SlideShare a Scribd company logo
A	
  programmatic	
  GIS	
  approach	
  to	
  
analyzing	
  wildlife	
  habitat	
  change	
  in	
  
New	
  Jersey	
  
NEARC	
  2015	
  
Prepared	
  by:	
  
	
  	
  	
  	
  Patrick	
  Woerner,	
  GIS	
  Specialist,	
  NJ	
  Division	
  of	
  Fish	
  and	
  Wildlife	
  
	
  	
  	
  	
  John	
  Reiser,	
  GISP,	
  Business	
  Intelligence	
  Analyst,	
  Rowan	
  University	
  
	
  	
  	
  	
  Sharon	
  Petzinger,	
  Senior	
  Zoologist,	
  NJ	
  Division	
  of	
  Fish	
  and	
  Wildlife	
  
•  Rapid	
  Urbanization/Suburban	
  Sprawl*	
  
•  Roughly	
  ~15,000	
  acres	
  per	
  year	
  
•  Rate	
  of	
  sprawl	
  development	
  gained	
  momentum	
  
(~7%	
  increase)	
  over	
  last	
  two	
  decades	
  (while	
  less	
  land	
  
available)	
  
•  Urban	
  surpassed	
  upland	
  forest	
  as	
  dominant	
  land	
  
type	
  as	
  of	
  2007	
  
•  Increased	
  impervious	
  surface	
  by	
  nearly	
  nine	
  football	
  
fields	
  per	
  day	
  (2002-­‐2007)	
  
•  Myth	
  of	
  Population	
  Growth	
  as	
  Driver	
  
•  Residential	
  land	
  grew	
  nearly	
  twice	
  as	
  fast	
  as	
  
population	
  during	
  1986-­‐2007	
  period	
  (4x	
  the	
  rate	
  of	
  
population	
  growth	
  in	
  the	
  2002-­‐2007	
  period)*	
  
•  Habitat	
  Loss	
  
•  Habitat	
  Destruction	
  
•  Habitat	
  Fragmentation	
  (loss	
  of	
  habitat	
  functionality)	
  
	
  
NJ	
  Landscape	
  Context	
  
*	
  Hasse	
  and	
  Lathrop	
  (2010)	
  Changing	
  Landscapes	
  in	
  the	
  Garden	
  State:	
  Urban	
  Growth	
  and	
  Open	
  
Space	
  Loss	
  in	
  NJ	
  1986	
  thru	
  2007.	
  
NJDEP	
  Land	
  Use/Land	
  
Cover	
  Data	
  (LULC)	
  
•  Statewide	
  aerial	
  photo	
  
interpreted	
  
•  Modified	
  Anderson	
  	
  (USGS)	
  
Classification	
  System	
  
•  Hierarchical,	
  86	
  unique	
  codes	
  
•  Available	
  for	
  1986,	
  1995,	
  2002,	
  
2007,	
  2012,…	
  2015?	
  
•  Multiple	
  uses,	
  but	
  intended	
  as	
  a	
  
resource	
  for	
  change	
  analysis	
  
Landscape	
  Project	
  
•  Habitat	
  mapping	
  for	
  E,	
  T,	
  SC	
  
wildlife	
  based	
  on	
  occurrences	
  
and	
  LULC-­‐derived	
  habitat	
  data	
  
•  Associates	
  each	
  species	
  with	
  
specific	
  set	
  of	
  LULC	
  classes	
  
according	
  to	
  habitat	
  
requirements	
  
•  Used	
  for	
  conservation	
  planning,	
  
environmental	
  review,	
  habitat	
  
management	
  ,	
  acquisitions,	
  land	
  
use	
  regulation	
  
Urban	
  Growth	
  and	
  Open	
  
Space	
  Loss	
  in	
  NJ	
  1986-­‐2007	
  
•  Ongoing	
  studies	
  based	
  on	
  LULC	
  
examining	
  NJ	
  urban	
  growth	
  and	
  
land	
  use	
  change	
  
•  Provides	
  “report	
  card”	
  on	
  urban	
  
growth	
  and	
  open	
  space	
  loss	
  
looking	
  at	
  time	
  periods	
  1986-­‐95	
  
(t1),	
  1995-­‐02	
  (t2)	
  2002-­‐07	
  (t3)	
  
and	
  2007-­‐12	
  (t4)	
  
