SlideShare a Scribd company logo
From moments to sparse representations,
a geometric, algebraic and algorithmic viewpoint
Bernard Mourrain
Inria M´editerran´ee, Sophia Antipolis
Bernard.Mourrain@inria.fr
Part II
Decomposition algorithms
1 Decomposition algorithms
2 Low rank classification
3 The variety of missing moments
B. Mourrain From moments to sparse representations 2 / 39
Decomposition algorithms
Univariate series:
Kronecker (1881)
The Hankel operator
Hσ : CN,finite → CN
(pm) → ( m σm+npm)n∈N
is of finite rank r iff ∃ω1, . . . , ωr ∈ C[y] and ξ1, . . . , ξr ∈ C distincts s.t.
σ(y) =
n∈N
σn
yn
n!
=
r
i=1
ωi (y)eξi
(y)
with r
i=1(deg(ωi ) + 1) = r.
B. Mourrain From moments to sparse representations 3 / 39
Decomposition algorithms
Multivariate series:
Theorem (Generalized Kronecker Theorem)
For σ = (σ1, . . . , σm) ∈ (R∗)m, the Hankel operator
Hσ : R → (R∗
)m
p → (p σ1, . . . , p σm)
is of rank r iff
σj =
r
i=1
ωj,i (y) eξi
(y) ∈ PolExp, j = 1, . . . , m
with r = r
i=1 µ(ω1,i , . . . , ωm,i ). In this case, we have
VC(Iσ) = {ξ1, . . . , ξr }.
Iσ = Q1 ∩ · · · ∩ Qr with Q⊥
i = ω1,i , . . . , ωm,i eξi
(y).
If m = 1, Aσ is Gorenstein (A∗
σ = Aσ σ is a free Aσ-module of rank 1)
and (a, b) → σ|ab is non-degenerate in Aσ.
B. Mourrain From moments to sparse representations 4 / 39
Decomposition algorithms
The decomposition from the algebraic structure
Decomposition problem
Given a (truncated) sequence of moments σα, α ∈ A, find
ξi = (ξi,1, ξi,1, . . . , ξi,n) ∈ K
n
disctint, ωi ∈ K. s.t. σ = i ωi eξi
Hankel operator: For σ ∈ R∗,
Hσ : R → R∗
p → p σ
Quotient algebra: Aσ = R/Iσ where Iσ = ker Hσ.
0 → Iσ → K[x]
Hσ
−→ A∗
σ → 0
p → p σ
Isomorphism between Aσ and A∗
σ = I⊥
σ .
(Aσ Gorenstein, i.e. ∃τ = σ ∈ A∗
σ s.t. A∗
σ = Aσ τ is a free Aσ-module).
Find the points ξi as the roots of Iσ and the weights ωi from the
idempotents of Aσ.
B. Mourrain From moments to sparse representations 5 / 39
Decomposition algorithms
The structure of Aσ
For σ = r
i=1 ωi eξi
, with ωi ∈ C  {0} and ξi ∈ Cn distinct.
rank Hσ = r and the multiplicity of the points ξ1, . . . , ξr in V(Iσ) is 1.
For B, B be of size r, HB ,B
σ invertible iff B and B are bases of
Aσ = K[x]/Iσ.
The matrix Mi of multiplication by xi in the basis B of Aσ is such that
HB ,xiB
σ = HB ,B
xi σ = HB ,B
σ Mi
The common eigenvectors of Mi are (up to a scalar) the Lagrange
interpolation polynomials uξi
at the points ξi, i = 1, . . . , r.
uξi
(ξj)=
1 ifi = j,
0 otherwise
uξi
2 ≡ uξi
, r
i=1 uξi
≡ 1.
The common eigenvectors of Mt
i are (up to a scalar) the vectors
[B(ξi)], i = 1, . . . , r.
B. Mourrain From moments to sparse representations 6 / 39
Decomposition algorithms
Decomposition algorithm
Input: The first coefficients (σα)α∈A of the series
σ =
α∈Nn
σα
yα
α!
=
r
i=1
ωi eξi
(y)
1 Compute bases B, B ⊂ xA s.t. that HB ,B invertible and
|B| = |B | = r = dim Aσ;
2 Deduce the tables of multiplications Mi := (HB ,B
σ )−1HB ,xi B
σ
3 Compute the eigenvectors v1, . . . , vr of i li Mi for a generic
l = l1x1 + · · · + lnxn;
4 Deduce the points ξi = (ξi,1, . . . , ξi,n) s.t. Mj vi − ξi,j vi = 0 and the
weights ωi = 1
vi (ξi ) σ|vi .
Output: The decomposition σ = r
i=1
1
vi (ξi ) σ|vi eξi
(y).
B. Mourrain From moments to sparse representations 7 / 39
Decomposition algorithms
Demo
B. Mourrain From moments to sparse representations 8 / 39
Decomposition algorithms
Multivariate Prony method (1)
Let h(t1, t2) = 2 + 3 2t1
2t2
−3t1
, σ = α∈N2 h(α)yα
α! = 2e(1,1)(y) + 3e(2,2)(y)−e(3,1)(y).
Take B = {1, x1, x2} and compute
H0 := HB,B
σ =




h(0, 0) h(1, 0) h(0, 1)
h(1, 0) h(2, 0) h(1, 1)
h(0, 1) h(1, 1) h(0, 2)



 =




4 5 7
5 5 11
7 11 13



,
H1 := HB,x1 B
σ =




5 5 7
5 −1 17
811 178 23



, H2 := HB,x2 B
σ =




7 11 13
11 17 23
13 23 25



 .
Compute the generalized eigenvectors of (aH1 + bH2, H0):
U =




2 −1 0
−1/2 0 1/2
−1/2 1 −1/2



 and H0 U =




2 3 −1
2 × 1 3 × 2 −1 × 3
2 × 1 3 × 2 −1 × 1



 .
This yields the weights 2, 3, −1 and the roots (1, 1), (2, 2), (3, 1).
B. Mourrain From moments to sparse representations 9 / 39
Decomposition algorithms
Multivariate Prony method (2)
h(t1, t2) := r
i=1 ωi ef1t1+f2t2 with
f :=








−0.5 1.0 + 3.141592654 i
0.1 + 21.36283005 i 1.5 + 32.67256360 i
0.1 + 21.36283005 i −0.5 + 79.16813488 i
−2.5 + 145.7698991 i −10.0 + 517.1061508 i








ω :=








1.375328890 + 0.9992349291 i
1.046162168 + 0.3399186938 i
0.9
−9.2








For the sampling [ 1
50, 1
170], B = {1, x1, x2, x1x2}, the SVD of HB,B
σ is
[33.1196344300301391, 14.3767453860219057, 0.244096952193142480, 0.0230734326225932214]
and the computed decomposition is
f
∗
=








−2.49999999703636711 + 145.769899153890435 i −9.9999999913514852 + 517.106150711515852 i
0.0999940670173818935 + 21.3628392917863437 i −0.500045063743692286 + 79.1681566575291527 i
0.100028305341504586 + 21.3628527756206275 i 1.50002358381760881 + 32.6725933609709571 i
−0.499926454593063452 + 0.0000142466247443506387 i 1.00008814016387371 + 3.14161379568963772 i








ω
∗
=








−9.19999999613861696 − 0.00000000772422142913953280 i
0.899999936743709261 − 0.00000156202814849404348 i
1.04615643213670850 + 0.339923495269889020 i
1.37533468654902213 + 0.999231697828891208 i








B. Mourrain From moments to sparse representations 10 / 39
Decomposition algorithms
Sparse interpolation
f (x) = r
i=1 ωi xαi ⇒ σ = γ f (ϕγ) yγ
γ! = r
i=1 ωi eϕαi (y)
Example: f (x1, x2) = x33
1 x12
2 − 5 x1x45
2 + 101.
Compute σα = f (ϕα1
1 , ϕα2
2 ) for α1 + α2 ≤ 3 and ϕ1 = ϕ2 = e
2iπ
50 .
Compute the Hankel matrix H1,2
σ :


97.00000 97.01771 + 3.93695 i 95.50360 − 1.47099 i 98.46280 + 4.88062 i 97.42748 + 1.82098 i 9
97.01771 + 3.93695 i 98.46280 + 4.88062 i 97.42748 + 1.82098 i 102.35770 + 3.77300 i 99.50853 + 5.29465 i 9
95.50360 − 1.47099 i 97.42748 + 1.82098 i 95.73130 − .33862 i 99.50853 + 5.29465 i 95.42134 + 1.47250 i 9
Deduce the decomposition of σ = 3
i=1 ωi eξi
:
Ξ =


