Upload
Download free for 30 days
Login
Submit search
Green function
4 likes
3,343 views
hamza dahoka
Green function
Engineering
Read more
1 of 25
Download now
Downloaded 39 times
1
2
3
4
5
6
7
8
9
10
11
12
Most read
13
14
15
16
17
18
19
20
21
22
23
24
25
Most read
More Related Content
PDF
34032 green func
ansarixxx
PPTX
Differential equations of first order
vishalgohel12195
PPT
Partial Differentiation & Application
Yana Qlah
PPTX
Partial differential equation & its application.
isratzerin6
PPTX
Partial Differentiation
Deep Dalsania
PDF
Lesson 11: Limits and Continuity
Matthew Leingang
PPTX
First order linear differential equation
Nofal Umair
PPTX
Applications of Differential Equations of First order and First Degree
Dheirya Joshi
34032 green func
ansarixxx
Differential equations of first order
vishalgohel12195
Partial Differentiation & Application
Yana Qlah
Partial differential equation & its application.
isratzerin6
Partial Differentiation
Deep Dalsania
Lesson 11: Limits and Continuity
Matthew Leingang
First order linear differential equation
Nofal Umair
Applications of Differential Equations of First order and First Degree
Dheirya Joshi
What's hot
(20)
PPTX
Indeterminate Forms and L' Hospital Rule
Aakash Singh
PDF
Ideals and factor rings
dianageorge27
PPT
Laplace transforms
Awais Chaudhary
PPT
First order non-linear partial differential equation & its applications
Jayanshu Gundaniya
PPTX
Complex analysis
sujathavvv
PPTX
Ode powerpoint presentation1
Pokkarn Narkhede
PPTX
Application of Differential Equation
Salim Hosen
PPT
Application of derivative
Amiraj College Of Engineering And Technology
PPT
The Application of Derivatives
divaprincess09
PPTX
Fourier series
Pinky Chaudhari
PPT
Differential equations
Charan Kumar
PPTX
Partial differential equations
aman1894
PPTX
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
PPT
Laplace equation
alexkhan129
PDF
Complex function
Dr. Nirav Vyas
PPTX
Partial differentiation
Tanuj Parikh
PPT
first order ode with its application
Krishna Peshivadiya
PPTX
Power series & Radius of convergence
Dhruv Darji
PPTX
limits and continuity
imran khan
PDF
First Order Differential Equations
Itishree Dash
Indeterminate Forms and L' Hospital Rule
Aakash Singh
Ideals and factor rings
dianageorge27
Laplace transforms
Awais Chaudhary
First order non-linear partial differential equation & its applications
Jayanshu Gundaniya
Complex analysis
sujathavvv
Ode powerpoint presentation1
Pokkarn Narkhede
Application of Differential Equation
Salim Hosen
Application of derivative
Amiraj College Of Engineering And Technology
The Application of Derivatives
divaprincess09
Fourier series
Pinky Chaudhari
Differential equations
Charan Kumar
Partial differential equations
aman1894
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
Laplace equation
alexkhan129
Complex function
Dr. Nirav Vyas
Partial differentiation
Tanuj Parikh
first order ode with its application
Krishna Peshivadiya
Power series & Radius of convergence
Dhruv Darji
limits and continuity
imran khan
First Order Differential Equations
Itishree Dash
Ad
Viewers also liked
(14)
PPTX
Uni2go week4_interview summary
UNI2GO
PDF
Techniques for Developing Directory and Marketplace Sites with WordPress
onthegosystems
PDF
KIDS_Lookbook_EMAIL_FINAL
Derek Smith
PPT
That's me !!
Sameh Ezzat
PDF
UNI2GO Pitch Draft
UNI2GO
PDF
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
wsa-mobile
PPTX
Uni2 go week5
UNI2GO
DOCX
JMNeyrey CV 2015 - sales
John Michael Neyrey
PPTX
Uni2 go week3
UNI2GO
DOCX
Legal environtment
fawaidalvian
PDF
Kuivalainen_Miikka
Miikka Kuivalainen
PPTX
Lo8
Hayley Martin
PPS
0felicitari 8 martie
Violeta Gisculescu
PPT
How to Prevent an International Incident: Communicating with Global Teams
Meredith Kramer
Uni2go week4_interview summary
UNI2GO
Techniques for Developing Directory and Marketplace Sites with WordPress
onthegosystems
KIDS_Lookbook_EMAIL_FINAL
Derek Smith
That's me !!
