SlideShare a Scribd company logo
Fourier series
Contents
Euler’s Formula
Functions having point of discontinuity
Change of interval
Even and Odd functions
Half Range series
Harmonic analysis
FOURIER SERIES
Definition of a Fourier
series
A Fourier series may be defined as an expansion of a function in a series
of sine's and cosine’s such as
(1)
0
1
( ) ( cos sin ).
2
n n
n
a
f x a nx b nx
∞
=
= + +∑
The coefficients are related to the periodic function f(x)
by definite integrals in equation 1.
Henceforth we assume f satisfies the following conditions:
(1) f(x) is a periodic function;
(2) f(x) has only a finite number of finite discontinuities;
(3) f(x) has only a finite number of extreme values, maxima and minima in the
interval [0,2π].
Fourier series are named in honour of Joseph Fourier (1768-1830), who made important
contributions to the study of trigonometric series, in connection with the solution of the
heat equation
( ) ( )f t f t T= +
where T is a constant and is called the period of the function.
A function f(x) which satisfies the relation
f(x) = f(x + T) for all real x and some fixed T is called Periodic function. The smallest
positive number T, for which this relation holds, is called the period of f(x).
 Any function that satisfies
Periodic Function
Euler’s Formula
The Fourier series for the function f(x) in the interval
Is given by -
These values of a0,an&bn are known as Euler’s Formula.
παα 2+<< x
{ }
∫
∫
∫
∑
+
+
+
=
∞
=
=
=
++=
πα
α
πα
α
πα
α
π
π
π
2
2
2
0
1
0
sin)(
1
cos)(
1
)(
1
sincos
2
)(
nxdxxfb
nxdxxfa
dxxfa
nxbnxa
a
xf
n
n
n
nn
Problems
Q1.Obtain the Fourier series for f(x)=e-x
in the interval 0<x<2
.
Sol. We know that,
π
{ }∑
∞
=
++=
1
0
sincos
2
)(
n
nn nxbnxa
a
xf
{ }
π
π
π
π
π
x
x
x
n
nn
x
e
ea
ea
nxbnxa
a
e
2
2
00
2
0
0
1
0
1
1
1
sincos
2
−
−
−
∞
=
−
−
=
−=
=
++=
∫
∑
( )
( ) ( ) π
π
ππ
π
π
π
π
π
ππ
π
π
π
2
02
2
0
2
2
2
1
2
2
2
02
2
0
cossin
1
1
sin
1
,....
5
11
&
2
11
1
1
.
1
sincos
)1(
1
cos
1
nxnnxe
n
b
nxdxeb
e
a
e
a
n
e
a
nxnnxe
n
a
nxdxea
x
n
x
n
n
x
n
x
n
−−
+
=
=





 −
=




 −
=∴
+




 −
=
+−
+
=
=
−
−
−−
−
−
−
∫
∫
.......
5
2
.
1
&
2
1
.
1
1
.
1
2
2
2
1
2
2





 −
=




 −
=∴
+




 −
=
−−
−
ππ
π
ππ
π
e
b
e
b
n
ne
bn
Putting the values of a0,an&bn in the Fourier Series
Answer












++++





++++
−
=
−
−
.....3sin
10
3
2sin
5
2
sin
2
1
.....3cos
10
1
2cos
5
1
cos
2
1
2
11 2
xxxxxx
e
e x
π
π
Q2. Find a Fourier series to represent x-x2
from x=- to x=
Sol. We know that,
π π
{ }∑
∞
=
++=
1
0
sincos
2
)(
n
nn nxbnxa
a
xf
{ }∑
∞
=
++=−
1
02
sincos
2 n
nn nxbnxa
a
xx
∫
∫
−
−
−
−=
−
=
−=
−=
π
π
π
π
π
π
π
π
π
π
nxdxxxa
a
xx
a
dxxxa
n cos)(
1
3
2
32
1
)(
1
2
2
0
32
0
2
0
( ) ( ) ( )
( )
( ) ( )
n
b
n
nx
n
nx
x
n
nx
xxb
nxdxxxb
aa
n
a
n
nx
n
nx
x
n
nx
xxa
n
n
n
n
n
n
n
)1(2
cos
)2(
sin
21
cos1
sin)(
1
.......
2
4
;
1
4
14
sin
2
cos
21
sin1
32
2
2
2221
2
32
2
−−
=