0.99211 + 0.12533i 0.80902 − 0.58779i
1.00000 + 4.86234e−11
i 1.00000 − 6.91726e−10
i
−0.53583 − 0.84433i 0.06279 + 0.99803i

 ω =


−5.00000 − 4.43772e−7
i
101.00000 + 4.65640e−7
i
1.00000 − 1.92279e−8
i


and the exponents 50 Ξ
2πi mod 50 of the terms of f :


1.00000 − 0.414119e−7
i −5.00000 + 0.270858e−6
i,
0.386933e−9
+ 0.137963e−8
i −0.550458e−8
− 0.38761e−8
i
−17.00000 − 0.100085e−6
i 12.00000 + 0.700984e−6
i


B. Mourrain From moments to sparse representations 11 / 39
Decomposition algorithms
Symmetric tensor decomposition
τ = (x0 − x1 + 3 x2)
4
+ (x0 + x1 + x2)
4
− 3 (x0 + 2 x1 + 2 x2)
4
= −x0
4
− 24 x0
3
x1 − 8 x0
3
x2 − 60 x0
2
x1
2
− 168 x0
2
x1x2 − 12 x0
2
x2
2
−96 x0x1
3
− 240 x0x1
2
x2 − 384 x0x1x2
2
+ 16 x0x2
3
− 46 x1
4
− 200 x1
3
x2
−228 x1
2
x2
2
− 296 x1x2
3
+ 34 x2
4
τ∗
= e(−1,3)(y) + e(1,1)(y) − 3e(2,2)(y) (by apolarity)
H
2,2
τ∗ :=















−1 −2 −6 −2 −14 −10
−2 −2 −14 4 −32 −20
−6 −14 −10 −32 −20 −24
−2 4 −32 34 −74 −38
−14 −32 −20 −74 −38 −50
−10 −20 −24 −38 −50 −46















For B = {1, x2, x1},
H
B,B
τ∗ =





−1 −2 −6
−2 −2 −14
−6 −14 −10





, H
B,x1B
τ∗ =





−6 −14 −10
−14 −32 −20
−10 −20 −24





, H
B,x2B
τ∗ =





−2 −2 −14
−2 4 −32
−14 −32 −20





B. Mourrain From moments to sparse representations 12 / 39
Decomposition algorithms
The matrix of multiplication by x1 in B = {1, x2, x1} is
M1 = (H
B,B
τ∗ )
−1
H
B,x1B
τ∗ =





0 −2 −2
0 1
2
3
2
1 5
2
3
2





.
Its eigenvalues are [−1, 1, 2] and the eigenvectors:
U :=





0 −2 −1
1
2
3
4
1
2
− 1
2
1
4
1
2





.
that is the polynomials
U(x) = 1
2 x2 − 1
2 x1 −2 + 3
4 x2 + 1
4 x1 −1 + 1
2 x2 + 1
2 x1 .
We deduce the weights and the frequencies:
H
[1,x1,x2],U
τ∗ =





1 1 −3
1 × −1 1 × 1 −3 × 2
1 × 3 1 × 1 −3 × 2





.
Weights: 1, 1, −3; frequencies: (−1, 3), (1, 1), (2, 2).
Decomposition: τ∗
(y) = e(−1,3)(y) + e(1,1)(y) − 3 e(2,2)(y) + (y)4
B. Mourrain From moments to sparse representations 13 / 39
Decomposition algorithms
Phylogenetic trees
Problem: study probability vectors for genes [A, C, G, T]
and the transitions described by Markov matrices Mi .
Example:
Ancestor : A
Transitions : M1 M2 M3
Species : S1 S2 S3
For i1, i2, i3 ∈ {A, C, G, T}, the probability to observe i1, i2, i3 is
pi1,i2,i3 =
4
k=1
πk M1
k,i1
M2
k,i2
M3
k,i3
⇔ p =
4
k=1
πk uk ⊗ vk ⊗ wk
where uk = (M1
k,1, . . . , M1
k,4), vk = (M2
k,1, . . . , M2
k,4), wk = (M3
k,1, . . . , M3
k,4).
p is a tensor ∈ K4 ⊗ K4 ⊗ K4 of rank ≤ 4.
Its decomposition yields the Mi and the ancestor probabibility (πj ).
B. Mourrain From moments to sparse representations 14 / 39
Decomposition algorithms
A general framework
F the functional space, in which the “signal” lives.
S1, . . . , Sn : F → F commuting linear operators: Si ◦ Sj = Sj ◦ Si .
∆ : h ∈ F → ∆[h] ∈ C a linear functional on F.
Generating series associated to h ∈ F:
σh(y) =
α∈Nn
∆[Sα
(h)]
yα
α!
=
α∈Nn
σα
yα
α!
.
Eigenfunctions:
Sj (E) = ξj E, j = 1, . . . , n ⇒ σE = ω eξ(y).
Generalized eigenfunctions:
Sj (Ek ) = ξj Ek +
k <k
mj,k Ek ⇒ σEk
= ωi (y)eξ(y).
If h → σh is injective ⇒ unique decomposition of f as a linear
combination of generalized eigenfunctions.
B. Mourrain From moments to sparse representations 15 / 39
Decomposition algorithms
Sum of polynomial-exponential functions
F = PolExp(x),
Sj : h(x) → h(x1, . . . , xj−1, xj + δj , xj+1, . . . , xn) shift of xj by δj ,
∆ : h(x) → ∆[h] = h(0) the evaluation at 0.
Generating series of h: σh(y) = α∈Nn h(α1δ1, . . . , αnδn) yα
α! .
Eigenfunctions: ef·x; generalized eigenfunctions: ω(x)ef·x;
h(x) = r
i=1 gi (x)efi x + r(x) with gi (x) ∈ C[x], fi ∈ Cn and r(δ α) = 0,
∀α ∈ Nn, iff
σh(y) =
r
i=1
ωi (y)eξi
(y)
with ξi = efi ∈ V(ker Hσh
) ⊂ Cn , ωi (x) = α gi,αωα for gi = α gi,αxα.
Decomposition from the moments σα = h(α1δ1, . . . , αnδn).
B. Mourrain From moments to sparse representations 16 / 39
Decomposition algorithms
Sparse interpolation of PolyLog functions
F = PolyLog(x) = { (β,γ)∈A hβ,γ logβ
(x)xγ, A finite},
Sj : h(x1, . . . , xn) → h(. . . , xj−1, λj xj , xj+1, . . .) for λj ∈ C − {1},
∆ : h(x1, . . . , xn) → ∆[h] = h(1, . . . , 1).
Generating series of h: σh(y) = α∈Nn h(λα1
1 , . . . , λαn
n ) yα
α! .
Eigenfunctions: xγ; generalized eigenfunctions: logβ
(x)xγ.
h = r
i=1 β∈Bi
ωi,β logβ
(x) xγi iff the generating series σh is of the form
σh(y) =
r
i=1
ωi (y)eξi
(y)
with ξi = (λ
γi,1
1 , . . . , λ
γi,n
n ) ∈ Cn and ωi (y) = β∈Bi
ωi,βyβ ∈ C[y].
Decomposition from the moments σα = h(λα1
1 , . . . , λαn
n ).
B. Mourrain From moments to sparse representations 17 / 39
Decomposition algorithms
Sparse reconstruction from Fourier coefficients
F = L2(Ω);
Si : h(x) ∈ L2(Ω) → e
2π
xi
Ti h(x) ∈ L2(Ω) is the multiplication by e
2π
xi
Ti ;
∆ : h(x) ∈ OC → h(x)dx ∈ C.
The moments of f are
σγ =
1
n
j=1 Tj
f (x)e
−2πi n
j=1
γj xj
Tj dx
Eigenfunctions: δξ; generalized eigenfunctions: δ
(α)
ξ .
For f ∈ L2(Ω) and σ = (σγ)γ∈Zn its Fourier coefficients,
Γσ : (ρβ)β∈Zn ∈ L2
(Zn
) →


β
σα+βρβ


α∈Zn
∈ L2
(Zn
).
Γσ is of finite rank r if and only if f = r
i=1 α∈Ai ⊂Nn ωi,αδ
(α)
ξi
with
ξi = (ξi,1, . . . , ξi,n) ∈ Ω, ωi,α ∈ C and r = r
i=1 µ( α∈Ai
ωi,αyα)
B. Mourrain From moments to sparse representations 18 / 39
Decomposition algorithms
Other applications
Decomposition of measures as sums of spikes from moments (images,
spectroscopy, radar, astronomy, . . . )
Decomposition of convolution operators of finite rank
Vanishing ideal of points: σ = r
i=1 eξi
(y)
Change of ordering for Grobner bases or change of bases for
zero-dimensional ideals: σα = u, N(xα) ,
. . .
B. Mourrain From moments to sparse representations 19 / 39
Low rank classification
1 Decomposition algorithms
2 Low rank classification
3 The variety of missing moments
B. Mourrain From moments to sparse representations 20 / 39
Low rank classification
Low rank decomposition of Hankel matrices
Rank 1 Hankel matrices: Hξ = [ξα+β]α∈A,β∈B for some ξ ∈ Kn or Pn.
Rank r Hankel matrices are not necessarily the sum of r rank one Hankel
matrices.