•  General	
  reporting	
  on	
  LULC	
  
categories	
  used	
  to	
  inform	
  policy	
  
Basis	
  of	
  HCAP	
  
•  Tracking	
  of	
  habitat	
  loss	
  and	
  fragmentation,	
  
the	
  two	
  greatest	
  threats	
  to	
  wildlife	
  
populations	
  
	
  
•  Satisfies	
  	
  State	
  Wildlife	
  Action	
  Plan	
  
conservation	
  objectives	
  of	
  evaluating	
  
species-­‐specific	
  and	
  regional	
  habitat	
  
change	
  every	
  five	
  years	
  and	
  assessing	
  
trends	
  in	
  loss	
  and	
  conversion	
  
	
  
•  Baseline	
  component	
  for	
  development	
  of	
  
species	
  status	
  assessments	
  and	
  recovery	
  
plans	
  and	
  use	
  in	
  Delphi	
  Status	
  Review	
  
process	
  
•  Tool	
  to	
  guide	
  and	
  monitor	
  effectiveness	
  of	
  
habitat	
  conservation	
  planning,	
  land-­‐use	
  
regulation	
  and	
  planning,	
  land	
  management,	
  
restoration	
  and	
  preservation	
  efforts	
  
	
  
Overview	
  &	
  Applications	
  
•  Programmatic	
  approach	
  to	
  analysis	
  to	
  
obtain	
  multi-­‐level	
  estimates	
  of	
  habitat	
  
change	
  
	
  
•  Covers	
  four	
  time	
  periods,	
  spanning	
  nearly	
  
three	
  decades	
  (T1:	
  1986	
  –	
  1995,	
  T2:	
  1995	
  –	
  
2002,	
  T3:	
  2002	
  –	
  2007	
  	
  and	
  T4:	
  2007-­‐2012)	
  
•  Incorporates	
  range	
  extents	
  for	
  60	
  species,	
  
across	
  five	
  taxon	
  (birds,	
  mammals,	
  reptiles,	
  
amphibians,	
  and	
  invertebrates)	
  	
  
	