Sameh Ezzat
UNI2GO Pitch Draft
UNI2GO
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
wsa-mobile
Uni2 go week5
UNI2GO
JMNeyrey CV 2015 - sales
John Michael Neyrey
Uni2 go week3
UNI2GO
Legal environtment
fawaidalvian
Kuivalainen_Miikka
Miikka Kuivalainen
Lo8
Hayley Martin
0felicitari 8 martie
Violeta Gisculescu
How to Prevent an International Incident: Communicating with Global Teams
Meredith Kramer
Ad
Green function
1.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
1 GREEN FUNCTION Example 1:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 𝑥3 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 𝑥 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 𝑒3𝑧
2.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
2 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = −𝑒 𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 + 𝑒2𝑡 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = − 𝑒 𝑡 2 (𝑒2𝑧|0 𝑡 ) + 𝑒2𝑡(𝑒 𝑧|0 𝑡 ) 𝑦(𝑡) = 𝑒3𝑡 2 + 𝑒 𝑡 2 − 𝑒2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦( 𝑥) = 𝑥3 2 + 𝑥 2 − 𝑥2
3.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
3 Example1-1:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 𝑥3 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 𝑥 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 𝐺(𝑥, 𝑧) = 𝐴(𝑧) 𝑥 + 𝐵(𝑧) 𝑥2 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑧 + 𝐵(𝑧) 𝑧2 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑧 𝐺,𝑥(𝑧, 𝑧) = 𝐴(𝑧) + 2𝐵(𝑧) 𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑧 + 2𝐵(𝑧) 𝑧 = 1 ∴ { 𝐴(𝑧) = −1 𝐵(𝑧) = 1 𝑧
4.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
4 𝐺(𝑡, 𝑧) = −𝑥 + 𝑥2 𝑧 , 𝑓(𝑧) = 𝑧 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑥 1 𝑦(𝑡) = −𝑥 ∫ 𝑧 𝑑𝑧 𝑥 1 + 𝑥2 ∫ 1 𝑑𝑧 𝑥 1 𝑦(𝑡) = − 𝑥 2 (𝑧2|0 𝑡 ) + 𝑥2(𝑧|0 𝑡 ) 𝑦( 𝑥) = 𝑥3 2 + 𝑥 2 − 𝑥2 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 𝑥^2′ , ′ 𝑦(1) = 0′ , ′ 𝐷𝑦(1) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^3 2⁄ + 𝑥 2⁄ − 𝑥^2 Example 2:- 𝑥2 𝑦,𝑥𝑥 + 𝑥𝑦,𝑥 − 𝑦 = 𝑥2 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = 𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 + 1 𝑥 𝑦,𝑥 − 1 𝑥2 𝑦 = 1 𝑃(𝑥) = 𝑒∫ 1 𝑥 𝑑𝑥 = 𝑥 𝑥𝑦,𝑥𝑥 + 𝑦,𝑥 − 1 𝑥 𝑦 = 1 𝑥
5.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