0 1 0
1 0 0
0 0 0

 = λ1


1 ξ1 ξ2
1
ξ1 ξ2
1 ξ3
1
ξ2
1 ξ3
1 ξ4
1

 + λ2


1 ξ2 ξ2
2
ξ2 ξ2
2 ξ3
2
ξ2
2 ξ3
2 ξ4
2


but


0 1 0
1 0 0
0 0 0

 = lim
→0
1
2


1 2
2 3
2 3 4

 −
1
2


1 − 2
− 2
− 3
2
− 3 4


Symbol: y = lim →0
1
2 (e y − e− y ).
B. Mourrain From moments to sparse representations 21 / 39
Low rank classification
Structured Low rank Decomposition
Decomposition in sum of Hankel operators associated to symbols
ω(y)eξ(y) with ω(y) ∈ K[y], ξ ∈ Cn.
σ = r
i=1 ωi eξi
(y) ⇒
HA,B
σ = VA(ξ1, . . . , ξr ) ∆(ω1, . . . , ωr ) VB(ξ1, . . . , ξr )t
HA,B
g σ = VA(ξ1, . . . , ξr ) ∆(ω1g(ξ1), . . . , ωr g(ξr )) VB(ξ1, . . . , ξr )t
where VA(ξ1, . . . , ξr ) = [ξαi
j ]1≤i≤|A|,1≤j≤r , ∆(· · · ) diagonal matrix.
σ = r
i=1 ωi (y) eξi
(y) ⇒
HA,B
σ = WA;Γ(ξ)∆Γ
ωWB;Γ(ξ)t
HA,B
g σ = WA;Γ(ξ)∆Γ
g ωWB;Γ(ξ)t
where WA;Γ(ξ) Wronskian, ∆Γ
g ω block diagonal.
B. Mourrain From moments to sparse representations 22 / 39
Low rank classification
Symmetric tensors of low rank (joint work with A. Oneto)
For ψ ∈ Sd of degree d, with a decomposition ψ = r
i=1 ξi , x d and for
0 ≤ k ≤ d − k,
Hd−k,k
ψ∗ = Vd−k(Ξ) V t
k (Ξ)
where Ξ = (ξ1, . . . , ξr ) ∈ (Kn+1)r , Vk(Ξ) is the Vandermonde matrix of Ξ
at the monomials of deg. k.
Notation
ψ⊥
k = ker Hd−k,k
ψ∗
h(k) = dim Sk/ψ⊥
k = rankHd−k,k
ψ∗
I(Ξ) defining ideal of the points Ξ
Apolarity lemma
Ξ is apolar to ψ (i.e. appears in a decomposition of ψ) iff I(Ξ)k ⊂ ψ⊥
k for
any k ∈ N.
Proof. ψ∗ ∈ eξ1 , . . . , eξr ⊂ S∗
d .
B. Mourrain From moments to sparse representations 23 / 39
Low rank classification
The regularity of Ξ is ρ(Ξ) = min{k ∈ N | ∃u1, . . . , ur ∈ Sk s.t. ui (ξj ) = δi,j }.
Regularity lemma
Let ψ ∈ Sd and let Ξ be a minimal set of points apolar to ψ. Then,
I(Ξ)k = ψ⊥
k for 0 ≤ k ≤ d − ρ(Ξ).
Proof. ψ⊥
k = ker Hd−k,k
ψ∗ = Vd−k(Ξ) V t
k (Ξ), I(Ξ)k = ker V t
k (Ξ) and
Vd−k(Ξ) injective for d − k ≥ ρ(Ξ).
Theorem
Let ψ ∈ Sd and let Ξ be a minimal set of points apolar to ψ. If
d ≥ 2ρ(Ξ) + 1, then
I(Ξ) = (ψ⊥
≤ρ(Ξ)+1).
Moreover, Ξ is the unique minimal set of points apolar to ψ.
B. Mourrain From moments to sparse representations 24 / 39
Low rank classification
A set of essential variables of ψ is a minimal set of linear
forms 1, . . . , N ∈ S, such that ψ ∈ C[ 1, . . . , N].
Proposition
[Car06] the number of essential variables is hψ(1);
[CC017] any minimal decomposition of ψ involves only linear forms
in the essential variables.
The Waring locus of ψ is the locus of linear forms that can appear in a
minimal decomposition of ψ, i.e.,
Wψ := [ ] ∈ P(S1) | ∃ 2, . . . , r , r = rank(ψ), s.t. ψ ∈ d
, d
2 , . . . , d
r ;
The complement is forbidden locus denoted Fψ := Pn  Wψ.
B. Mourrain From moments to sparse representations 25 / 39
Low rank classification
Tensor with 2 essential variables (Sylvester method)
Let ψ(x0, x1) ∈ Sd = K[x0, x1]d .
The Hilbert function of Aψ∗ is of the form:
with (ψ⊥) = (G1, G2) of degree 0 ≤ d1 ≤ d2 ≤ d with d1 + d2 = d + 2.
If G1 has simple roots, then ψ is of rank d1 = deg(G1) and the roots
of G1 are the unique minimal set apolar to ψ.
Otherwise, ψ is of rank d2 = deg(G2) and Wψ is dense in P1. For a
generic choice of A ∈ Sd2−d1 , the roots of AG1 + G2 are a minimal set
apolar to ψ.
B. Mourrain From moments to sparse representations 26 / 39
Low rank classification
Cases of rank 4
(a)
Collinear
(b) Coplanar,
with 3 collinear.
(c) General
coplanar.
(d) General
points.
B. Mourrain From moments to sparse representations 27 / 39
Low rank classification
For ψ ∈ Sd of rank 4.
ψ has two essential variables (hψ(1) = 2):
ψ⊥ = (L1, . . . , Ln−1, G1, G2), where deg(Gi ) = di and
d1 ≤ d2. In particular, it has to be d ≥ 4 and:
(i) if d = 4, 5, 6, then d2 = 4, and minimal apolar sets
of points are defined by ideals
I(Ξ) = (L1, . . . , Ln−1, HG1 + αG2), for a general
choice of H ∈ T6−d and α ∈ C;
(ii) if d ≥ 7, then d1 = 4 and the unique minimal
apolar set of points is given by
I(Ξ) = (L1, . . . , Ln−1, G1).
B. Mourrain From moments to sparse representations 28 / 39
Low rank classification
ψ has three essential variables (hψ(1) = 3) and a
minimal apolar set Ξ of type (b):
(i) if d = 3, then V(ψ⊥
2 ) = P + D, where P is a
reduced point and D is connected scheme of
length 2 whose linear span is a line LD;
Any minimal apolar set is of the type P ∪ Ξ , with
Ξ ⊂ LD;
(ii) if d = 4, then hψ(2) = 4, V(ψ⊥
2 ) = P ∪ L, where P
is a reduced point and L is a line not passing
through P;
Any minimal apolar set is of the type P ∪ Ξ ,
where Ξ ⊂ L.
(iii) if d ≥ 5, then hψ(2) = 4, V(ψ⊥
2 ) = P ∪ L, where P
is a reduced point and L is a line not passing
through P and (ψ⊥
3 ) defines the unique minimal
apolar set.
B. Mourrain From moments to sparse representations 29 / 39
Low rank classification
ψ has three essential variables (hψ(1) = 3) and a
minimal apolar set Ξ of type (c):
(i) if d = 3, then V(ψ⊥
2 ) = ∅ and Wψ is dense in the
plane of essential variables;
(ii) if d ≥ 4, there is a unique minimal apolar set of
points given by I(Ξ) = (ψ⊥
2 ).
ψ has four essential variables:
there is a unique minimal apolar set of points given by
I(Ξ) = (ψ⊥
2 ).
B. Mourrain From moments to sparse representations 30 / 39
Low rank classification
Classification/algorithm for rank ≤ 5
B. Mourrain From moments to sparse representations 31 / 39

