Gerak Harmonik
Contoh Gerak Harmonik
Apa itu gerak “periodik” ?????????? “harmonik” ????????? “Getaran” ??????
Gerak periodik, adalah gerak berulang pada
waktu yang tetap.
Getaran, adalah gerak bolak-balik pada
jalan yang sama.
Gerak harmonik, adalah gerak dengan
persamaan berupa fungsi
sinus.
Hooke's Law
One of the properties of elasticity is that it takes about
twice as much force to stretch a spring twice as far. That
linear dependence of displacement upon stretching force
is called Hooke's law.
Contoh gerak harmonis
Gaya yang bekerja : - Gaya balik : F = - kx
- Gaya Newton : F = ma
Dalam kondisi setimbang :
F = - kx =
atau
atau
Persamaan ini dipenuhi oleh fungsi
“sinusoidal”.
2
2
dt
xd
m
02
2
=+ kx
dt
xd
m
kx
dt
xd
m −=2
2
Bentuk umum persamaan :
Jika didiferensialkan dua kali di dapat :
dan
( ) ( )δω += tAx t cos
( ) ( ) ( )δωδω +−=+= tAtA
dt
d
tx
dt
d
sincos
( ) ( )δωω +−= tAtx
dt
d
cos2
2
2
Sehingga didapat diferensial kedua dari
adalah :
( ) ( )δω += tAx t cos
( ) ( )δωω +−= tAtx
dt
d
cos2
2
2
Arti fisis dari tetapan dapat dilihat dalam
persamaan :
Jadi, fungsi kembali pada nilai semula setelah
selang waktu ( = T )
( ){ }δωπω ++= /2cos tAx
( )δπω ++= 2cos tA
( )δω += tAcos
ωπ /2
ω
Besaran disebut fasa dari gerak
harmonik.
Tetapan disebut tetapan fasa.
( )δω +t
δ
( ) tAx t ωcos1 =
( ) ( )0
2 180cos += tAx t ω
( ) tx A
t ωcos23 =
( ) tAx t ω2cos4 =
( )tx1
( )tx1
( )tx1
( )tx2
( )tx3
( )tx4
Simple Harmonic Motion
When a mass is acted upon by an elastic force which tends to bring it back to
its equilibrium configuration, and when that force is proportional to the distance
from equilibrium (e.g., doubles when the distance from equilibrium doubles, a
Hooke's Law force), then the object will undergo simple harmonic motion when
released.
A mass on a spring is the standard example of such periodic motion. If the
displacement of the mass is plotted as a function of time, it will trace out a pure
sine wave. It turns out that the motion of the medium in a traveling wave is also
simple harmonic motion as the wave passes a given point in the medium.
Simple harmonic motion is typified by the motion of a mass on a
spring when it is subject to the linear elastic restoring force given by
Hooke's Law. The motion is sinusoidal in time and demonstrates a
single resonant frequency.
Simple Harmonic Motion Equations
The motion equation for simple harmonic motion contains
a complete description of the motion, and other
parameters of the motion can be calculated from it.
The velocity and acceleration are given by
Simple Pendulum
The motion of a simple pendulum is like
simple harmonic motion in that the equation for the
angular displacement is
which is the same form as the
motion of a mass on a spring:
The anglular frequency of the motion is then
given by
compared to for a mass on a spring.
The frequency of the pendulum in Hz is given by
and the period of motion is
then
Period of Simple Pendulum
A point mass hanging on a massless string is
an idealized example of a simple pendulum.
When displaced from its equilibrium point, the
restoring force which brings it back to the
center is given by:
For small angles θ, we can use
the approximation
in which case
Newton's 2nd law takes the
form
Even in this approximate case, the
solution of the equation uses calculus
and differential equations. The
differential equation is
and for small angles θ the
solution is:
Pendulum Geometry
Pendulum Equation
The equation of motion for the
simple pendulum for sufficiently small
amplitude has the form
which when put in angular form
becomes
This differential equation is like
that for the
simple harmonic oscillator and
has the solution:
Deskripsi Gerak Harmonik Dengan
Menggunakan Vektor :
Tugas !!!!!!!
A
A
A
A
Gerak Harmonik Teredam & Terpaksa
Tugas !!!!!!!!!!
Analisa dalam bentuk matematik
dengan caramu sendiri
Traveling Wave Relationship
A single frequency traveling wave will take the form of
a sine wave. A snapshot of the wave in space at an
instant of time can be used to show the relationship of
the wave properties frequency, wavelength and
propagation velocity.
Traveling Wave Relationship
The motion relationship "distance = velocity x
time" is the key to the basic wave relationship.
With the wavelength as distance, this relationship
becomes =vT. Then using f=1/T gives the
standard wave relationship
This is a general wave relationship which applies to
sound and light waves, other electromagnetic
waves, and waves in mechanical media.
String Wave Solutions
A solution to the wave equation for an ideal string can take the
form of a traveling wave
For a string of length L which is fixed at both ends, the
solution can take the form of standing waves:
For different initial conditions on such a string, the
standing wave solution can be expressed to an
arbitrary degree of precision by a Fourier series
Traveling Wave Solution for String
A useful solution to the wave equation for an ideal string is
It can be shown to be a solution to the one-dimensional wave equation
by direct substitution:
Setting the final two expressions equal to each other and
factoring out the common terms gives
These two expressions are equal for all values of x and t
and therefore represent a valid solution if the
wave velocity is
Wave velocity for a stretched string
String Traveling Wave Velocity
For a point of constant height moving to the right:
For a point of constant height moving to the left:
From the traveling wave solution, the phase velocity for a string wave is
given by:
Traveling Wave Parameters
A traveling wave solution to the wave equation may be written in several different
ways with different choices of related parameters. These include the basic
periodic motion parameters amplitude, period and frequency.
Equivalent forms of wave solution:
Wave parameters:
*Amplitude A
*Period T = 1/f
*Frequency f = 1/T
*Propagation speed v
*Angular frequency ω = 2πf
*Wave relationship v = fλ
Plane Wave Expressions
A traveling wave which is confined to one plane in space and varies
sinusoidally in both space and time can be expressed as
combinations of
It is sometimes convenient to use the complex form
which may be shown to be a combination of the above forms by
the use of the Euler identity
In the case of classical waves, either the real or the imaginary part is
chosen since the wave must be real, but for application to quantum
mechanical wavefunctions such as that for a free particle, the complex form
may be retained.
Gerak Harmonik

