Unlocking the Power of
Generative AI
From Concepts to Real-World Impact
Your Name | Date | Organization
Agenda
• • What is Generative AI?
• • How it Works (Key Technologies)
• • Use Cases Across Industries
• • Risks & Ethical Considerations
• • Future Outlook
• • Q&A
What is Generative AI?
• • AI that generates new content (text, images,
audio, etc.)
• • Examples: ChatGPT, DALL·E, Midjourney,
GitHub Copilot
• • Differentiator: Produces original content, not
just classifications
Brief History
• • 2014: GANs introduced
• • 2017: Transformers (Attention is All You
Need)
• • 2018–2020: GPT, BERT, T5
• • 2022+: Explosion in adoption (ChatGPT, Sora,
Claude, Gemini)
How Does It Work?
• • Data Ingestion: Large-scale datasets
• • Model Types: Transformers, GANs, Diffusion
Models
• • Training: Self-supervised, RLHF
• • Output Generation: Sampling (top-k, top-p)
Use Cases: Text
• • Customer support chatbots
• • Content creation: blogs, emails
• • Code generation: GitHub Copilot
• • Translation, summarization
Use Cases: Images & Audio
• • AI art generation
• • Product design & fashion
• • Voice synthesis, music creation
• • Medical imaging support
Use Cases: Video & 3D
• • Storyboarding, animation (e.g., Sora)
• • Virtual environments (gaming, AR/VR)
• • Architectural visualization
Industry Applications
• Healthcare: Radiology, drug discovery
• Finance: Report automation, fraud detection
• Retail: Personalized ads, product design
• Education: AI tutors, grading help
• Legal: Contract review, summarization
Benefits
• • Speed and scale
• • Personalized experiences
• • Creative ideation support
• • Lower content production costs
Risks and Concerns
• • Misinformation & hallucinations
• • Bias & fairness
• • Deepfakes & synthetic media
• • IP and data privacy issues
Ethical Considerations
• • Human-in-the-loop design
• • Transparency & explainability
• • Responsible AI frameworks
• • Align AI with human values
The Future of Generative AI
• • Multimodal AI (text, image, video)
• • Efficient models on edge devices
• • Open vs. closed-source AI
• • Regulatory landscape evolving
Getting Started
• • Tools: ChatGPT, Midjourney, Copilot, Runway
• • Platforms: Hugging Face, OpenAI, Google
Vertex AI
• • Skills: Prompting, fine-tuning, ethics
Interactive Q&A
• • Live questions or Slido
• • Optional live prompt demo
Final Takeaways
• • Generative AI is powerful and evolving
• • Big opportunities across industries
• • Use responsibly: stay curious, cautious,
collaborative
Thank You
• • Contact: Your Email / LinkedIn
• • Feedback & Resources QR (optional)

Generative_Artificiali_Presentation.pptx

  • 1.
    Unlocking the Powerof Generative AI From Concepts to Real-World Impact Your Name | Date | Organization
  • 2.
    Agenda • • Whatis Generative AI? • • How it Works (Key Technologies) • • Use Cases Across Industries • • Risks & Ethical Considerations • • Future Outlook • • Q&A
  • 3.
    What is GenerativeAI? • • AI that generates new content (text, images, audio, etc.) • • Examples: ChatGPT, DALL·E, Midjourney, GitHub Copilot • • Differentiator: Produces original content, not just classifications
  • 4.
    Brief History • •2014: GANs introduced • • 2017: Transformers (Attention is All You Need) • • 2018–2020: GPT, BERT, T5 • • 2022+: Explosion in adoption (ChatGPT, Sora, Claude, Gemini)
  • 5.
    How Does ItWork? • • Data Ingestion: Large-scale datasets • • Model Types: Transformers, GANs, Diffusion Models • • Training: Self-supervised, RLHF • • Output Generation: Sampling (top-k, top-p)
  • 6.
    Use Cases: Text •• Customer support chatbots • • Content creation: blogs, emails • • Code generation: GitHub Copilot • • Translation, summarization
  • 7.
    Use Cases: Images& Audio • • AI art generation • • Product design & fashion • • Voice synthesis, music creation • • Medical imaging support
  • 8.
    Use Cases: Video& 3D • • Storyboarding, animation (e.g., Sora) • • Virtual environments (gaming, AR/VR) • • Architectural visualization
  • 9.
    Industry Applications • Healthcare:Radiology, drug discovery • Finance: Report automation, fraud detection • Retail: Personalized ads, product design • Education: AI tutors, grading help • Legal: Contract review, summarization
  • 10.
    Benefits • • Speedand scale • • Personalized experiences • • Creative ideation support • • Lower content production costs
  • 11.
    Risks and Concerns •• Misinformation & hallucinations • • Bias & fairness • • Deepfakes & synthetic media • • IP and data privacy issues
  • 12.
    Ethical Considerations • •Human-in-the-loop design • • Transparency & explainability • • Responsible AI frameworks • • Align AI with human values
  • 13.
    The Future ofGenerative AI • • Multimodal AI (text, image, video) • • Efficient models on edge devices • • Open vs. closed-source AI • • Regulatory landscape evolving
  • 14.
    Getting Started • •Tools: ChatGPT, Midjourney, Copilot, Runway • • Platforms: Hugging Face, OpenAI, Google Vertex AI • • Skills: Prompting, fine-tuning, ethics
  • 15.
    Interactive Q&A • •Live questions or Slido • • Optional live prompt demo
  • 16.
    Final Takeaways • •Generative AI is powerful and evolving • • Big opportunities across industries • • Use responsibly: stay curious, cautious, collaborative
  • 17.
    Thank You • •Contact: Your Email / LinkedIn • • Feedback & Resources QR (optional)