More Related Content

PDF
From moments to sparse representations, a geometric, algebraic and algorithmi...
BernardMourrain
 
DOCX
Unit iv complex integration
Babu Rao
 
PPT
Numerical differentiation integration
Tarun Gehlot
 
PDF
Numerical integration based on the hyperfunction theory
HidenoriOgata
 
PPTX
267 1 3 d coordinate system-n
math260
 
PPTX
Unit1
manojsingh786
 
PPT
Gaussian Integration
Reza Rahimi
 
PPTX
Cauchy integral theorem &amp; formula (complex variable & numerical method )
Digvijaysinh Gohil
 
From moments to sparse representations, a geometric, algebraic and algorithmi...
BernardMourrain
 
Unit iv complex integration
Babu Rao
 
Numerical differentiation integration
Tarun Gehlot
 
Numerical integration based on the hyperfunction theory
HidenoriOgata
 
267 1 3 d coordinate system-n
math260
 
Gaussian Integration
Reza Rahimi
 
Cauchy integral theorem &amp; formula (complex variable & numerical method )
Digvijaysinh Gohil
 

What's hot (12)

PDF
Finite elements : basis functions
Tarun Gehlot
 
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Rai University
 
PDF
Calculo Diferencial
Juan Alejandro Alvarez Agudelo
 
PPT
Complex varible
Naveen Sihag
 
PPT
1519 differentiation-integration-02
Dr Fereidoun Dejahang
 
PPTX
Equation of second degree
M M ALAMGIR HOSSAIN
 
PPT
Mathematics and History of Complex Variables
Solo Hermelin
 
PDF
Gaussian quadratures
Tarun Gehlot
 
PDF
Integration in the complex plane
Amit Amola
 
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Rai University
 
PPT
Another possibility
Css Founder
 
PPT
complex variable PPT ( SEM 2 / CH -2 / GTU)
tejaspatel1997
 
Finite elements : basis functions
Tarun Gehlot
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Rai University
 
Calculo Diferencial
Juan Alejandro Alvarez Agudelo
 
Complex varible
Naveen Sihag
 
1519 differentiation-integration-02
Dr Fereidoun Dejahang
 
Equation of second degree
M M ALAMGIR HOSSAIN
 
Mathematics and History of Complex Variables
Solo Hermelin
 
Gaussian quadratures
Tarun Gehlot
 
Integration in the complex plane
Amit Amola
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Rai University
 
Another possibility
Css Founder
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
tejaspatel1997
 
Ad

Similar to From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint. B. Mourrain. Part 2 (20)

PDF
Quantum Field Theory Problem Solutions (Mark Srednicki) (Z-Library).pdf
HalimLakehal
 
PDF
Applications of Differential Calculus in real life
OlooPundit
 
PDF
(6) Hyperbola (Theory).Module-3pdf
RajuSingh806014
 
PPTX
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
PPTX
Interpolation In Numerical Methods.
Abu Kaisar
 
PPTX
Resurgence2020-Sueishi análise wkb com in
vadfilho
 
PDF
PPT HERMITE BY DR. RAJESH MATHPAL-converted.pdf
rubyshias
 
PDF
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
Bagalkot
 
PPTX
Numerical Methods: Solution of Algebraic Equations
AwiMuh
 
PPTX
Physical Chemistry Assignment Help
Edu Assignment Help
 
PPT
10 Coordinate Geometry Math Concepts .ppt
ManojWilson1
 
PPTX
Equation of second degree
M M ALAMGIR HOSSAIN
 
PDF
Numerical solution of the Schr¨odinger equation
Mohamed Ramadan
 
PDF
Mit2 092 f09_lec05
Rahman Hakim
 
PDF
Calculo integral - Larson
Juan Alejandro Alvarez Agudelo
 
PDF
Fourier 3
nugon
 
DOCX
TRIGONOMETRY
shahzadebaujiti
 
PPTX
persamaan trigonometri A COS X + B SIN X
ayyurah2004
 
DOC
Midterm Study Guide
vhiggins1
 
PDF
Andrei rusu-2013-amaa-workshop
Andries Rusu
 
Quantum Field Theory Problem Solutions (Mark Srednicki) (Z-Library).pdf
HalimLakehal
 
Applications of Differential Calculus in real life
OlooPundit
 
(6) Hyperbola (Theory).Module-3pdf
RajuSingh806014
 
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
Interpolation In Numerical Methods.
Abu Kaisar
 
Resurgence2020-Sueishi análise wkb com in
vadfilho
 
PPT HERMITE BY DR. RAJESH MATHPAL-converted.pdf
rubyshias
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
Bagalkot
 
Numerical Methods: Solution of Algebraic Equations
AwiMuh
 
Physical Chemistry Assignment Help
Edu Assignment Help
 
10 Coordinate Geometry Math Concepts .ppt
ManojWilson1
 
Equation of second degree
M M ALAMGIR HOSSAIN
 
Numerical solution of the Schr¨odinger equation
Mohamed Ramadan
 
Mit2 092 f09_lec05
Rahman Hakim
 
Calculo integral - Larson
Juan Alejandro Alvarez Agudelo
 
Fourier 3
nugon
 
TRIGONOMETRY
shahzadebaujiti
 
persamaan trigonometri A COS X + B SIN X
ayyurah2004
 
Midterm Study Guide
vhiggins1
 
Andrei rusu-2013-amaa-workshop
Andries Rusu
 
Ad

Recently uploaded (20)

PPTX
Internal Capsule_Divisions_fibres_lesions
muralinath2
 
PPTX
Role of GIS in precision farming.pptx
BikramjitDeuri
 
PPTX
Pengenalan Sel dan organisasi kehidupanpptx
SuntiEkaprawesti1
 
PPTX
Nanofertilizer: Its potential benefits and associated challenges.pptx
BikramjitDeuri
 
PPT
1. Basic Principles of Medical Microbiology Part 1.ppt
separatedwalk
 
PPT
1a. Basic Principles of Medical Microbiology Part 2 [Autosaved].ppt
separatedwalk
 
PDF
Control and coordination Class 10 Chapter 6
LataHolkar
 
PDF
Migrating Katalon Studio Tests to Playwright with Model Driven Engineering
ESUG
 
PPTX
Q1_Science 8_Week4-Day 5.pptx science re
AizaRazonado
 
PPTX
Hydrocarbons Pollution. OIL pollutionpptx
AkCreation33
 
PDF
Drones in Disaster Response: Real-Time Data Collection and Analysis (www.kiu...
publication11
 
PPTX
Evolution of diet breadth in herbivorus insects.pptx
Mr. Suresh R. Jambagi
 
PDF
Renewable Energy Resources (Solar, Wind, Nuclear, Geothermal) Presentation
RimshaNaeem23
 
PPTX
The Obesity Paradox. Friend or Foe ?pptx
drdgd1972
 
PDF
NSF-DOE Vera C. Rubin Observatory Observations of Interstellar Comet 3I/ATLAS...
Sérgio Sacani
 
PPTX
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
PDF
JADESreveals a large population of low mass black holes at high redshift
Sérgio Sacani
 
PPTX
The Toxic Effects of Aflatoxin B1 and Aflatoxin M1 on Kidney through Regulati...
OttokomaBonny
 
PPTX
Qualification of.UV visible spectrophotometer pptx
shrutipandit17
 
PPTX
Feeding stratagey for climate change dairy animals.
Dr.Zulfy haq
 
Internal Capsule_Divisions_fibres_lesions
muralinath2
 
Role of GIS in precision farming.pptx
BikramjitDeuri
 
Pengenalan Sel dan organisasi kehidupanpptx
SuntiEkaprawesti1
 
Nanofertilizer: Its potential benefits and associated challenges.pptx
BikramjitDeuri
 
1. Basic Principles of Medical Microbiology Part 1.ppt
separatedwalk
 
1a. Basic Principles of Medical Microbiology Part 2 [Autosaved].ppt
separatedwalk
 
Control and coordination Class 10 Chapter 6
LataHolkar
 
Migrating Katalon Studio Tests to Playwright with Model Driven Engineering
ESUG
 
Q1_Science 8_Week4-Day 5.pptx science re
AizaRazonado
 
Hydrocarbons Pollution. OIL pollutionpptx
AkCreation33
 
Drones in Disaster Response: Real-Time Data Collection and Analysis (www.kiu...
publication11
 