More Related Content

PPT
Gerak harmoni sederhana
DOC
Bandul Fisis (M5)
PPTX
6 rangkaian arus bolak balik
PDF
4 rangkaian ac paralel
PDF
Mekanika teknik
PPTX
Multiplekser - Demultiplekser - Pertemuan 7
DOCX
5 sistem dan-keadaan-termodinamika-kelompok-5- new
PDF
Soal latihan-olimpiade-fisika-sma
Gerak harmoni sederhana
Bandul Fisis (M5)
6 rangkaian arus bolak balik
4 rangkaian ac paralel
Mekanika teknik
Multiplekser - Demultiplekser - Pertemuan 7
5 sistem dan-keadaan-termodinamika-kelompok-5- new
Soal latihan-olimpiade-fisika-sma

What's hot (20)

PPTX
Pengetahuan Dasar penggunaan Timer dan Counter Microcontroller AVR
PDF
Kinematika dan Dinamika (Bag 1)
PPTX
Fundamental of convection
PDF
pemodelan state space
PDF
Diktat fisika 12 listrik statis
PPTX
Entropi (new)
PPTX
Ppt gerak harmonik sederhana
PPTX
Dasar Telekomunikasi - Slide week 10 - pensinyalan
PDF
teorema thevenin
PDF
Deret Fourier Waktu Kontinyu
PPTX
Sensor dan transduser
DOC
Bahan kuliah getaran mekanis pers lagrange
DOCX
Laporan fisika dasar (pesawat atwood)
PPTX
Kumpulan Materi Termodinamika
PPTX
Presentasi fuzzy logic (Logika Fuzzy)
PDF
Dasar teori pengukuran
PDF
Gelombang elektromagnetik
PPTX
MEKANIKA TEKNIK - TEGANGAN
DOCX
Soal dan penyelesaian kesetimbangan benda
DOCX
Makalah bandul fisis
Pengetahuan Dasar penggunaan Timer dan Counter Microcontroller AVR
Kinematika dan Dinamika (Bag 1)
Fundamental of convection
pemodelan state space
Diktat fisika 12 listrik statis
Entropi (new)
Ppt gerak harmonik sederhana
Dasar Telekomunikasi - Slide week 10 - pensinyalan
teorema thevenin
Deret Fourier Waktu Kontinyu
Sensor dan transduser
Bahan kuliah getaran mekanis pers lagrange
Laporan fisika dasar (pesawat atwood)
Kumpulan Materi Termodinamika
Presentasi fuzzy logic (Logika Fuzzy)
Dasar teori pengukuran
Gelombang elektromagnetik
MEKANIKA TEKNIK - TEGANGAN
Soal dan penyelesaian kesetimbangan benda
Makalah bandul fisis
Ad