5 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) + 𝑅 − 1 = 0 𝑅2 − 1 = 0 ⇒ { 𝑅1 = 1 𝑅2 = −1 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒−𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒−𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒−𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒−2𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 − 𝐵(𝑧) 𝑒−𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒−𝑧 − 𝐵(𝑧) 𝑒−𝑧 = 1 ∴ { 𝐴(𝑧) = 𝑒−𝑧 2⁄ 𝐵(𝑧) = −𝑒 𝑧 2⁄ 𝐺(𝑡, 𝑧) = 1 2 𝑒−𝑧 𝑒 𝑡 − 1 2 𝑒 𝑧 𝑒−𝑡 , 𝑓(𝑧) = 𝑒2𝑧 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = 𝑒 𝑡 2 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 − 𝑒−𝑡 2 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = 𝑒 𝑡 2 (𝑒 𝑧|0 𝑡 ) − 𝑒−𝑡 6 (𝑒3𝑧|0 𝑡 ) 𝑦(𝑡) = 𝑒2𝑡 3 − 𝑒 𝑡 2 + 1 6𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝑥2 3 + 1 6𝑥 − 𝑥 2 𝑦( 𝑥) = 𝑥 ( 𝑥 3 + 1 6𝑥2 ) − 𝑥 2
6.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
6 Example 2-1:- 𝑥2 𝑦,𝑥𝑥 + 𝑥𝑦,𝑥 − 𝑦 = 𝑥2 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = 𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 + 1 𝑥 𝑦,𝑥 − 1 𝑥2 𝑦 = 1 𝑃(𝑥) = 𝑒∫ 1 𝑥 𝑑𝑥 = 𝑥 𝑥𝑦,𝑥𝑥 + 𝑦,𝑥 − 1 𝑥 𝑦 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) + 𝑅 − 1 = 0 𝑅2 − 1 = 0 ⇒ { 𝑅1 = 1 𝑅2 = −1 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒−𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵 𝑥 𝐺(𝑥, 𝑧) = 𝐴(𝑧) 𝑥 + 𝐵(𝑧) 𝑥 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑧 + 𝐵(𝑧) 𝑧 = 0 ⇒ 𝐴(𝑧) = − 𝐵(𝑧) 𝑧2 𝐺,𝑥(𝑧, 𝑧) = 𝐴(𝑧) − 𝐵(𝑧) 𝑧2 = 1 ⇒ − 𝐵(𝑧) 𝑧2 − 𝐵(𝑧) 𝑧2 = 1
7.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
7 ∴ { 𝐴(𝑧) = 1 2 𝐵(𝑧) = − 𝑧2 2 𝐺(𝑡, 𝑧) = 𝑥 2 − 𝑧2 2𝑥 , 𝑓(𝑧) = 1 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑥 1 𝑦(𝑡) = 𝑥 2 ∫ 1 𝑑𝑧 𝑥 1 − 1 2𝑥 ∫ 𝑧2 𝑑𝑧 𝑥 1 𝑦(𝑡) = 𝑥 2 (𝑧|0 𝑡 ) − 1 6𝑥 (𝑧3|0 𝑡 ) 𝑦(𝑥) = 𝑥 2 (𝑥 − 1) − 1 6𝑥 (𝑥3 − 1) 𝑦(𝑥) = 𝑥2 3 + 1 6𝑥 − 𝑥 2 𝑦( 𝑥) = 𝑥 ( 𝑥 3 + 1 6𝑥2 ) − 𝑥 2 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 + 𝑥 ∗ 𝐷𝑦 − 𝑦 = 𝑥^2′ , ′ 𝑦(1) = 0′ , ′ 𝐷𝑦(1) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥 ∗ (𝑥 3⁄ + 1 (6 ∗ 𝑥^2)⁄ ) − 𝑥 2⁄
8.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
8 Example 3:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 2 𝑦(1) = 𝑦(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 2
9.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