−+




 −
×−−




 −
−=
−=
−
==∴
−−
=











 −
−+




 −
×−−−=
−
−
−
∫
π
π
π
π
π
π
π
π
π
;.......
2
2
;
1
2
21
−
=∴ bb
Putting this value in Fourier Series,
we get
Answer






+−+





+−+
−
=− .....
2
2sin
1
sin
2.....
2
2cos
1
cos
4
3 22
2
2 xxxx
xx
π
Functions having point of
discontinuity
In the interval (α, α+2π)
f(x)= Φ(x), α<x<c
= Ψ(x),c<x< α+2π



 +=



 +=



 +=
∫ ∫
∫ ∫
∫ ∫
+
+
+
c
c
n
c
c
n
c
c
nxdxxnxdxxb
nxdxxnxdxxa
dxxdxxa
α
πα
α
πα
α
πα
ψφ
π
ψφ
π
ψφ
π
2
2
2
0
sin)(sin)(
1
cos)(cos)(
1
)()(
1
Problems
Q1. Find the Fourier Series expansion for f(x), if
f(x)=-π<x<0
x, 0<x< π.
Deduce that
Sol.
We know
Then
2
222
85
1
3
1
1
1 π
=⋅⋅⋅⋅⋅+++
∑ ∑
∞
=
∞
=
++=
1 1
0
sincos
2
)(
n n
n nxdxbnnxdxa
a
xf
]|
2
||[|
1
])([
1
0
2
0
0
0
0
π
π
π
π
π
π
π
π
x
xdxdxa
+−=
+−=
−
−
∫ ∫
---A
)1(cos
1
]
1
cos
1
0[
1
]
cossinsin
[
1
]coscos)([
1
2
)
2
(
1
2
22
0
2
0
0
0
2
2
−=
−+=
++−=
−+−=
−=
+−=
−
−
−
∫ ∫
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
n
n
n
n
n
n
nx
n
nxx
n
nx
nxdxxnxdxa
therefore
n
,.......
4
1
,1,
2
1
,3
)cos21(
1
]cos)cos1([
1
]
sincoscos
[
1
]sinsin)([
1
,
5
2
,0,
3
2
,0,
1
2
4321
0
2
0
0
0
25423221
−
==
−
==∴
−=
−−=
+−+=
+−=
⋅
−==
⋅
−==
⋅
−
=∴
−
−∫ ∫
bbbb
n
n
n
n
n
n
n
nx
n
nx
x
n
nx
nxdxxnxb
therefore
aaaaa
n
π
π
π
π
π
π
π
π
π
π
πππ
π
π
π
π
.......
4
4sin
3
3sin3
2
2sin
sin3......
5
5cos
3
3cos
cos
2
4
)( 22
+−+−+





+++−−=
xxx
x
xx
xxf
π
π
Hence putting the values of a’s and b’s in equation –A
-----B
Hence this is the required result.
Putting x=0 in equation B
We get,
-------C
is discontinuous at x=0,






∞+++−−= ......
5
1
3
1
1
2
4
)0( 22
π
π
f
)(xf
0)00()00( =+−=−∴ andff π 2
)]00()00([
2
1
)0(
π−
=++−=∴ fff




+++−−=− .....
5
1
3
1
1
12
42 222
π
ππ
Hence C equation takes the form
Q2. Find the Fourier Series to represent the function given by
for and= for
Deduce that
Sol. We know that,
-----A
)(xf
xxf =)( ,0 π≤≤ x x−π2 ππ 2≤≤ x
8
....
5
1
3
1
1
1 2
222
π
=∞+++
∑ ∑
∞
=
∞
=
++=
1 1
0
sincos
2
)(
n n
n nxdxbnnxdxa
a
xf






−−++=



 −+=∴








−+=



 −+=∴
∫ ∫
∫∫
π
π
π
π π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
2
2
0
2
0
2
2
2
0
2
2
0
0
sin
)2(
cossin1
cos)2(cos
1
2
2
2
1
)2(
1
n
nx
n
nx
x
n
nx
n
nxx
nxdxxnxdxxa
x
x
x
dxxxdxa
n
( ) ( )
( )
0
sin)2(sin
1
112
11111
0
2
2
2222
=∴