Evolution of diet breadth in herbivorus insects.pptx
Mr. Suresh R. Jambagi
 
Renewable Energy Resources (Solar, Wind, Nuclear, Geothermal) Presentation
RimshaNaeem23
 
The Obesity Paradox. Friend or Foe ?pptx
drdgd1972
 
NSF-DOE Vera C. Rubin Observatory Observations of Interstellar Comet 3I/ATLAS...
Sérgio Sacani
 
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
JADESreveals a large population of low mass black holes at high redshift
Sérgio Sacani
 
The Toxic Effects of Aflatoxin B1 and Aflatoxin M1 on Kidney through Regulati...
OttokomaBonny
 
Qualification of.UV visible spectrophotometer pptx
shrutipandit17
 
Feeding stratagey for climate change dairy animals.
Dr.Zulfy haq
 

From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint. B. Mourrain. Part 2

  • 1. From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint Bernard Mourrain Inria M´editerran´ee, Sophia Antipolis [email protected] Part II
  • 2. Decomposition algorithms 1 Decomposition algorithms 2 Low rank classification 3 The variety of missing moments B. Mourrain From moments to sparse representations 2 / 39
  • 3. Decomposition algorithms Univariate series: Kronecker (1881) The Hankel operator Hσ : CN,finite → CN (pm) → ( m σm+npm)n∈N is of finite rank r iff ∃ω1, . . . , ωr ∈ C[y] and ξ1, . . . , ξr ∈ C distincts s.t. σ(y) = n∈N σn yn n! = r i=1 ωi (y)eξi (y) with r i=1(deg(ωi ) + 1) = r. B. Mourrain From moments to sparse representations 3 / 39
  • 4. Decomposition algorithms Multivariate series: Theorem (Generalized Kronecker Theorem) For σ = (σ1, . . . , σm) ∈ (R∗)m, the Hankel operator Hσ : R → (R∗ )m p → (p σ1, . . . , p σm) is of rank r iff σj = r i=1 ωj,i (y) eξi (y) ∈ PolExp, j = 1, . . . , m with r = r i=1 µ(ω1,i , . . . , ωm,i ). In this case, we have VC(Iσ) = {ξ1, . . . , ξr }. Iσ = Q1 ∩ · · · ∩ Qr with Q⊥ i = ω1,i , . . . , ωm,i eξi (y). If m = 1, Aσ is Gorenstein (A∗ σ = Aσ σ is a free Aσ-module of rank 1) and (a, b) → σ|ab is non-degenerate in Aσ. B. Mourrain From moments to sparse representations 4 / 39
  • 5. Decomposition algorithms The decomposition from the algebraic structure Decomposition problem Given a (truncated) sequence of moments σα, α ∈ A, find ξi = (ξi,1, ξi,1, . . . , ξi,n) ∈ K n disctint, ωi ∈ K. s.t. σ = i ωi eξi Hankel operator: For σ ∈ R∗, Hσ : R → R∗ p → p σ Quotient algebra: Aσ = R/Iσ where Iσ = ker Hσ. 0 → Iσ → K[x] Hσ −→ A∗ σ → 0 p → p σ Isomorphism between Aσ and A∗ σ = I⊥ σ . (Aσ Gorenstein, i.e. ∃τ = σ ∈ A∗ σ s.t. A∗ σ = Aσ τ is a free Aσ-module).
  • 6. Find the points ξi as the roots of Iσ and the weights ωi from the idempotents of Aσ. B. Mourrain From moments to sparse representations 5 / 39
  • 7. Decomposition algorithms The structure of Aσ For σ = r i=1 ωi eξi , with ωi ∈ C {0} and ξi ∈ Cn distinct. rank Hσ = r and the multiplicity of the points ξ1, . . . , ξr in V(Iσ) is 1. For B, B be of size r, HB ,B σ invertible iff B and B are bases of Aσ = K[x]/Iσ. The matrix Mi of multiplication by xi in the basis B of Aσ is such that HB ,xiB σ = HB ,B xi σ = HB ,B σ Mi The common eigenvectors of Mi are (up to a scalar) the Lagrange interpolation polynomials uξi at the points ξi, i = 1, . . . , r. uξi (ξj)= 1 ifi = j, 0 otherwise uξi 2 ≡ uξi , r i=1 uξi ≡ 1. The common eigenvectors of Mt i are (up to a scalar) the vectors [B(ξi)], i = 1, . . . , r. B. Mourrain From moments to sparse representations 6 / 39
  • 8. Decomposition algorithms Decomposition algorithm Input: The first coefficients (σα)α∈A of the series σ = α∈Nn σα yα α! = r i=1 ωi eξi (y) 1 Compute bases B, B ⊂ xA s.t. that HB ,B invertible and |B| = |B | = r = dim Aσ; 2 Deduce the tables of multiplications Mi := (HB ,B σ )−1HB ,xi B σ 3 Compute the eigenvectors v1, . . . , vr of i li Mi for a generic l = l1x1 + · · · + lnxn; 4 Deduce the points ξi = (ξi,1, . . . , ξi,n) s.t. Mj vi − ξi,j vi = 0 and the weights ωi = 1 vi (ξi ) σ|vi . Output: The decomposition σ = r i=1 1 vi (ξi ) σ|vi eξi (y). B. Mourrain From moments to sparse representations 7 / 39
  • 9. Decomposition algorithms Demo B. Mourrain From moments to sparse representations 8 / 39
  • 10. Decomposition algorithms Multivariate Prony method (1) Let h(t1, t2) = 2 + 3 2t1 2t2 −3t1 , σ = α∈N2 h(α)yα α! = 2e(1,1)(y) + 3e(2,2)(y)−e(3,1)(y). Take B = {1, x1, x2} and compute H0 := HB,B σ =     h(0, 0) h(1, 0) h(0, 1) h(1, 0) h(2, 0) h(1, 1) h(0, 1) h(1, 1) h(0, 2)     =     4 5 7 5 5 11 7 11 13    , H1 := HB,x1 B σ =     5 5 7 5 −1 17 811 178 23    , H2 := HB,x2 B σ =     7 11 13 11 17 23 13 23 25     . Compute the generalized eigenvectors of (aH1 + bH2, H0): U =     2 −1 0 −1/2 0 1/2 −1/2 1 −1/2     and H0 U =     2 3 −1 2 × 1 3 × 2 −1 × 3 2 × 1 3 × 2 −1 × 1     . This yields the weights 2, 3, −1 and the roots (1, 1), (2, 2), (3, 1). B. Mourrain From moments to sparse representations 9 / 39
  • 11. Decomposition algorithms Multivariate Prony method (2) h(t1, t2) := r i=1 ωi ef1t1+f2t2 with f :=         −0.5 1.0 + 3.141592654 i 0.1 + 21.36283005 i 1.5 + 32.67256360 i 0.1 + 21.36283005 i −0.5 + 79.16813488 i −2.5 + 145.7698991 i −10.0 + 517.1061508 i         ω :=         1.375328890 + 0.9992349291 i 1.046162168 + 0.3399186938 i 0.9 −9.2         For the sampling [ 1 50, 1 170], B = {1, x1, x2, x1x2}, the SVD of HB,B σ is [33.1196344300301391, 14.3767453860219057, 0.244096952193142480, 0.0230734326225932214] and the computed decomposition is f ∗ =         −2.49999999703636711 + 145.769899153890435 i −9.9999999913514852 + 517.106150711515852 i 0.0999940670173818935 + 21.3628392917863437 i −0.500045063743692286 + 79.1681566575291527 i 0.100028305341504586 + 21.3628527756206275 i 1.50002358381760881 + 32.6725933609709571 i −0.499926454593063452 + 0.0000142466247443506387 i 1.00008814016387371 + 3.14161379568963772 i         ω ∗ =         −9.19999999613861696 − 0.00000000772422142913953280 i 0.899999936743709261 − 0.00000156202814849404348 i 1.04615643213670850 + 0.339923495269889020 i 1.37533468654902213 + 0.999231697828891208 i         B. Mourrain From moments to sparse representations 10 / 39