Viewers also liked (13)

PPTX
Animasi gerak harmonis
PDF
Osilasi teredam
PDF
Tugas getaran mekanis ( fungsi matematika getaran mekanis )
PPTX
Gerak harmonik sedehana
PPT
Gerak harmonik sederhana
DOCX
Lapres Akustik & Getaran [Geteran Teredam]
PPTX
osilasi sistem
PPTX
Media presentasi gerak harmonik sederhana
PPTX
PDF
Diktat getaran mekanik
PPTX
Ppt hyperlink gerak harmonis
PDF
Getaran mekanik 7
DOCX
Animasi gerak harmonis
Osilasi teredam
Tugas getaran mekanis ( fungsi matematika getaran mekanis )
Gerak harmonik sedehana
Gerak harmonik sederhana
Lapres Akustik & Getaran [Geteran Teredam]
osilasi sistem
Media presentasi gerak harmonik sederhana
Diktat getaran mekanik
Ppt hyperlink gerak harmonis
Getaran mekanik 7
Ad

Similar to Gerak Harmonik (20)

PPT
9.1 shm
PPT
Shm
PPTX
Schrodinger equation and its applications: Chapter 2
PDF
General Physics (Phys1011)_Chapter_5.pdf
PPT
PPT
PPTX
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasound
PDF
Stephy index page no 1 to 25 2
PDF
15Waves ppt 1.pdf
PPTX
Schrodinger wave equation.pptx
PPTX
Fourier series pgbi
PPT
APPLICATIONS OF SHM
PPTX
Waves and oscillation undergraduates .pptx
PPTX
Mechanical waves.pptx
PPT
Simple Harmonic & Circular Motion
PPT
Lecture_2_PHL110_QM.ppt wave function. operators,
PDF
Waves, Optics, Electricity and magnetism, Oscillations.pdf
PDF
experimental stress analysis-Chapter 3
PDF
LO: Harmonic Waves
PPTX
OSCILLATORY MOTION AND WAVESSSSSS$S.pptx
9.1 shm
Shm
Schrodinger equation and its applications: Chapter 2
General Physics (Phys1011)_Chapter_5.pdf
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasound
Stephy index page no 1 to 25 2
15Waves ppt 1.pdf
Schrodinger wave equation.pptx
Fourier series pgbi
APPLICATIONS OF SHM
Waves and oscillation undergraduates .pptx
Mechanical waves.pptx
Simple Harmonic & Circular Motion
Lecture_2_PHL110_QM.ppt wave function. operators,
Waves, Optics, Electricity and magnetism, Oscillations.pdf
experimental stress analysis-Chapter 3
LO: Harmonic Waves
OSCILLATORY MOTION AND WAVESSSSSS$S.pptx

Recently uploaded (20)