9 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = −2𝑒 𝑡 ∫ 𝑒−𝑧 𝑑𝑧 𝑡 0 + 2𝑒2𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = 2𝑒 𝑡(𝑒−𝑧|0 𝑡 ) − 𝑒2𝑡(𝑒−2𝑧|0 𝑡 ) 2𝑒 𝑡(𝑒−𝑡 − 1) − 𝑒2𝑡(𝑒−2𝑡 − 1) 2 − 2𝑒 𝑡 − 1 + 𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒2𝑡 − 2𝑒 𝑡 + 1 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒2𝑡 − 2𝑒 𝑡 + 1 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥2 − 2𝑥 + 1 𝑦(1) = 𝐴 + 𝐵 + 1 − 2 + 1 = 0 ⇒ 𝐴 = −𝐵 𝑦(2) = 2𝐴 + 4𝐵 + 4 − 4 + 1 = 0 −2𝐵 + 4𝐵 = −1 ⇒ 𝐵 = − 1 2 , 𝐴 = 1 2 𝑦(𝑥) = 1 2 𝑥 − 1 2 𝑥2 + 𝑥2 − 2𝑥 + 1 𝑦( 𝑥) = 𝑥2 2 − 3𝑥 2 + 1 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2′ , ′ 𝑦(1) = 0′ , ′ 𝑦(2) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥2 2⁄ − 3 ∗ 𝑥 2⁄ + 1
10.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
10 Example 4:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 2𝑥3 𝑦(2) = 0 , 𝑦(3) = 6 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 2𝑒3𝑧
11.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
11 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −2𝑒 𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 + 2𝑒2𝑡 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑧|0 𝑡 ) + 2𝑒2𝑡(𝑒 𝑧|0 𝑡 ) 𝑦𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑡 − 1) + 2𝑒2𝑡(𝑒 𝑡 − 1) 𝑦𝑝(𝑡) = −𝑒3𝑡 + 𝑒 𝑡 + 2𝑒3𝑡 − 2𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒3𝑡 − 2𝑒2𝑡 + 𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒3𝑡 − 2𝑒2𝑡 + 𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥3 − 2𝑥2 + 𝑥 𝑦(2) = 2𝐴 + 4𝐵 + 8 − 8 + 2 = 0 ⇒ 2𝐴 + 4𝐵 = −2 → (1) 𝑦(3) = 3𝐴 + 9𝐵 + 27 − 18 + 3 = 6 ⇒ 3𝐴 + 9𝐵 = −6 → (2) ∴ 𝐴 = 1 , 𝐵 = −1 𝑦(𝑥) = 𝑥 − 𝑥2 + 𝑥3 − 2𝑥2 + 𝑥 𝑦( 𝑥) = 𝑥3 − 3𝑥2 + 2𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2𝑥^3′ , ′ 𝑦(2) = 0′ , ′ 𝑦(3) = 6′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^3 − 3 ∗ 𝑥^2 + 2 ∗ 𝑥
12.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
12 Example 5:- 𝑥2 𝑦,𝑥𝑥 − 6 = 6𝑥 𝑦(1) = −1 , 𝑦(2) = 29 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 6 = 0 𝑅2 − 𝑅 − 6 = 0 ⇒ { 𝑅1 = 3 𝑅2 = −2 𝑦ℎ(𝑡) = 𝐴𝑒3𝑡 + 𝐵𝑒−2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒3𝑡 + 𝐵(𝑧) 𝑒−2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒3𝑧 + 𝐵(𝑧) 𝑒−2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒−5𝑧 𝐺,𝑡(𝑧, 𝑧) = 3𝐴(𝑧) 𝑒3𝑧 − 2𝐵(𝑧) 𝑒−2𝑧 = 1 = −𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = 𝑒−3𝑧 5 𝐵(𝑧) = − 𝑒2𝑧 5 𝐺(𝑡, 𝑧) = 𝑒−3𝑧 5 𝑒3𝑡 − 𝑒2𝑧 5 𝑒−2𝑡 , 𝑓(𝑧) = 6𝑒 𝑧 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = 6 5 𝑒3𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 − 6 5 𝑒−2𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = − 6 10 𝑒3𝑡(𝑒−2𝑧|0 𝑡 ) − 6 15 𝑒−2𝑡(𝑒3𝑧|0 𝑡 )