 −+=





 −−
=∴







 −
+−







−
−
∫ ∫
n
n
n
n
nn
b
nxdxxnxdxxb
n
a
nnnn
π π
π
π
π
π
π
Required Fourier Series -------B
Put x=a in equation B
We get,
∑
∞
= 




 −−
+=
1
2
cos
1)1(2
2
)(
n
n
nx
n
xf
π
π
∞+++=⇒
∞+
−
+
−
+
−
=
×−
=





 −−
+= ∑
∞
=
......
5
1
3
1
1
1
8
......
5
2
3
2
2
2
4
1)1(2
2
)0(
222
2
22
1
2
π
ππ
π
π
n
n
n
f
Half Range Series
The Fourier series which contains terms sine or cosine only is
known as half range Fourier sine series or half range Fourier
cosine series.
The function will be defined in range of 0 to but in order to
obtain half range Fourier cosine series or half range Fourier
sine series we extend the range of the function f(x) or
in general (-l,l). So, that the function is either converted in form
of even function of even or odd function.
Case-1 Half range Fourier cosine series:
For the half range Fourier cosine series of the function f(x) in
the range (0,l), we extend the function f(x) over the range (-l,l).
So that the function become even function.
π
),( ππ−
∑
∞
=
+=
1
0 cos
2
)(
n l
xnana
xf
π ∫=
l
dxxf
l
a
0
0 )(
2
∫ 





=
l
n dx
l
xn
xf
l
a
0
cos)(
2 π
Where,
Case-2 Half range Fourier sine series:
For half range fourier sine series of function f(x),in the
range(0,l), we extend the function f(x) over the range (-l,l); so,
that the function becomes odd function.
∫
∑






=






=
∞
=
l
n
n
n
dx
l
xn
xf
l
b
l
xn
bxf
0
1
sin)(
2
sin)(
π
π
Problems
Q1. Find the Fourier cosine series for the function
f(x)=x2
in the range .
Sol.
The given function f(x)=x2
is a even function.
So, we apply case 1
i.e.
π≤≤ x0
∑
∞
=
+=
1
0 cos
2
)(
n l
xnana
xf
π
∫ 





=
l
n dx
l
xn
xf
l
a
0
cos)(
2 π
[ ]
3
2
3
2
2
1
2
0
0
3
0
0
2
0
2
0
π
π
π
π
π
π
π
π
=
=
=
=
∫
∫−
a
xa
dxxa
dxxa
[ ]
3
2
3
2
2
1
2
0
0
3
0
0
2
0
2
0
π
π
π
π
π
π
π
π
=
=
=
=
∫
∫−
a
xa
dxxa
dxxa
( ) ( ) π
π
π
π
π
π
π
0
32
2
0
2
2
sin2cos2sin2
cos
2
cos
1





 −
+
−
−=
=
=
∫
∫−
n
nx
n
nxx
n
nxx
a
nxdxxa
nxdxxa
n
n
n
∑
∞
=
−
+=
−
=




=
1
2
2
2
2
2
cos)1(
4
3
)1(4
cos22
n
n
n
n
n
n
nx
x
n
a
n
n
a
π
ππ
π






−+−−= .......3cos
3
1
2cos
2
1
cos4
3 22
2
2
xxxx
π
Hence the required result is ,
Q2. Obtain the Fourier expansion of xsinx as a cosine series in (0, ).
Hence deduce
Sol.
Let
4
2
......
75
1
53
1
31
1 −
=∞−
⋅
+
⋅
−
⋅
π
π
( ) ( )
[ ]∫
∫
∫
−−+=
=
=
−−−=
=
π
π
π
π
π
π
π
π
0
0
0
00
0
0
)1sin()1sin(
1
cossin
2
2
sin1cos
2
sin
2
dxxnxnxa
nxdxxxa
a
xxxa
xdxxa
n
n
)1(
1
)1cos(
1
)1cos(
)1(
)1sin(
)1(
)1sin(
1
1
)1cos(
1
)1cos(1
0
22
≠