PDF
Unit1 - AIML Chapter 1 concept and ethics
PPTX
SE unit 1.pptx aaahshdhajdviwhsiehebeiwheiebeiev
PPTX
INTERNET OF THINGS - EMBEDDED SYSTEMS AND INTERNET OF THINGS
PPTX
AI-Reporting for Emerging Technologies(BS Computer Engineering)
PPTX
CNS - Unit 1 (Introduction To Computer Networks) - PPT (2).pptx
PDF
Cryptography and Network Security-Module-I.pdf
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
Micro 3 New.ppt.pdf tools the laboratory the method
PDF
ASPEN PLUS USER GUIDE - PROCESS SIMULATIONS
PPTX
Micro1New.ppt.pptx the mai themes of micfrobiology
PDF
IAE-V2500 Engine for Airbus Family 319/320
PDF
IAE-V2500 Engine Airbus Family A319/320
PDF
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
PPTX
Agentic Artificial Intelligence (Agentic AI).pptx
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
PDF
Project_Mgmt_Institute_-Marc Marc Marc .pdf
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Beginners-Guide-to-Artificial-Intelligence.pdf
PDF
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
PPTX
Unit IImachinemachinetoolopeartions.pptx
Unit1 - AIML Chapter 1 concept and ethics
SE unit 1.pptx aaahshdhajdviwhsiehebeiwheiebeiev
INTERNET OF THINGS - EMBEDDED SYSTEMS AND INTERNET OF THINGS
AI-Reporting for Emerging Technologies(BS Computer Engineering)
CNS - Unit 1 (Introduction To Computer Networks) - PPT (2).pptx
Cryptography and Network Security-Module-I.pdf
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Micro 3 New.ppt.pdf tools the laboratory the method
ASPEN PLUS USER GUIDE - PROCESS SIMULATIONS
Micro1New.ppt.pptx the mai themes of micfrobiology
IAE-V2500 Engine for Airbus Family 319/320
IAE-V2500 Engine Airbus Family A319/320
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
Agentic Artificial Intelligence (Agentic AI).pptx
Environmental studies, Moudle 3-Environmental Pollution.pptx
Project_Mgmt_Institute_-Marc Marc Marc .pdf
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Beginners-Guide-to-Artificial-Intelligence.pdf
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
Unit IImachinemachinetoolopeartions.pptx