  • 12. Decomposition algorithms Sparse interpolation f (x) = r i=1 ωi xαi ⇒ σ = γ f (ϕγ) yγ γ! = r i=1 ωi eϕαi (y) Example: f (x1, x2) = x33 1 x12 2 − 5 x1x45 2 + 101. Compute σα = f (ϕα1 1 , ϕα2 2 ) for α1 + α2 ≤ 3 and ϕ1 = ϕ2 = e 2iπ 50 . Compute the Hankel matrix H1,2 σ :   97.00000 97.01771 + 3.93695 i 95.50360 − 1.47099 i 98.46280 + 4.88062 i 97.42748 + 1.82098 i 9 97.01771 + 3.93695 i 98.46280 + 4.88062 i 97.42748 + 1.82098 i 102.35770 + 3.77300 i 99.50853 + 5.29465 i 9 95.50360 − 1.47099 i 97.42748 + 1.82098 i 95.73130 − .33862 i 99.50853 + 5.29465 i 95.42134 + 1.47250 i 9 Deduce the decomposition of σ = 3 i=1 ωi eξi : Ξ =   0.99211 + 0.12533i 0.80902 − 0.58779i 1.00000 + 4.86234e−11 i 1.00000 − 6.91726e−10 i −0.53583 − 0.84433i 0.06279 + 0.99803i   ω =   −5.00000 − 4.43772e−7 i 101.00000 + 4.65640e−7 i 1.00000 − 1.92279e−8 i   and the exponents 50 Ξ 2πi mod 50 of the terms of f :   1.00000 − 0.414119e−7 i −5.00000 + 0.270858e−6 i, 0.386933e−9 + 0.137963e−8 i −0.550458e−8 − 0.38761e−8 i −17.00000 − 0.100085e−6 i 12.00000 + 0.700984e−6 i   B. Mourrain From moments to sparse representations 11 / 39
  • 13. Decomposition algorithms Symmetric tensor decomposition τ = (x0 − x1 + 3 x2) 4 + (x0 + x1 + x2) 4 − 3 (x0 + 2 x1 + 2 x2) 4 = −x0 4 − 24 x0 3 x1 − 8 x0 3 x2 − 60 x0 2 x1 2 − 168 x0 2 x1x2 − 12 x0 2 x2 2 −96 x0x1 3 − 240 x0x1 2 x2 − 384 x0x1x2 2 + 16 x0x2 3 − 46 x1 4 − 200 x1 3 x2 −228 x1 2 x2 2 − 296 x1x2 3 + 34 x2 4 τ∗ = e(−1,3)(y) + e(1,1)(y) − 3e(2,2)(y) (by apolarity) H 2,2 τ∗ :=                −1 −2 −6 −2 −14 −10 −2 −2 −14 4 −32 −20 −6 −14 −10 −32 −20 −24 −2 4 −32 34 −74 −38 −14 −32 −20 −74 −38 −50 −10 −20 −24 −38 −50 −46                For B = {1, x2, x1}, H B,B τ∗ =      −1 −2 −6 −2 −2 −14 −6 −14 −10      , H B,x1B τ∗ =      −6 −14 −10 −14 −32 −20 −10 −20 −24      , H B,x2B τ∗ =      −2 −2 −14 −2 4 −32 −14 −32 −20      B. Mourrain From moments to sparse representations 12 / 39
  • 14. Decomposition algorithms The matrix of multiplication by x1 in B = {1, x2, x1} is M1 = (H B,B τ∗ ) −1 H B,x1B τ∗ =      0 −2 −2 0 1 2 3 2 1 5 2 3 2      . Its eigenvalues are [−1, 1, 2] and the eigenvectors: U :=      0 −2 −1 1 2 3 4 1 2 − 1 2 1 4 1 2      . that is the polynomials U(x) = 1 2 x2 − 1 2 x1 −2 + 3 4 x2 + 1 4 x1 −1 + 1 2 x2 + 1 2 x1 . We deduce the weights and the frequencies: H [1,x1,x2],U τ∗ =      1 1 −3 1 × −1 1 × 1 −3 × 2 1 × 3 1 × 1 −3 × 2      . Weights: 1, 1, −3; frequencies: (−1, 3), (1, 1), (2, 2). Decomposition: τ∗ (y) = e(−1,3)(y) + e(1,1)(y) − 3 e(2,2)(y) + (y)4 B. Mourrain From moments to sparse representations 13 / 39
  • 15. Decomposition algorithms Phylogenetic trees Problem: study probability vectors for genes [A, C, G, T] and the transitions described by Markov matrices Mi . Example: Ancestor : A Transitions : M1 M2 M3 Species : S1 S2 S3 For i1, i2, i3 ∈ {A, C, G, T}, the probability to observe i1, i2, i3 is pi1,i2,i3 = 4 k=1 πk M1 k,i1 M2 k,i2 M3 k,i3 ⇔ p = 4 k=1 πk uk ⊗ vk ⊗ wk where uk = (M1 k,1, . . . , M1 k,4), vk = (M2 k,1, . . . , M2 k,4), wk = (M3 k,1, . . . , M3 k,4).
  • 16. p is a tensor ∈ K4 ⊗ K4 ⊗ K4 of rank ≤ 4.
  • 17. Its decomposition yields the Mi and the ancestor probabibility (πj ). B. Mourrain From moments to sparse representations 14 / 39
  • 18. Decomposition algorithms A general framework F the functional space, in which the “signal” lives. S1, . . . , Sn : F → F commuting linear operators: Si ◦ Sj = Sj ◦ Si . ∆ : h ∈ F → ∆[h] ∈ C a linear functional on F. Generating series associated to h ∈ F: σh(y) = α∈Nn ∆[Sα (h)] yα α! = α∈Nn σα yα α! . Eigenfunctions: Sj (E) = ξj E, j = 1, . . . , n ⇒ σE = ω eξ(y). Generalized eigenfunctions: Sj (Ek ) = ξj Ek + k <k mj,k Ek ⇒ σEk = ωi (y)eξ(y).
  • 19. If h → σh is injective ⇒ unique decomposition of f as a linear combination of generalized eigenfunctions. B. Mourrain From moments to sparse representations 15 / 39
  • 20. Decomposition algorithms Sum of polynomial-exponential functions F = PolExp(x), Sj : h(x) → h(x1, . . . , xj−1, xj + δj , xj+1, . . . , xn) shift of xj by δj , ∆ : h(x) → ∆[h] = h(0) the evaluation at 0. Generating series of h: σh(y) = α∈Nn h(α1δ1, . . . , αnδn) yα α! . Eigenfunctions: ef·x; generalized eigenfunctions: ω(x)ef·x; h(x) = r i=1 gi (x)efi x + r(x) with gi (x) ∈ C[x], fi ∈ Cn and r(δ α) = 0, ∀α ∈ Nn, iff σh(y) = r i=1 ωi (y)eξi (y) with ξi = efi ∈ V(ker Hσh ) ⊂ Cn , ωi (x) = α gi,αωα for gi = α gi,αxα.
  • 21. Decomposition from the moments σα = h(α1δ1, . . . , αnδn). B. Mourrain From moments to sparse representations 16 / 39
  • 22. Decomposition algorithms Sparse interpolation of PolyLog functions F = PolyLog(x) = { (β,γ)∈A hβ,γ logβ (x)xγ, A finite}, Sj : h(x1, . . . , xn) → h(. . . , xj−1, λj xj , xj+1, . . .) for λj ∈ C − {1}, ∆ : h(x1, . . . , xn) → ∆[h] = h(1, . . . , 1). Generating series of h: σh(y) = α∈Nn h(λα1 1 , . . . , λαn n ) yα α! . Eigenfunctions: xγ; generalized eigenfunctions: logβ (x)xγ. h = r i=1 β∈Bi ωi,β logβ (x) xγi iff the generating series σh is of the form σh(y) = r i=1 ωi (y)eξi (y) with ξi = (λ γi,1 1 , . . . , λ γi,n n ) ∈ Cn and ωi (y) = β∈Bi ωi,βyβ ∈ C[y].
  • 23. Decomposition from the moments σα = h(λα1 1 , . . . , λαn n ). B. Mourrain From moments to sparse representations 17 / 39
  • 24. Decomposition algorithms Sparse reconstruction from Fourier coefficients F = L2(Ω); Si : h(x) ∈ L2(Ω) → e 2π xi Ti h(x) ∈ L2(Ω) is the multiplication by e 2π xi Ti ; ∆ : h(x) ∈ OC → h(x)dx ∈ C. The moments of f are σγ = 1 n j=1 Tj f (x)e −2πi n j=1 γj xj Tj dx Eigenfunctions: δξ; generalized eigenfunctions: δ (α) ξ . For f ∈ L2(Ω) and σ = (σγ)γ∈Zn its Fourier coefficients, Γσ : (ρβ)β∈Zn ∈ L2 (Zn ) →   β σα+βρβ   α∈Zn ∈ L2 (Zn ). Γσ is of finite rank r if and only if f = r i=1 α∈Ai ⊂Nn ωi,αδ (α) ξi with ξi = (ξi,1, . . . , ξi,n) ∈ Ω, ωi,α ∈ C and r = r i=1 µ( α∈Ai ωi,αyα) B. Mourrain From moments to sparse representations 18 / 39