  
Overview	
  &	
  Applications	
  
Common	
  Name	
  
Allegheny	
  Woodrat	
   Least	
  Tern	
  
American	
  Bi6ern	
   Loggerhead	
  Shrike	
  
American	
  Kestrel	
   Long-­‐eared	
  Owl	
  
Arogos	
  Skipper	
   Longtail	
  Salamander	
  
Bald	
  Eagle	
   Mitchell's	
  Satyr	
  
Banner	
  Clubtail	
   Northeastern	
  Beach	
  Tiger	
  Beetle	
  
Barred	
  Owl	
   Northern	
  Goshawk	
  
Black-­‐crowned	
  Night-­‐heron	
   Northern	
  Harrier	
  
Black	
  Rail	
   Northern	
  Pine	
  Snake	
  
Black	
  Skimmer	
   Osprey	
  
Blue-­‐spo6ed	
  Salamander	
   Peregrine	
  Falcon	
  
Bobcat	
   Pied-­‐billed	
  Grebe	
  
Bobolink	
   Pine	
  Barrens	
  Treefrog	
  
Bog	
  Turtle	
   Piping	
  Plover	
  
Bronze	
  Copper	
   Red-­‐headed	
  Woodpecker	
  
Brook	
  Snaketail	
   Red-­‐shouldered	
  Hawk	
  
Ca6le	
  Egret	
   Red	
  Knot	
  
Checkered	
  White	
   Robust	
  Baske6ail	
  
Cope's	
  Gray	
  Treefrog	
   Roseate	
  Tern	
  
Corn	
  Snake	
   Savannah	
  Sparrow	
  
Eastern	
  Tiger	
  Salamander	
   Sedge	
  Wren	
  
Frosted	
  Elfin	
   Short-­‐eared	
  Owl	
  
Golden-­‐winged	
  Warbler	
   Silver-­‐bordered	
  FriNllary	
  
Grasshopper	
  Sparrow	
   Superb	
  Jewelwing	
  
Gray	
  Petaltail	
   Timber	
  Ra6lesnake	
  
Harpoon	
  Clubtail	
   Upland	
  Sandpiper	
  
Henslow's	
  Sparrow	
   Vesper	
  Sparrow	
  
Horned	
  Lark	
   Wood	
  Turtle	
  
Indiana	
  Bat	
   Yellow-­‐crowned	
  Night-­‐heron	
  
Kennedy's	
  Emerald	
  
Overview	
  &	
  Applications	
  
Nuanced,	
  multi-­‐dimension	
  species-­‐	
  and	
  habitat-­‐	
  specific	
  
change	
  metrics	
  
•  Species-­‐feature	
  label	
  specific	
  (e.g.	
  nesting	
  vs.	
  foraging)	
  	
  
•  Not	
  only	
  loss/gain/net	
  change,	
  but	
  also	
  transitions	
  between	
  different	
  habitat	
  
categories	
  
•  Fragmentation	
  analysis	
  -­‐	
  number	
  of	
  patches,	
  average,	
  median,	
  minimum,	
  
maximum	
  patch	
  size	
  and	
  average,	
  median,	
  minimum,	
  maximum	
  edge-­‐to-­‐area	
  
ratio	
  
•  %	
  change	
  in	
  habitat	
  category	
  in	
  relation	
  to	
  total	
  area	
  of	
  all	
  habitat	
  (all	
  
categories)	
  
•  %	
  change	
  in	
  habitat	
  category	
  in	
  relation	
  to	
  all	
  change	
  to	
  non-­‐habitat	
  
•  %	
  change	
  of	
  a	
  habitat	
  category	
  in	
  relation	
  to	
  total	
  acreage	
  of	
  that	
  category	
  
•  Secondary	
  Analysis	
  of	
  WMAs,	
  preservation	
  areas,	
  regulated	
  areas…	
  
•  To	
  form	
  basis	
  of	
  comparative	
  
analysis,	
  base	
  layers	
  created	
  
following	
  Landscape	
  Project	
  
method	
  using	
  LULC	
  from:	
  
•  1986	
  
•  1995	
  
•  2002	
  
•  2007	
  
•  2012	
  
Data	
  Development	
  
LANDSCAPE
BASE LAYER
DATA
DEVELOPMENT
LULC
Major Roads
Landscape
Base Layer
Water Buffer
(100m)
Riparian
Clipped
by
Combined
with
Erased by
||
Flood Prone
Hydric Soils
Wetlands
Water Buffer
(50m)
•  Species-­‐habitat	
  associations	
  
derived	
  from	
  the	
  Landscape	
  Project	
  	
  
for	
  each	
  unique	
  species-­‐feature	
  label	
  
(type	
  of	
  occurrence)	
  combination	
  
•  Habitat	
  selections	
  modified	
  to	
  meet	
  
purpose	
  of	
  change	
  analysis	
  
•  Species-­‐habitat	
  associations	
  based	
  
on:	
  	
  
•  peer-­‐reviewed	
  scientific	
  literature	
  
•  occurrence-­‐land	
  use	
  analysis	
  to	
  determine	
  
preferential	
  selection	
  of	
  certain	
  habitats	
  
(i.e.,	
  LULC	
  codes	
  used	
  disproportionally	
  to	
  
their	
  availability	
  within	
  a	
  species	
  range)	
  	
  
•  ENSP	
  research	
  and	
  expert	
  opinion	
  
	
  
Data	
  Development	
  
Attribute	
  Descriptions	
  
	
  
	
  