13.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
13 𝑦𝑝(𝑡) = − 6 10 𝑒3𝑡(𝑒−2𝑡 − 1) − 6 15 𝑒−2𝑡(𝑒3𝑡 − 1) 𝑦𝑝(𝑡) = − 3 5 𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒 𝑡 + 2 5 𝑒−2𝑡 𝑦𝑝(𝑡) = −𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒−2𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒3𝑡 + 𝐵𝑒−2𝑡 − 𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒−2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥3 + 𝐵 𝑥2 − 𝑥 − 3 5 𝑥3 + 2 5𝑥2 𝑦(1) = 𝐴 + 𝐵 − 1 − 3 5 + 2 5 = −1 ⇒ 𝐴 = 1 5 − 𝐵 → (1) 𝑦(2) = 8𝐴 + 𝐵 4 − 2 − 24 5 + 2 20 = 29 = 8 ( 1 5 − 𝐵) + 𝐵 4 − 2 − 24 5 + 2 20 = 29 → × 20 ∴ 𝐵 = − 682 155 ⇒ 𝐴 = 713 155 𝑦(𝑥) = 713 155 𝑥3 − 682 155𝑥2 − 𝑥 − 3 5 𝑥3 + 2 5𝑥2 𝑦( 𝑥) = 4𝑥3 − 4 𝑥2 − 𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 6 ∗ 𝑦 = 6 ∗ 𝑥′ , ′ 𝑦(2) = 0′ , ′ 𝑦(3) = 6′ ,′ 𝑥′) ≫ 𝑦 = 4 ∗ 𝑥^3 − 4 𝑥^2⁄ − 𝑥
14.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
14 Example 6:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6 𝑥 𝑦(1) = 1 , 𝑦(2) = 1 2 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒2𝑧 + 𝐵(𝑧) 𝑒 𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒−𝑧 𝐺,𝑡(𝑧, 𝑧) = 2𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 2𝐵(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒 𝑧 = 1 ∴ { 𝐴(𝑧) = 𝑒−2𝑧 𝐵(𝑧) = −𝑒−𝑧 𝐺(𝑡, 𝑧) = 𝑒−2𝑧 𝑒2𝑡 − 𝑒−𝑧 𝑒 𝑡 , 𝑓(𝑧) = 6𝑒−𝑧
15.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
15 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = 6𝑒2𝑡 ∫ 𝑒−3𝑧 𝑑𝑧 𝑡 0 − 6𝑒 𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −2𝑒2𝑡(𝑒−3𝑧|0 𝑡 ) − 3𝑒 𝑡(𝑒−2𝑧|0 𝑡 ) 𝑦𝑝(𝑡) = −2𝑒−2𝑡(𝑒−3𝑡 − 1) + 𝑒 𝑡(𝑒2𝑡 − 1) 𝑦𝑝(𝑡) = −2𝑒−𝑡 + 2𝑒2𝑡 + 3𝑒−𝑡 + 3𝑒 𝑡 𝑦𝑝(𝑡) = 2𝑒2𝑡 + 𝑒−𝑡 + 3𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒2𝑡 + 𝐵𝑒 𝑡 + 2𝑒2𝑡 + 𝑒−𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 2𝑥2 + 1 𝑥 + 3𝑥 𝑦(1) = 𝐴 + 𝐵 + 2 + 1 + 3 = 1 ⇒ 𝐴 + 𝐵 = −5 → (1) 𝑦(2) = 4𝐴 + 2𝐵 + 8 + 1 2 + 6 = 0 ⇒ 2𝐴 + 4𝐵 = −14 → (2) ∴ 𝐴 = −2 , 𝐵 = −3 𝑦( 𝑥) = 1 𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 6 𝑥⁄ ′ , ′ 𝑦(1) = 1′ , ′ 𝑦(2) = 0.5′ ,′ 𝑥′ ) ≫ 𝑦 = 1 𝑥⁄
16.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
16 Use Laplace transform 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6 𝑥 𝑦(1) = 1 , 𝑦(2) = 1 2 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑦,𝑡𝑡 − 3𝑦,𝑡 + 2𝑦 = 6𝑒−𝑡 (𝑠2 − 3𝑠 + 2)𝑦(𝑠) = 6 (𝑠 + 1) 𝑦(𝑠) = 6 (𝑠 + 1)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 + 1)(𝑠 − 2)(𝑠 − 1) = 𝐴 (𝑠 + 1) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐴𝑠2 − 3𝐴𝑠 + 2𝐴 + 𝐵𝑠2 − 𝐵 + 𝐶𝑠2 − 𝐶𝑠 − 2𝑐 = 6 𝐴 = 1 , 𝐵 = 2 , 𝐶 = −3 𝑦(𝑠) = 1 (𝑠 + 1) + 2 (𝑠 − 2) − 3 (𝑠 − 1) 𝑦(𝑡) = 𝑒−𝑡 + 2𝑒2𝑡 − 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦𝑝(𝑥) = 2𝑥2 + 1 𝑥 − 3𝑥