+
+
−
−
−
=












−
−
−
+
+−
−






−
−
+
+
+−
=
n
n
n
n
n
a
n
xn
n
xn
n
xn
n
xn
xa
n
n
ππ
π
π
2
1
2
2cos1
2
2sin
1
2
2cos1
2sin
1
cossin
2
,1
1
0
1
0
1
0
1
−
=




−
=





−
−




−
=
=
==
∫
∫
ππ
π
π
π
π
π
π
π
a
xx
xa
xdxxa
xdxxxan
When,






∞−
⋅
+
⋅
−
⋅
+=






∞−
⋅
+
⋅
−
⋅
−−=
......
75
1
53
1
31
1
21
2
.....
75
4cos
53
3cos
31
2cos
2cos
2
1
1sin
π
xxx
xxx
Putting x= ,then
2
π
4
2
......
75
1
53
1
31
1 −
=∞−
⋅
+
⋅
−
⋅
π
Hence,
Even and Odd Functions:-Even and Odd Functions:-
Even function:-
1. The function is said to be even function if
2. The function f(x) is said to be Odd function if
• The graph of odd function is symmetric about origin.
• The graph of even function is symmetric about Y-axis.
• First we have to check whether the domain of the function is symmetric
about the y-axis.
How To Determine Whether The Function IsHow To Determine Whether The Function Is
Even Or OddEven Or Odd
f(x)=sin x
-3π -5π/2 -2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
x
y
2
5
2:sin
π
π <<− xx
f(x)=sin x
-3π -5π/2 -2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
x
y
Fourier series
Key Point
Products of functions
(even)×(even) = (even)
(even)×(odd) = (odd)
(odd)×(odd) = (even)
Sums of functions
(even) + (even) = (even)
(even) + (odd) = (neither)
(odd) + (odd) = (odd)
If
Or
then the function is even
function
and then the function is odd
function
If Function is in this form
Fourier series for even & odd function
Case1:-
The Fourier series for the even function F(x) in the interval (-L,+L) is given by
Case2:-
If the function f(x) is an odd function then the fourier series (-L,+L) is given by
Fourier series
Fourier series
Fourier series
Answer
Half Range Series
The Fourier series which contains terms of sine or cosine only
is known as half range Fourier sine series or half range Fourier
cosine series.
The function will be defined in range of 0 to but in order to
obtain half range Fourier cosine series or half range Fourier
sine series we extend the range of the function f(x) or
in general (-l,l). So, that the function is either converted in form
of even function of even or odd function.
Case-1 Half range Fourier cosine series:
For the half range Fourier cosine series of the function f(x) in
the range (0,l), we extend the function f(x) over the range (-l,l).
So that the function become even function.
π
),( ππ−
∑
∞
=
+=
1
0 cos
2
)(
n l
xnana
xf
π ∫=
l
dxxf
l
a
0
0 )(
2
∫ 





=
l
n dx
l
xn
xf
l
a
0
cos)(
2 π
Where,
Case-2 Half range Fourier sine series:
For half range fourier sine series of function f(x),in the
range(0,l), we extend the function f(x) over the range (-l,l); so,
that the function becomes odd function.
∫
∑






=






=
∞
=
l
n
n
n
dx
l
xn
xf
l
b
l
xn
bxf
0
1
sin)(
2
sin)(
π
π
Problems
Q1. Find the Fourier cosine series for the function
f(x)=x2
in the range .
Sol.
The given function f(x)=x2
is a even function.
So, we apply case 1
i.e.
π≤≤ x0
∑
∞
=
+=
1
0 cos
2
)(
n l
xnana
xf
π
3
22
0
0
3
3
2
0
0
22
0
21
0
π
a
πx
π
a
π dxx
π
a
π
π dxx
π
a
=



=
∫=
∫−=
[ ]
3
2
3
2
2
1
2
0
0
3
0
0
2
0
2
0
π
π
π
π
π
π
π
π
=
=
=
=
∫
∫−
a
xa
dxxa
dxxa
( ) ( ) π
π
π
π
π
π
π
0
32
2
0
2
2
sin2cos2sin2
cos
2
cos
1