  • 25. Decomposition algorithms Other applications Decomposition of measures as sums of spikes from moments (images, spectroscopy, radar, astronomy, . . . ) Decomposition of convolution operators of finite rank Vanishing ideal of points: σ = r i=1 eξi (y) Change of ordering for Grobner bases or change of bases for zero-dimensional ideals: σα = u, N(xα) , . . . B. Mourrain From moments to sparse representations 19 / 39
  • 26. Low rank classification 1 Decomposition algorithms 2 Low rank classification 3 The variety of missing moments B. Mourrain From moments to sparse representations 20 / 39
  • 27. Low rank classification Low rank decomposition of Hankel matrices Rank 1 Hankel matrices: Hξ = [ξα+β]α∈A,β∈B for some ξ ∈ Kn or Pn. Rank r Hankel matrices are not necessarily the sum of r rank one Hankel matrices.   0 1 0 1 0 0 0 0 0   = λ1   1 ξ1 ξ2 1 ξ1 ξ2 1 ξ3 1 ξ2 1 ξ3 1 ξ4 1   + λ2   1 ξ2 ξ2 2 ξ2 ξ2 2 ξ3 2 ξ2 2 ξ3 2 ξ4 2   but   0 1 0 1 0 0 0 0 0   = lim →0 1 2   1 2 2 3 2 3 4   − 1 2   1 − 2 − 2 − 3 2 − 3 4   Symbol: y = lim →0 1 2 (e y − e− y ). B. Mourrain From moments to sparse representations 21 / 39
  • 28. Low rank classification Structured Low rank Decomposition Decomposition in sum of Hankel operators associated to symbols ω(y)eξ(y) with ω(y) ∈ K[y], ξ ∈ Cn.
  • 29. σ = r i=1 ωi eξi (y) ⇒ HA,B σ = VA(ξ1, . . . , ξr ) ∆(ω1, . . . , ωr ) VB(ξ1, . . . , ξr )t HA,B g σ = VA(ξ1, . . . , ξr ) ∆(ω1g(ξ1), . . . , ωr g(ξr )) VB(ξ1, . . . , ξr )t where VA(ξ1, . . . , ξr ) = [ξαi j ]1≤i≤|A|,1≤j≤r , ∆(· · · ) diagonal matrix.
  • 30. σ = r i=1 ωi (y) eξi (y) ⇒ HA,B σ = WA;Γ(ξ)∆Γ ωWB;Γ(ξ)t HA,B g σ = WA;Γ(ξ)∆Γ g ωWB;Γ(ξ)t where WA;Γ(ξ) Wronskian, ∆Γ g ω block diagonal. B. Mourrain From moments to sparse representations 22 / 39
  • 31. Low rank classification Symmetric tensors of low rank (joint work with A. Oneto) For ψ ∈ Sd of degree d, with a decomposition ψ = r i=1 ξi , x d and for 0 ≤ k ≤ d − k, Hd−k,k ψ∗ = Vd−k(Ξ) V t k (Ξ) where Ξ = (ξ1, . . . , ξr ) ∈ (Kn+1)r , Vk(Ξ) is the Vandermonde matrix of Ξ at the monomials of deg. k. Notation ψ⊥ k = ker Hd−k,k ψ∗ h(k) = dim Sk/ψ⊥ k = rankHd−k,k ψ∗ I(Ξ) defining ideal of the points Ξ Apolarity lemma Ξ is apolar to ψ (i.e. appears in a decomposition of ψ) iff I(Ξ)k ⊂ ψ⊥ k for any k ∈ N. Proof. ψ∗ ∈ eξ1 , . . . , eξr ⊂ S∗ d . B. Mourrain From moments to sparse representations 23 / 39
  • 32. Low rank classification The regularity of Ξ is ρ(Ξ) = min{k ∈ N | ∃u1, . . . , ur ∈ Sk s.t. ui (ξj ) = δi,j }. Regularity lemma Let ψ ∈ Sd and let Ξ be a minimal set of points apolar to ψ. Then, I(Ξ)k = ψ⊥ k for 0 ≤ k ≤ d − ρ(Ξ). Proof. ψ⊥ k = ker Hd−k,k ψ∗ = Vd−k(Ξ) V t k (Ξ), I(Ξ)k = ker V t k (Ξ) and Vd−k(Ξ) injective for d − k ≥ ρ(Ξ). Theorem Let ψ ∈ Sd and let Ξ be a minimal set of points apolar to ψ. If d ≥ 2ρ(Ξ) + 1, then I(Ξ) = (ψ⊥ ≤ρ(Ξ)+1). Moreover, Ξ is the unique minimal set of points apolar to ψ. B. Mourrain From moments to sparse representations 24 / 39
  • 33. Low rank classification A set of essential variables of ψ is a minimal set of linear forms 1, . . . , N ∈ S, such that ψ ∈ C[ 1, . . . , N]. Proposition [Car06] the number of essential variables is hψ(1); [CC017] any minimal decomposition of ψ involves only linear forms in the essential variables. The Waring locus of ψ is the locus of linear forms that can appear in a minimal decomposition of ψ, i.e., Wψ := [ ] ∈ P(S1) | ∃ 2, . . . , r , r = rank(ψ), s.t. ψ ∈ d , d 2 , . . . , d r ; The complement is forbidden locus denoted Fψ := Pn Wψ. B. Mourrain From moments to sparse representations 25 / 39
  • 34. Low rank classification Tensor with 2 essential variables (Sylvester method) Let ψ(x0, x1) ∈ Sd = K[x0, x1]d . The Hilbert function of Aψ∗ is of the form: with (ψ⊥) = (G1, G2) of degree 0 ≤ d1 ≤ d2 ≤ d with d1 + d2 = d + 2. If G1 has simple roots, then ψ is of rank d1 = deg(G1) and the roots of G1 are the unique minimal set apolar to ψ. Otherwise, ψ is of rank d2 = deg(G2) and Wψ is dense in P1. For a generic choice of A ∈ Sd2−d1 , the roots of AG1 + G2 are a minimal set apolar to ψ. B. Mourrain From moments to sparse representations 26 / 39
  • 35. Low rank classification Cases of rank 4 (a) Collinear (b) Coplanar, with 3 collinear. (c) General coplanar. (d) General points. B. Mourrain From moments to sparse representations 27 / 39
  • 36. Low rank classification For ψ ∈ Sd of rank 4. ψ has two essential variables (hψ(1) = 2): ψ⊥ = (L1, . . . , Ln−1, G1, G2), where deg(Gi ) = di and d1 ≤ d2. In particular, it has to be d ≥ 4 and: (i) if d = 4, 5, 6, then d2 = 4, and minimal apolar sets of points are defined by ideals I(Ξ) = (L1, . . . , Ln−1, HG1 + αG2), for a general choice of H ∈ T6−d and α ∈ C; (ii) if d ≥ 7, then d1 = 4 and the unique minimal apolar set of points is given by I(Ξ) = (L1, . . . , Ln−1, G1). B. Mourrain From moments to sparse representations 28 / 39
  • 37. Low rank classification ψ has three essential variables (hψ(1) = 3) and a minimal apolar set Ξ of type (b): (i) if d = 3, then V(ψ⊥ 2 ) = P + D, where P is a reduced point and D is connected scheme of length 2 whose linear span is a line LD; Any minimal apolar set is of the type P ∪ Ξ , with Ξ ⊂ LD; (ii) if d = 4, then hψ(2) = 4, V(ψ⊥ 2 ) = P ∪ L, where P is a reduced point and L is a line not passing through P; Any minimal apolar set is of the type P ∪ Ξ , where Ξ ⊂ L. (iii) if d ≥ 5, then hψ(2) = 4, V(ψ⊥ 2 ) = P ∪ L, where P is a reduced point and L is a line not passing through P and (ψ⊥ 3 ) defines the unique minimal apolar set. B. Mourrain From moments to sparse representations 29 / 39
  • 38. Low rank classification ψ has three essential variables (hψ(1) = 3) and a minimal apolar set Ξ of type (c): (i) if d = 3, then V(ψ⊥ 2 ) = ∅ and Wψ is dense in the plane of essential variables; (ii) if d ≥ 4, there is a unique minimal apolar set of points given by I(Ξ) = (ψ⊥ 2 ). ψ has four essential variables: there is a unique minimal apolar set of points given by I(Ξ) = (ψ⊥ 2 ). B. Mourrain From moments to sparse representations 30 / 39