17.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
17 𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 2𝑥2 + 1 𝑥 − 3𝑥 𝑦(1) = 1 ⇒ 𝐴 + 𝐵 = 1 𝑦(2) = 1 2 ⇒ 4𝐴 + 2𝐵 = −2 𝐴 = −2 , 𝐵 = 3 𝑦( 𝑥) = 1 𝑥 Use variation of parameter method 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6 𝑥 𝑦(1) = 1 , 𝑦(2) = 1 2 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑤 = | 𝑒 𝑡 𝑒2𝑡 𝑒 𝑡 2𝑒2𝑡| = 𝑒3𝑡 𝑢1̀ = | 0 𝑒2𝑡 6𝑒−𝑡 2𝑒2𝑡| 𝑒3𝑡 = −6𝑒−2𝑡 𝑢1 = ∫ −6𝑒−2𝑡 𝑑𝑡 = 3𝑒−2𝑡
18.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
18 𝑢2̀ = | 𝑒 𝑡 0 𝑒 𝑡 6𝑒−𝑡| 𝑒3𝑡 = 6𝑒−3𝑡 𝑢2 = ∫ 6𝑒−3𝑡 𝑑𝑡 = −2𝑒−3𝑡 𝑦𝑝(𝑡) = 𝑢1 𝑦1 + 𝑢2 𝑦2 = 𝑒−𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒−𝑡 𝑙𝑒𝑡 𝑡 = ln(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 1 𝑥 𝑦(1) ⇒ 𝐴 = −𝐵 𝑦(2) ⇒ 𝐵 = 0 ∴ 𝐴 = 0 𝑦( 𝑥) = 1 𝑥
19.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
19 Example 7:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 12𝑥5 𝑦(1) = 0 , 𝑦(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 12𝑒5𝑧
20.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
20 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −12𝑒 𝑡 ∫ 𝑒4𝑧 𝑑𝑧 𝑡 0 + 12𝑒2𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑧|0 𝑡 ) + 4𝑒2𝑡(𝑒3𝑧|0 𝑡 ) 𝑦𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑡 − 1) + 4𝑒2𝑡(𝑒3𝑡 − 1) 𝑦𝑝(𝑡) = −3𝑒5𝑡 + 3𝑒 𝑡 + 4𝑒5𝑡 + 4𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒5𝑡 + 4𝑒2𝑡 + 3𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒5𝑡 + 4𝑒2𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥5 + 4𝑥2 + 3𝑥 𝑦(1) = 2𝐴 + 4𝐵 + 1 + 4 + 3 = 0 ⇒ 𝐴 + 𝐵 = −8 → (1) 𝑦(2) = 2𝐴 + 4𝐵 + 32 + 16 + 6 = 0 ⇒ 2𝐴 + 4𝐵 = −54 → (2) ∴ 𝐴 = 11 , 𝐵 = −19 𝑦(𝑥) = 11𝑥 − 19𝑥2 + 𝑥5 + 4𝑥2 + 3𝑥 𝑦( 𝑥) = 𝑥5 − 15𝑥2 + 14𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2 ∗ 𝑥^3′ , ′ 𝑦(2) = 0′ , ′ 𝑦(3) = 6′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^5 − 15 ∗ 𝑥^2 + 14 ∗ 𝑥
21.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