 −
+
−
−=
=
=
∫
∫−
n
nx
n
nxx
n
nxx
a
nxdxxa
nxdxxa
n
n
n
and,
∫ 





=
l
n dx
l
xn
xf
l
a
0
cos)(
2 π
∑
∞
=
−
+=
−
=




=
1
2
2
2
2
2
cos)1(
4
3
)1(4
cos22
n
n
n
n
n
n
nx
x
n
a
n
n
a
π
ππ
π






−+−−= .......3cos
3
1
2cos
2
1
cos4
3 22
2
2
xxxx
π
Hence the required result is ,
Q2. Obtain the Fourier expansion of xsinx as a cosine series in (0, ).
Hence deduce
Sol.
Let
4
2
......
75
1
53
1
31
1 −
=∞−
⋅
+
⋅
−
⋅
π
π
( ) ( )
[ ]∫
∫
∫
−−+=
=
=
−−−=
=
π
π
π
π
π
π
π
π
0
0
0
00
0
0
)1sin()1sin(
1
cossin
2
2
sin1cos
2
sin
2
dxxnxnxa
nxdxxxa
a
xxxa
xdxxa
n
n
)1(
1
)1cos(
1
)1cos(
)1(
)1sin(
)1(
)1sin(
1
1
)1cos(
1
)1cos(1
0
22
≠






+
+
−
−
−
=












−
−
−
+
+−
−






−
−
+
+
+−
=
n
n
n
n
n
a
n
xn
n
xn
n
xn
n
xn
xa
n
n
ππ
π
π
2
1
2
2cos1
2
2sin
1
2
2cos1
2sin
1
cossin
2
,1
1
0
1
0
1
0
1
−
=




−
=





−
−




−
=
=
==
∫
∫
ππ
π
π
π
π
π
π
π
a
xx
xa
xdxxa
xdxxxan
When,






∞−
⋅
+
⋅
−
⋅
+=






∞−
⋅
+
⋅
−
⋅
−−=
......
75
1
53
1
31
1
21
2
.....
75
4cos
53
3cos
31
2cos
2cos
2
1
1sin
π
xxx
xxx
Putting x= ,then
2
π
4
2
......
75
1
53
1
31
1 −
=∞−
⋅
+
⋅
−
⋅
π
Hence,
Harmonic Analysis
The process of finding the Fourier series corresponding to the function when the
function by numerical values is known as harmonic analysis. The Fourier series for
the function f(x) in the interval is given by-
If the given function is not the explicit function of the independent variable x and
the function is defined by the numerical values then the formula of a0,an and bn are
given by the following relations.
∫
∫
∫
∑
+
+
+
∞
=






=






=
=












+





+=
c
n
c
n
c
n
nn
dx
c
xn
xf
c
b
dx
c
xn
xf
c
a
dxxf
c
a
c
xn
b
c
xn
a
a
xf
2
2
2
0
1
0
sin)(
1
cos)(
1
)(
1
sincos
2
)(
α
α
α
α
α
α
π
π
ππ
Where,
cx 2+<< αα
a0 = 2x[Mean value of f(x) in the interval ( )]
an = 2x[Mean value of in the interval( )]
bn = 2x[Mean value of in the interval ( )]
In formula 1 the first term of expansion is known as first or
fundamental harmonic.
The second term is known as second harmonic and the term
is known as third harmonic and so on…..
c2, +αα






⋅
c
xn
xf
π
cos)( c2, +αα






⋅
c
xn
xf
π
sin)( c2, +αα
c
xb
c
xa n ππ sincos1
+
c
xb
c
xa ππ 2sin2cos 22
+
c
xb
c
xa ππ 3sin3cos 33
+
Problems
Q1. In a machine the displacement y of a given point is given for a certain angle as
follows.
Find the coefficient of in the Fourier series representing the above variations.
Sol.
The Fourier series for the function y in the given interval 0-360o
or ( ) is given by
θ
0 30 60 90 120 150 180 210 240 270 300 350
7.9 8 7.2 5.6 3.6 1.7 0.5 0.2 0.9 2.5 4.7 6.8
°θ
y
( ).sincos
2 1
0
∑
∞
=
++=
n
nn xnbxna
a
y ππ
π2,0
θ2sin
Presented By :-
Shiv Prasad Gupta
Naveen Kumar
Avinash