Data	
  Development	
  
Field	
  Name	
   Description	
  
biopid	
   Internal	
  (ENSP)	
  identification	
  code	
  used	
  for	
  individual	
  species	
  
spcid	
   Another	
  internal	
  (ENSP)	
  identification	
  code	
  used	
  for	
  individual	
  species	
  
spccommonn	
   Common	
  name	
  of	
  species	
  
lusort	
  
There	
  are	
  94	
  lucodes	
  for	
  each	
  species.	
  This	
  number	
  sorts	
  each	
  lucode	
  for	
  
each	
  species.	
  
lucode	
  
NJDEP	
  modified	
  Anderson	
  system	
  land	
  use/land	
  cover	
  (lulc)	
  code.	
  For	
  
more	
  information:	
  
http://www.state.nj.us/dep/gis/digidownload/metadata/lulc07/
anderson2007.html	
  
lupick	
  
whether	
  or	
  not	
  the	
  corresponding	
  lucode	
  was	
  considered	
  to	
  be	
  “habitat”	
  
for	
  a	
  given	
  species.	
  
type	
   broad	
  category	
  of	
  lucode	
  
label	
   specific	
  category	
  of	
  lucode	
  
rip_only	
  
if	
  contains	
  “YES”,	
  this	
  signifies	
  for	
  that	
  specific	
  lucode,	
  only	
  the	
  area	
  that	
  
falls	
  within	
  the	
  riparian	
  layer	
  were	
  selected.	
  
patchrules	
   Not	
  implemented	
  in	
  this	
  version	
  of	
  the	
  HCAP	
  
size_req	
   Patch	
  size	
  thresholds	
  for	
  specified	
  species	
  
core_req	
   “Core”	
  requirement	
  for	
  specified	
  species	
  	
  
habcat	
  
which	
  habitat	
  category	
  the	
  lucode	
  was	
  categorized	
  as	
  for	
  that	
  given	
  
species	
  
•  For	
  reporting	
  purposes	
  96	
  Anderson	
  
codes	
  grouped	
  into	
  18	
  habitat	
  
categories	
  (habcats)	
  
	
  
Data	
  Development	
  
•  Species	
  range	
  extents	
  built	
  by	
  generating	
  minimum	
  convex	
  hull	
  on	
  occurrence	
  area	
  data	
  
and	
  by	
  incorporating	
  biologists'	
  feedback	
  
•  Road-­‐bound	
  blocks	
  used	
  as	
  consistent	
  units	
  of	
  analysis	
  across	
  all	
  species	
  
	
  
Data	
  Development	
  
Timber	
  Rattlesnake	
  	
  
Range	
  Extent	
  and	
  Road	
  Blocks	
  
Any	
  polygons	
  matching	
  the	
  location	
  criteria	
  and	
  the	
  classification	
  criteria	
  are	
  
included	
  and	
  coded	
  for	
  presence	
  or	
  absence	
  in	
  any	
  time	
  period.	
  
Data	
  Development	
  
Top	
  level	
  view	
  of	
  overall	
  habitat	
  impacts	
  –	
  gains	
  and	
  losses	
  
Habitat	
  Change	
  
Legend
Transitional
GAIN
LOSS
Stable Habitat
Detailed	
  change	
  based	
  on	
  time	
  of	
  habitat	
  change	
  
Habitat	
  Change	
  
Legend
Transitional
GAIN T1
GAIN T2
GAIN T3
GAIN T4
LOSS T1
LOSS T2
LOSS T3
LOSS T4
Stable Habitat
•  Species	
  range	
  extents	
  built	
  by	
  generating	
  minimum	
  convex	
  hull	
  on	
  occurrence	
  area	
  
data	
  and	
  by	
  incorporating	
  biologists'	
  feedback	
  
	
  
Golden-­‐winged	
  Warbler	
  
Golden-­‐Winged	
  Warbler	
  Range	
  
Suitable	
  habitat	
  selected	
  based	
  on	
  range	
  extent	
  and	
  matching	
  land	
  use	
  codes.	
  