21 Use Laplace transform 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 12𝑥5 𝑦(1) = 0 , 𝑦(2) = 0 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑦,𝑡𝑡 − 3𝑦,𝑡 + 2𝑦 = 𝑒5𝑡 (𝑠2 − 3𝑠 + 2)𝑦(𝑠) = 12 (𝑠 − 5) 𝑦(𝑠) = 6 (𝑠 − 5)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 − 5)(𝑠 − 2)(𝑠 − 1) = 𝐴 (𝑠 − 5) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐴𝑠2 − 3𝐴𝑠 + 2𝐴 + 𝐵𝑠2 − 6𝐵𝑠 + 𝐵 + 𝐶𝑠2 − 7𝐶𝑠 + 10𝑐 = 12 𝐴 = 1 , 𝐵 = −4 , 𝐶 = 3 𝑦(𝑠) = 1 (𝑠 − 5) − 4 (𝑠 − 2) + 3 (𝑠 − 1) 𝑦(𝑡) = 𝑒5𝑡 − 4𝑒2𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦𝑝(𝑥) = 𝑥5 − 4𝑥2 + 3𝑥 𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝑥5 − 4𝑥2 + 3𝑥 𝑦(1) = 0 ⇒ 𝐴 + 𝐵 = 0
22.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
22 𝑦(2) = 0 ⇒ 4𝐴 + 2𝐵 = −22 𝐴 = −11 , 𝐵 = 11 𝑦( 𝑥) = 𝑥5 − 15𝑥2 + 14𝑥 Example 8:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6𝑥4 𝑦(1) = 𝑦(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1
23.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
23 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 6𝑒4𝑡 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = −6𝑒 𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 + 6𝑒2𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = −2𝑒 𝑡(𝑒3𝑧|0 𝑡 ) + 3𝑒2𝑡(𝑒2𝑧|0 𝑡 ) 𝑦(𝑡) = −2𝑒 𝑡(𝑒3𝑡 − 1) + 3𝑒2𝑡(𝑒2𝑡 − 1) 𝑦(𝑡) = −2𝑒4𝑡 − 2𝑒 𝑡 + 3𝑒4𝑡 − 3𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒4𝑡 − 3𝑒2𝑡 − 2𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒4𝑡 − 3𝑒2𝑡 − 2𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥4 − 3𝑥2 − 2𝑥 𝑦(1) = 0 ⇒ 𝐴 + 𝐵 = 4 𝑦(2) = 0 ⇒ 2𝐵 + 4𝐵 = 0 𝐴 = 8 , 𝐵 = −4 𝑦(𝑥) = 8𝑥 − 4𝑥2 + 𝑥4 − 3𝑥2 − 2𝑥 𝑦( 𝑥) = 𝑥4 − 7𝑥2 + 6𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2′ , ′ 𝑦(1) = 0′ , ′ 𝑦(2) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^2 2⁄ − 3 ∗ 𝑥 2⁄ + 1
24.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
24 Use Laplace transform 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6𝑥4 𝑦(1) = 0 , 𝑦(2) = 0 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑦,𝑡𝑡 − 3𝑦,𝑡 + 2𝑦 = 6𝑒4𝑡 (𝑠2 − 3𝑠 + 2)𝑦(𝑠) = 6 (𝑠 − 4) 𝑦(𝑠) = 6 (𝑠 − 4)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 − 4)(𝑠 − 2)(𝑠 − 1) = 𝐴 (𝑠 − 4) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐴𝑠2 − 3𝐴𝑠 + 2𝐴 + 𝐵𝑠2 − 5𝐵𝑠 + 4𝐵 + 𝐶𝑠2 − 6𝐶𝑠 + 8𝑐 = 6 𝐴 = 1 , 𝐵 = −3 , 𝐶 = 2 𝑦(𝑠) = 1 (𝑠 − 4) − 3 (𝑠 − 2) + 2 (𝑠 − 1) 𝑦(𝑡) = 𝑒4𝑡 − 3𝑒2𝑡 + 2𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦𝑝(𝑥) = 𝑥4 − 3𝑥2 + 2𝑥 𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝑥4 − 3𝑥2 + 2𝑥 𝑦(1) = 0 ⇒ 𝐴 + 𝐵 = 0
25.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
25 𝑦(2) = 0 ⇒ 4𝐴 + 2𝐵 = −8 𝐴 = −4 , 𝐵 = 4 𝑦( 𝑥) = 𝑥4 − 7𝑥2 + 6𝑥
Download