Gerak Harmonik

  • 2. Contoh Gerak Harmonik Apa itu gerak “periodik” ?????????? “harmonik” ????????? “Getaran” ??????
  • 3. Gerak periodik, adalah gerak berulang pada waktu yang tetap. Getaran, adalah gerak bolak-balik pada jalan yang sama. Gerak harmonik, adalah gerak dengan persamaan berupa fungsi sinus.
  • 4. Hooke's Law One of the properties of elasticity is that it takes about twice as much force to stretch a spring twice as far. That linear dependence of displacement upon stretching force is called Hooke's law.
  • 5. Contoh gerak harmonis Gaya yang bekerja : - Gaya balik : F = - kx - Gaya Newton : F = ma
  • 6. Dalam kondisi setimbang : F = - kx = atau atau Persamaan ini dipenuhi oleh fungsi “sinusoidal”. 2 2 dt xd m 02 2 =+ kx dt xd m kx dt xd m −=2 2
  • 7. Bentuk umum persamaan : Jika didiferensialkan dua kali di dapat : dan ( ) ( )δω += tAx t cos ( ) ( ) ( )δωδω +−=+= tAtA dt d tx dt d sincos ( ) ( )δωω +−= tAtx dt d cos2 2 2
  • 8. Sehingga didapat diferensial kedua dari adalah : ( ) ( )δω += tAx t cos ( ) ( )δωω +−= tAtx dt d cos2 2 2
  • 9. Arti fisis dari tetapan dapat dilihat dalam persamaan : Jadi, fungsi kembali pada nilai semula setelah selang waktu ( = T ) ( ){ }δωπω ++= /2cos tAx ( )δπω ++= 2cos tA ( )δω += tAcos ωπ /2 ω
  • 10. Besaran disebut fasa dari gerak harmonik. Tetapan disebut tetapan fasa. ( )δω +t δ ( ) tAx t ωcos1 = ( ) ( )0 2 180cos += tAx t ω ( ) tx A t ωcos23 = ( ) tAx t ω2cos4 = ( )tx1 ( )tx1 ( )tx1 ( )tx2 ( )tx3 ( )tx4
  • 11. Simple Harmonic Motion When a mass is acted upon by an elastic force which tends to bring it back to its equilibrium configuration, and when that force is proportional to the distance from equilibrium (e.g., doubles when the distance from equilibrium doubles, a Hooke's Law force), then the object will undergo simple harmonic motion when released. A mass on a spring is the standard example of such periodic motion. If the displacement of the mass is plotted as a function of time, it will trace out a pure sine wave. It turns out that the motion of the medium in a traveling wave is also simple harmonic motion as the wave passes a given point in the medium.
  • 12. Simple harmonic motion is typified by the motion of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's Law. The motion is sinusoidal in time and demonstrates a single resonant frequency.
  • 13. Simple Harmonic Motion Equations The motion equation for simple harmonic motion contains a complete description of the motion, and other parameters of the motion can be calculated from it. The velocity and acceleration are given by
  • 14. Simple Pendulum The motion of a simple pendulum is like simple harmonic motion in that the equation for the angular displacement is which is the same form as the motion of a mass on a spring:
  • 15. The anglular frequency of the motion is then given by compared to for a mass on a spring. The frequency of the pendulum in Hz is given by and the period of motion is then
  • 16. Period of Simple Pendulum A point mass hanging on a massless string is an idealized example of a simple pendulum. When displaced from its equilibrium point, the restoring force which brings it back to the center is given by:
  • 17. For small angles θ, we can use the approximation in which case Newton's 2nd law takes the form
  • 18. Even in this approximate case, the solution of the equation uses calculus and differential equations. The differential equation is and for small angles θ the solution is:
  • 20. Pendulum Equation The equation of motion for the simple pendulum for sufficiently small amplitude has the form which when put in angular form becomes
  • 21. This differential equation is like that for the simple harmonic oscillator and has the solution:
  • 22. Deskripsi Gerak Harmonik Dengan Menggunakan Vektor : Tugas !!!!!!! A A A A
  • 23. Gerak Harmonik Teredam & Terpaksa Tugas !!!!!!!!!! Analisa dalam bentuk matematik dengan caramu sendiri
  • 24. Traveling Wave Relationship A single frequency traveling wave will take the form of a sine wave. A snapshot of the wave in space at an instant of time can be used to show the relationship of the wave properties frequency, wavelength and propagation velocity.
  • 25. Traveling Wave Relationship The motion relationship "distance = velocity x time" is the key to the basic wave relationship. With the wavelength as distance, this relationship becomes =vT. Then using f=1/T gives the standard wave relationship This is a general wave relationship which applies to sound and light waves, other electromagnetic waves, and waves in mechanical media.
  • 26. String Wave Solutions A solution to the wave equation for an ideal string can take the form of a traveling wave For a string of length L which is fixed at both ends, the solution can take the form of standing waves:
  • 27. For different initial conditions on such a string, the standing wave solution can be expressed to an arbitrary degree of precision by a Fourier series
  • 28. Traveling Wave Solution for String A useful solution to the wave equation for an ideal string is It can be shown to be a solution to the one-dimensional wave equation by direct substitution:
  • 29. Setting the final two expressions equal to each other and factoring out the common terms gives These two expressions are equal for all values of x and t and therefore represent a valid solution if the wave velocity is Wave velocity for a stretched string
  • 30. String Traveling Wave Velocity For a point of constant height moving to the right:
  • 31. For a point of constant height moving to the left: From the traveling wave solution, the phase velocity for a string wave is given by:
  • 32. Traveling Wave Parameters A traveling wave solution to the wave equation may be written in several different ways with different choices of related parameters. These include the basic periodic motion parameters amplitude, period and frequency.
  • 33. Equivalent forms of wave solution: Wave parameters: *Amplitude A *Period T = 1/f *Frequency f = 1/T *Propagation speed v *Angular frequency ω = 2πf *Wave relationship v = fλ
  • 34. Plane Wave Expressions A traveling wave which is confined to one plane in space and varies sinusoidally in both space and time can be expressed as combinations of It is sometimes convenient to use the complex form which may be shown to be a combination of the above forms by the use of the Euler identity In the case of classical waves, either the real or the imaginary part is chosen since the wave must be real, but for application to quantum mechanical wavefunctions such as that for a free particle, the complex form may be retained.