Golden-­‐winged	
  Warbler	
  
Top	
  level	
  view	
  of	
  overall	
  habitat	
  impacts	
  –	
  gains	
  and	
  losses	
  
Golden-­‐winged	
  Warbler	
  
Legend
Transitional
GAIN
LOSS
Stable Habitat
Detailed	
  change	
  based	
  on	
  time	
  of	
  habitat	
  change	
  
Golden-­‐winged	
  Warbler	
  
Legend
Transitional
GAIN T1
GAIN T2
GAIN T3
GAIN T4
LOSS T1
LOSS T2
LOSS T3
LOSS T4
Stable Habitat
-­‐12,000	
  
-­‐10,000	
  
-­‐8,000	
  
-­‐6,000	
  
-­‐4,000	
  
-­‐2,000	
  
0	
  
2,000	
  
4,000	
  
Net	
  1986-­‐1995	
   Net	
  1995-­‐2002	
   Net	
  2002-­‐2007	
   Net	
  2007-­‐2012	
   Net	
  1986-­‐2012	
  
Timeframe	
  
Net	
  Acres	
  
Net	
  Changes	
  (acres)	
  in	
  Golden-­‐winged	
  Warbler	
  Habitat:	
  1986-­‐2012	
  
Golden-­‐winged	
  Warbler	
  
-­‐20,000	
  
-­‐15,000	
  
-­‐10,000	
  
-­‐5,000	
  
0	
  
5,000	
  
10,000	
  
15,000	
  
20,000	
  
25,000	
  
Net	
  1986-­‐1995	
   Net	
  1995-­‐2002	
   Net	
  2002-­‐2007	
   Net	
  2007-­‐2012	
   Net	
  1986-­‐2012	
  
Net	
  Acres	
  
Timeframe	
  
Net	
  Changes	
  (acres)	
  in	
  Golden-­‐winged	
  Warbler	
  Non-­‐habitat	
  
Types	
  
NON-­‐HABITAT	
  AGRICULTURE	
  
NON-­‐HABITAT	
  NATURAL	
  
NON-­‐HABITAT	
  URBAN	
  
HABITAT	
  
Golden-­‐winged	
  Warbler	
  
Non-­‐habitat	
  Urban	
  
y	
  =	
  -­‐2592.9x	
  +	
  12122	
  
R²	
  =	
  0.9394	
  
Habitat	
  
y	
  =	
  1977.7x	
  -­‐	
  7426.2	
  
R²	
  =	
  0.4341	
  
-­‐8,000	
  
-­‐6,000	
  
-­‐4,000	
  
-­‐2,000	
  
0	
  
2,000	
  
4,000	
  
6,000	
  
8,000	
  
10,000	
  
12,000	
  
Net	
  1986-­‐1995	
   Net	
  1995-­‐2002	
   Net	
  2002-­‐2007	
   Net	
  2007-­‐2012	
  
Net	
  Acres	
  
Timeframe	
  
Net	
  Changes	
  (acres)	
  in	
  Golden-­‐winged	
  Warbler	
  Non-­‐habitat	
  
Types	
  
NON-­‐HABITAT	
  AGRICULTURE	
  
NON-­‐HABITAT	
  NATURAL	
  
NON-­‐HABITAT	
  URBAN	
  
HABITAT	
  
Golden-­‐winged	
  Warbler	
  
-­‐15,000	
  
-­‐10,000	
  
-­‐5,000	
  
0	
  
5,000	
  
10,000	
  
15,000	
  
20,000	
  
Net	
  1986-­‐1995	
   Net	
  1995-­‐2002	
   Net	
  2002-­‐2007	
   Net	
  2007-­‐2012	
  
