4 u3 = c1 + c3 + c6 u4 = c1 + 1 / 2c2 + 1 / 4c4 P1 (0,0) P2 (1,0) P3 (0,1) P4 (1/2,0) P5 (1/2,1/2) P6 (0,1/2) + P+ 1 + P4 P5 P2 + ξ u5 = c1 + 1 / 2c2 + 1 / 2c3 + 1 / 4c4 + 1 / 4c5 + 1 / 4c6 u6 = c1 + 1 / 2c3 + 1 / 6c6 ... and by matrix inversion we can calculate the coefficients as a function of the values at Pi c = Au Finite element method – basis functions 13
  • 14. triangles: basis functions c = Au 0 0 0 0 0⎤ ⎡1 ⎢− 3 − 1 0 4 0 0⎥ ⎢ ⎥ ⎢− 3 0 − 1 0 0 4 ⎥ A=⎢ ⎥ 2 2 0 −4 0 0 ⎥ ⎢ ⎢4 0 0 − 4 4 − 4⎥ ⎢ ⎥ 0 2 0 0 − 4⎥ ⎢2 ⎣ ⎦ η P1 (0,0) P2 (1,0) P3 (0,1) P4 (1/2,0) P5 (1/2,1/2) P6 (0,1/2) P3 + P6 + + P+ 1 + P4 P5 P2 + ξ ... to obtain the basis functions N1 (ξ ,η ) = (1 − ξ − η )(1 − 2ξ − 2η ) N 2 (ξ ,η ) = ξ (2ξ − 1) N 3 (ξ ,η ) = η (2η − 1) N 4 (ξ ,η ) = 4ξ (1 − ξ − η ) N 5 (ξ ,η ) = 4ξη N 2 (ξ ,η ) = 4η (1 − ξ − η ) ... and they look like ... Finite element method – basis functions 14
  • 15. triangles: quadratic basis functions η P3 + Finite element method – basis functions P6 + + P+ 1 The first three quadratic basis functions ... + P P5 4 P1 (0,0) P2 (1,0) P3 (0,1) P4 (1/2,0) P5 (1/2,1/2 P6 (0,1/2) P +2 ξ 15
  • 16. triangles: quadratic basis functions η P3 + Finite element method – basis functions P6 + + P+ 1 .. and the rest ... + P P5 4 P1 (0,0) P2 (1,0) P3 (0,1) P4 (1/2,0) P5 (1/2,1/2 P6 (0,1/2) P +2 ξ 16
  • 17. rectangles: transformation Let us consider rectangular elements, and transform them into a local coordinate system y η P3 P4 P4 P3 P2 P1 x before Finite element method – basis functions P1 P2 ξ after 17
  • 18. rectangles: linear elements With the linear Ansatz u (ξ ,η ) = c1 + c2ξ + c3η + c4ξη we obtain matrix A as ⎡1 0 ⎢− 1 1 A=⎢ ⎢− 1 0 ⎢ ⎣ 1 −1 0⎤ 0⎥ ⎥ 0 1⎥ ⎥ 1 − 1⎦ 0 0 and the basis functions N1 (ξ ,η ) = (1 − ξ )(1 − η ) N 2 (ξ ,η ) = ξ (1 − η ) N 3 (ξ ,η ) = ξη N 4 (ξ ,η ) = (1 − ξ )η Finite element method – basis functions 18
  • 19. rectangles: quadratic elements With the quadratic Ansatz u (ξ ,η ) = c1 + c2ξ + c3η + c4ξ 2 + c5ξη + c6η 2 + c7ξ 2η + c8ξη 2 we obtain an 8x8 matrix A ... and a basis function looks e.g. like N1 (ξ ,η ) = (1 − ξ )(1 − η )(1 − 2ξ − 2η ) N 5 (ξ ,η ) = 4ξ (1 − ξ )(1 − η ) N1 Finite element method – basis functions η P4 P7 + + P8 P1 N2 P3 + P6 + P5 P2 ξ 19
  • 20. 1-D and 2-D elements: summary The basis functions for finite element problems can be obtained by: Transforming the system in to a local (to the element) system Making a linear (quadratic, cubic) Ansatz for a function defined across the element. Using the interpolation condition (which states that the particular basis functions should be one at the corresponding grid node) to obtain the coefficients as a function of the function values at the grid nodes. Using these coefficients to derive the n basis functions for the n node points (or conditions). Finite element method – basis functions 20