  • 39. Low rank classification Classification/algorithm for rank ≤ 5 B. Mourrain From moments to sparse representations 31 / 39
  • 40. Low rank classification High rank and small forbidden locus Definition: generic rank = rank of tensors on a dense open subset of the set of tensors. Theorem (Alexander, Hirschovitz, 1995) The generic rank of a tensor in K[x0, . . . , xn]d is 1 n+1 n+d d , except for d = 2 and (n, d) ∈ {(2, 4), (3, 4), (4, 3), (4, 4)}. Theorem (Oneto,·, 2018) Let g be the generic rank of tensors of degree d in Pn. Let ψ ∈ Sd with r = rank(ψ). If r > g, then Wψ is dense in Pn. B. Mourrain From moments to sparse representations 32 / 39
  • 41. The variety of missing moments 1 Decomposition algorithms 2 Low rank classification 3 The variety of missing moments B. Mourrain From moments to sparse representations 33 / 39
  • 42. The variety of missing moments Flat extension of a truncated moment matrix For (monomial) sets B ⊂ C, B ⊂ C , B = C B, B = C B . HC,C σ = σ | xα+β α∈C,β∈C = HB,B σ HB,B σ HB,B σ HB,B σ , when rank HC,C σ = rank HB,B σ For B ⊂ K[x], let B+ = B ∪ x1B · · · xnB, ∂B = B+ B. Theorem Assume HB,B σ invertible with |B| = |B | = r and C ⊃ B+, C ⊃ B + connected to 1 (m ∈ C ⇒ m = 1 or m = xj m with m ∈ C). HC,C σ is a flat extension of HB,B σ ⇔ The operators Mj := H B,xj B σ (HB,B σ )−1 commute. ⇔ ∃! ˜σ ∈ PolExp s.t. rankH˜σ = r and ˜σ|C·C = σ. B. Mourrain From moments to sparse representations 34 / 39
  • 43. The variety of missing moments Example σ = 8 + 17 z2 − 4 z1 + 15 z2 2 + 14 z1z2 − 16 z2 1 + 47 z3 2 − 6 z1z2 2 +34 z2 1 z2 − 52 z3 1 + 51 z4 2 + 38 z1z3 2 − 18 z2 1 z2 2 + 86 z3 1 z2 − 160 z4 1 moment series ∈ K[[z1, z2]], truncated in degree 4. [H B+,B+ σ ] =                8 −4 17 −16 14 15 −52 34 −6 47 −4 −16 14 −52 34 −6 −160 86 −18 38 17 14 15 34 −6 47 86 −18 38 51 −16 −52 34 −160 86 −18 h1 h2 h3 h4 14 34 −6 86 −18 38 h2 h3 h4 h5 15 −6 47 −18 38 51 h3 h4 h5 h6 −52 −160 86 h1 h2 h3 h7 h8 h9 h10 34 86 −18 h2 h3 h4 h8 h9 h10 h11 −6 −18 38 h3 h4 h5 h9 h10 h11 h12 47 38 51 h4 h5 h6 h10 h11 h12 h13                where B = {1, x1, x2, x2 1 , x1x2, x2 2 }. B. Mourrain From moments to sparse representations 35 / 39
  • 44. The variety of missing moments Flat extension condition: rankHB+,B+ σ ≤ 6 implies    −814592 h2 1 − 1351680 h1h2 − 476864 h1h3 − 599040 h2 2 − 301440 h2h3 − 35072 h2 3 −520892032 h1 − 396821760 h2 − 164529152 h3 + 1693440 h7 − 86394672128 = 0 −814592 h2 2 − 1351680 h2h3 − 476864 h2h4 − 599040 h2 3 − 301440 h3h4 − 35072 h2 4 +335275392 h2 + 257276160 h3 + 96277632 h4 + 1693440 h9 − 34904464128 = 0 . . . −814592 h1h3 − 675840 h1h4 − 238432 h1h5 − 675840 h2h3 − 599040 h2h4 − 150720 h2h5 − 238432 h2 3 −150720 h3h4 − 35072 h3h5 + 6613440 h1 + 6641280 h2 − 264559616 h3 − 198410880 h4 − 82264576 h5 +1693440 h9 + 1312368000 = 0 −814592 h1h4 − 675840 h1h5 − 238432 h1h6 − 675840 h2h4 − 599040 h2h5 − 150720 h2h6 − 238432 h3h4 −150720 h3h5 − 35072 h3h6 + 106430368 h1 + 81349440 h2 + 25713728 h3 − 260446016 h4 −198410880 h5 − 82264576 h6 + 1693440 h10 + 34550702464 = 0 Solution set: an algebraic variety of dimension 3 and degree 52. A solution (among others) is h1 = −484, h2 = 226, h3 = −54, h4 = 82, h5 = −6, h6 = 167, h7 = −1456, h8 = 614, h9 = −162, h10 = 182, h11 = −18, h12 = 134, h13 = 195. Decomposition of rank 6 of the series with these computed moments: σ ≡ (0.517 + 0.044 i) e−0.830+1.593 i,−0.326−0.050 i + (0.517 − 0.044 i) e−0.830−1.593 i,−0.326+0.050 i +2.958 e1.142,0.836 + 4.583 e0.956,−0.713 −(4.288 + 1.119 i) e−0.838+0.130 i,0.060+0.736 i − (4.288 − 1.119 i) e−0.838−0.130 i,0.060−0.736 i B. Mourrain From moments to sparse representations 36 / 39
  • 45. The variety of missing moments General decomposition algorithm [BCMT10], [BS18] Perform a generic change of coordinates ψ (x) = ψ(T x). For r = max rankHk,d−k σ ,. . . For bases B, B of size r, connected to 1 (e.g. B stable by division/Borel fixed stable by division); 1 Find the (unknown) moments of HB + ,B+ Λ s.t. · HB ,B Λ invertible and · the operators Mi = Hxi B ,B Λ (HB ,B Λ )−1 commute. 2 Deduce the decomposition of σ (Algorithm 1). 3 If the roots are simple and the decomposition is valid for the moments of ψ, stop and output a decomposition of ψ; B. Mourrain From moments to sparse representations 37 / 39
  • 46. The variety of missing moments Challenges, open questions Numerical stability, correction of errors, Efficient construction of basis, complexity, Super-resolution, collision of points, Super-extrapolation, Best low rank approximation, ... Thanks for your attention B. Mourrain From moments to sparse representations 38 / 39
  • 47. The variety of missing moments References Alessandra Bernardi, J´erˆome Brachat, Pierre Comon, and Bernard Mourrain. General tensor decomposition, moment matrices and applications. Journal of Symbolic Computation, 52:51–71, 2013. J´erˆome Brachat, Pierre Comon, Bernard Mourrain, and Elias P. Tsigaridas. Symmetric tensor decomposition. Linear Algebra and Applications, 433(11-12):1851–1872, 2010. Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry and geometric modeling, pages 237–247. Springer, 2006. Enrico Carlini, Maria Virginia Catalisano, and Alessandro Oneto. Waring loci and the Strassen conjecture. Advances in Mathematics, 314:630–662, 2017. C´edric Josz, Jean Bernard Lasserre, and Bernard Mourrain. Sparse polynomial interpolation: Compressed sensing, super resolution, or Prony? hal-01575325, ArXiv:1708.06187, August 2017. Monique Laurent and Bernard Mourrain. A generalized flat extension theorem for moment matrices. Archiv der Mathematik, 93(1):87–98, 2009. Bernard Mourrain. Polynomial-Exponential Decomposition from Moments. Foundations of Computational Mathematics, 2017. http://dx.doi.org/10.1007/s10208-017-9372-x. Bernard Mourrain and Alessandro Oneto. On minimal decompositions of low rank symmetric tensors. preprint, https://hal.archives-ouvertes.fr/hal-01803571, May 2018. B. Mourrain From moments to sparse representations 39 / 39