More Related Content

PPTX
Fourier series
Pinky Chaudhari
 
PPTX
Fourier series
Santhanam Krishnan
 
PPTX
the fourier series
safi al amu
 
PPTX
Fourier series and its applications by md nazmul islam
Md Nazmul Islam
 
PPTX
Application of fourier series
Girish Dhareshwar
 
PPTX
Fourier Series - Engineering Mathematics
Md Sadequl Islam
 
PPTX
Fourier series
kishor pokar
 
PDF
fourier series
8laddu8
 
Fourier series
Pinky Chaudhari
 
Fourier series
Santhanam Krishnan
 
the fourier series
safi al amu
 
Fourier series and its applications by md nazmul islam
Md Nazmul Islam
 
Application of fourier series
Girish Dhareshwar
 
Fourier Series - Engineering Mathematics
Md Sadequl Islam
 
Fourier series
kishor pokar
 
fourier series
8laddu8
 

What's hot (20)

PPTX
Fourier series Introduction
Rizwan Kazi
 
PPTX
Fourier transforms
Fahad B. Mostafa
 
PPTX
Analytic function
Santhanam Krishnan
 
PPTX
Fourier series and fourier integral
ashuuhsaqwe
 
PPTX
Laplace transform
001Abhishek1
 
PPT
Fourier series
Naveen Sihag
 
PPTX
Differential calculus maxima minima
Santhanam Krishnan
 
PPT
Laplace transforms
Awais Chaudhary
 
PPTX
Newton Raphson
Nasima Akhtar
 
PPTX
APPLICATION OF PARTIAL DIFFERENTIATION
Dhrupal Patel
 
PPTX
Properties of laplace transform
Md. Mehedi Hasan Asif
 
PPTX
Maxima & Minima of Calculus
Arpit Modh
 
PPTX
Fourier integral
Vikshit Ganjoo
 
PPTX
Complex form fourier series
derry92
 
PPT
fourier transforms
Umang Gupta
 
PPT
aem : Fourier series of Even and Odd Function
Sukhvinder Singh
 
PDF
Fourier Series
SimmiRockzz
 
PPTX
Linear differential equation
Pratik Sudra
 
PPT
MATLAB : Numerical Differention and Integration
Ainul Islam
 
PDF
Introduction to Fourier transform and signal analysis
宗翰 謝
 
Fourier series Introduction
Rizwan Kazi
 
Fourier transforms
Fahad B. Mostafa
 
Analytic function
Santhanam Krishnan
 
Fourier series and fourier integral
ashuuhsaqwe
 
Laplace transform
001Abhishek1
 
Fourier series
Naveen Sihag
 
Differential calculus maxima minima
Santhanam Krishnan
 
Laplace transforms
Awais Chaudhary
 
Newton Raphson
Nasima Akhtar
 
APPLICATION OF PARTIAL DIFFERENTIATION
Dhrupal Patel
 
Properties of laplace transform
Md. Mehedi Hasan Asif
 
Maxima & Minima of Calculus
Arpit Modh
 
Fourier integral
Vikshit Ganjoo
 
Complex form fourier series
derry92
 
fourier transforms
Umang Gupta
 
aem : Fourier series of Even and Odd Function
Sukhvinder Singh
 
Fourier Series
SimmiRockzz
 
Linear differential equation
Pratik Sudra
 
MATLAB : Numerical Differention and Integration
Ainul Islam
 
Introduction to Fourier transform and signal analysis
宗翰 謝
 
Ad

Similar to Fourier series (20)

PPTX
FOURIER SERIES Presentation of given functions.pptx
jyotidighole2
 
PPTX
mukul pptx 2.pptx mathematics laplace pptx engineering mathematics 2
MukulKumar596365
 
PDF
Mba Ebooks ! Edhole
Edhole.com
 
PDF
ilovepdf_merged.pdf
NaorinHalim
 
PDF
PDF ppt fourier series and Fourier transforms .pdf
alexander825344
 
PPTX
Fourier_Series.pptx
AliNadeem48
 
PDF
lecture_6_-_fourier_series_0.pdf
HendIbrahim35
 
PDF
Half range sine and cosine series
Chandan S
 
PPT
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang
 
PPTX
Topic: Fourier Series ( Periodic Function to change of interval)
Abhishek Choksi
 