Net	
  Acres	
  
Timeframe	
  
Net	
  Change	
  in	
  Golden-­‐winged	
  Warbler	
  Habitat	
  Types	
  
SHRUB	
  UPLAND	
  
SHRUB	
  WETLAND	
  
UPLAND	
  FOREST	
  CON	
  
UPLAND	
  FOREST	
  DEC	
  
UPLAND	
  FOREST	
  MIX	
  
WETEMERG	
  
WETLAND	
  FOREST	
  CON	
  
WETLAND	
  FOREST	
  DEC	
  
WETLAND	
  FOREST	
  MIX	
  
Golden-­‐winged	
  Warbler	
  
-­‐20,000	
  
-­‐15,000	
  
-­‐10,000	
  
-­‐5,000	
  
0	
  
5,000	
  
10,000	
  
15,000	
  
20,000	
  
25,000	
  
Net	
  1986-­‐1995	
   Net	
  1995-­‐2002	
   Net	
  2002-­‐2007	
   Net	
  2007-­‐2012	
   Net	
  1986-­‐2012	
  
Net	
  Acres	
  
Timeframe	
  
Net	
  Change	
  in	
  Golden-­‐winged	
  Warbler	
  Habitat	
  Types	
  
HABITAT	
  PRIMARY	
  GWWA	
  
HABITAT	
  SECONDARY	
  GWWA	
  
NON-­‐HABITAT	
  AGRICULTURE	
  
NON-­‐HABITAT	
  NATURAL	
  
NON-­‐HABITAT	
  URBAN	
  
Golden-­‐winged	
  Warbler	
  
Statewide	
  E&T	
  Habitat	
  Change	
  
-­‐150000	
  
-­‐100000	
  
-­‐50000	
  
0	
  
50000	
  
100000	
  
150000	
  
200000	
  
T1	
   T2	
   T3	
   T4	
  
Acres	
  
Time	
  Period	
  
GAIN	
  
LOSS	
  
Net	
  Change	
  
Annualized	
  Change	
  11,740	
   13,839	
   11,919	
   4,928	
  
Gloucester	
  County	
  
	
  
Harrison	
  Township	
  
Morris	
  County	
  
	
  
Washington	
  Township	
  
•  Data	
  was	
  prepped	
  using	
  ArcGIS	
  
•  Union	
  LULC	
  layers	
  to	
  create	
  base	
  data	
  with	
  Anderson	
  Level	
  IV	
  codes	
  for	
  five	
  time	
  
periods.	
  
•  Eliminate	
  sliver	
  polygons	
  
•  Data	
  was	
  loaded	
  into	
  PostgreSQL	
  
•  Custom	
  SQL	
  functions	
  perform	
  the	
  selections	
  and	
  filtering	
  necessary	
  
•  Database	
  views	
  provide	
  for	
  easy	
  reporting	
  and	
  allow	
  for	
  access	
  using	
  
ArcGIS	
  software	
  
Data-­‐Driven	
  Analysis	
  
•  PL/pgsql	
  functions	
  perform	
  selections	
  and	
  spatial	
  functions	
  to	
  produce	
  
individual	
  species’	
  habitat	
  layers.	
  
•  Polygons	
  are	
  selected,	
  a	
  bitmask	
  is	
  calculated	
  for	
  presence	
  of	
  habitat	
  
within	
  a	
  time	
  period,	
  and	
  a	
  view	
  is	
  created	
  to	
  make	
  an	
  ArcGIS	
  layer.	
  	
  
Habitat	
  Selection	
  Process	
  
•  A	
  bitmask	
  was	
  employed	
  to	
  accurately	
  and	
  concisely	
  store	
  the	
  habitat	
  
status	
  for	
  a	
  given	
  polygon	
  for	
  a	
  given	
  species.	
  	
  
•  Allows	
  for	
  quick	
  selection	
  of	
  habitat	
  meeting	
  certain	
  time	
  periods.	
  
•  Allows	
  for	
  easy	
  change	
  to	
  species	
  habitat	
  status	
  
•  Riparian-­‐specific	
  habitat	
  
•  Core/patch	
  size	
  requirements	
  
Using	
  a	
  Bitmask	
  
•  Some	
  species	
  have	
  additional	
  constraints,	
  such	
  as:	
  
•  Certain	
  land	
  uses	
  must	
  be	
  within	
  a	
  riparian	
  zone	
  to	
  be	
  considered	
  habitat	
  
•  Land	
  use	
  patches	
  must	
  exceed	
  a	
  certain	
  size	
  
•  “Core”	
  (inward	
  buffering)	
  of	
  a	
  habitat	
  patch	
  must	
  exceed	
  a	
  size	
  threshold	
  
•  PL/pgsql	
  functions	
  handle	
  these	
  constraints	
  in	
  additional	
  passes	
  over	
  the	
  
data.	
  