PPTX
AEM Fourier series
Siddhi Viradiya
 
PPTX
senior seminar
Jose Stewart
 
PPTX
Mathematics basics
Vivek Kumar Sinha
 
PPT
Fourier series 2.ppt
BlisterCount
 
PPTX
half range sine and cosine series.pptx(Test for Convergence.pptx(Sequence and...
durgesh351287
 
PPS
Unit vii
mrecedu
 
DOCX
Important Questions of fourier series with theoretical study Engg. Mathem...
Mohammad Imran
 
PDF
Math 1102-ch-3-lecture note Fourier Series.pdf
habtamu292245
 
PPTX
PS.pptx
raj20072
 
PDF
Fourier series of odd functions with period 2 l
Pepa Vidosa Serradilla
 
FOURIER SERIES Presentation of given functions.pptx
jyotidighole2
 
mukul pptx 2.pptx mathematics laplace pptx engineering mathematics 2
MukulKumar596365
 
Mba Ebooks ! Edhole
Edhole.com
 
ilovepdf_merged.pdf
NaorinHalim
 
PDF ppt fourier series and Fourier transforms .pdf
alexander825344
 
Fourier_Series.pptx
AliNadeem48
 
lecture_6_-_fourier_series_0.pdf
HendIbrahim35
 
Half range sine and cosine series
Chandan S
 
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang
 
Topic: Fourier Series ( Periodic Function to change of interval)
Abhishek Choksi
 
AEM Fourier series
Siddhi Viradiya
 
senior seminar
Jose Stewart
 
Mathematics basics
Vivek Kumar Sinha
 
Fourier series 2.ppt
BlisterCount
 
half range sine and cosine series.pptx(Test for Convergence.pptx(Sequence and...
durgesh351287
 
Unit vii
mrecedu
 
Important Questions of fourier series with theoretical study Engg. Mathem...
Mohammad Imran
 
Math 1102-ch-3-lecture note Fourier Series.pdf
habtamu292245
 
PS.pptx
raj20072
 
Fourier series of odd functions with period 2 l
Pepa Vidosa Serradilla
 
Ad

Recently uploaded (20)

PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PPTX
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
PPTX
database slide on modern techniques for optimizing database queries.pptx
aky52024
 
PDF
Top 10 read articles In Managing Information Technology.pdf
IJMIT JOURNAL
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PDF
Software Testing Tools - names and explanation
shruti533256
 
PDF
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 
PDF
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
PPT
SCOPE_~1- technology of green house and poyhouse
bala464780
 
PDF
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
PPT
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
PPT
Ppt for engineering students application on field effect
lakshmi.ec
 
PDF
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
PDF
Introduction to Data Science: data science process
ShivarkarSandip
 
PPTX
22PCOAM21 Session 2 Understanding Data Source.pptx
Guru Nanak Technical Institutions
 
PDF
dse_final_merit_2025_26 gtgfffffcjjjuuyy
rushabhjain127
 
PDF
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
 
PPTX
Inventory management chapter in automation and robotics.
atisht0104
 
PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PPTX
Civil Engineering Practices_BY Sh.JP Mishra 23.09.pptx
bineetmishra1990
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
database slide on modern techniques for optimizing database queries.pptx
aky52024
 
Top 10 read articles In Managing Information Technology.pdf
IJMIT JOURNAL
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
Software Testing Tools - names and explanation
shruti533256
 
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
SCOPE_~1- technology of green house and poyhouse
bala464780
 
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
Ppt for engineering students application on field effect
lakshmi.ec
 
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
Introduction to Data Science: data science process
ShivarkarSandip
 
22PCOAM21 Session 2 Understanding Data Source.pptx
Guru Nanak Technical Institutions
 
dse_final_merit_2025_26 gtgfffffcjjjuuyy
rushabhjain127
 
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
 
Inventory management chapter in automation and robotics.
atisht0104
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
Civil Engineering Practices_BY Sh.JP Mishra 23.09.pptx
bineetmishra1990
 

Fourier series