•  Wherever	
  possible,	
  simple	
  value	
  comparisons	
  are	
  performed	
  instead	
  of	
  
spatial	
  comparisons,	
  which	
  are	
  expensive.	
  
•  Riparian	
  is	
  a	
  “precompiled”	
  flag	
  for	
  each	
  base	
  polygon	
  
•  Core	
  threshold	
  function	
  requires	
  spatial	
  analysis	
  –	
  all	
  performed	
  in	
  SQL	
  
•  SELECT newregionid, period,
ST_Multi(ST_MakeValid( ( ST_Dump(ST_Buffer(shape,
-295.276)) ).geom )) as shape
FROM biopid45_rd
•  PostGIS	
  has	
  many	
  spatial	
  functions	
  and	
  operators.	
  
Additional	
  Habitat	
  Constraints	
  
•  Once	
  all	
  of	
  the	
  habitat	
  layers	
  have	
  been	
  calculated,	
  we	
  can	
  count	
  the	
  
number	
  of	
  species	
  that	
  consider	
  a	
  given	
  base	
  land	
  use	
  polygon	
  as	
  
potential	
  habitat.	
  
•  Counts	
  are	
  performed	
  for	
  each	
  time	
  period	
  and	
  can	
  be	
  used	
  to	
  show	
  
change	
  in	
  available	
  habitat	
  due	
  to	
  increased	
  development.	
  	
  
Species	
  “Richness”	
  
Habitat Change Analysis Project
•  Using	
  Tableau	
  with	
  the	
  spatial	
  
database	
  enables	
  interactive	
  
dashboards	
  to	
  be	
  created	
  for	
  all	
  of	
  the	
  
species.	
  
•  An	
  interactive	
  website	
  with	
  graphs,	
  
maps,	
  and	
  other	
  reports	
  planned	
  for	
  	
  
mid-­‐2016.	
  
•  Interactive	
  demo	
  of	
  a	
  habitat	
  change	
  
dashboard.	
  
	
  
Interactive	
  Reporting	
  
•  Having	
  this	
  process	
  in	
  PL/pgsql	
  and	
  PostGIS	
  has	
  considerable	
  benefits:	
  
•  ArcGIS	
  ModelBuilder	
  could	
  not	
  handle	
  multiple	
  iterations	
  (species,	
  time	
  periods).	
  
•  ArcGIS	
  Desktop	
  was	
  slow	
  to	
  perform	
  individual	
  steps.	
  
•  Parameters	
  (such	
  as	
  a	
  species’	
  land	
  use	
  –	
  habitat	
  preferences	
  and	
  patch	
  size	
  
requirements)	
  are	
  in	
  tables	
  –	
  no	
  need	
  to	
  modify	
  the	
  SQL.	
  
•  Time	
  to	
  produce	
  a	
  single	
  habitat	
  feature	
  class	
  ranges	
  from	
  11	
  seconds	
  to	
  7	
  minutes.	
  
•  Entire	
  analysis	
  can	
  be	
  recalculated	
  in	
  a	
  matter	
  of	
  hours.	
  
•  PostgreSQL	
  and	
  PostGIS	
  are	
  free,	
  well	
  supported	
  software	
  projects.	
  	
  
•  All	
  of	
  the	
  logic	
  is	
  in	
  version	
  control.	
  
•  Potential	
  drawbacks:	
  
•  Spatial	
  SQL	
  may	
  be	
  unfamiliar	
  and	
  is	
  a	
  different	
  approach	
  to	
  the	
  data	
  than	
  Desktop	
  
GIS	
  analysis.	
  
•  Need	
  a	
  DBA	
  (or	
  become	
  familiar	
  with	
  PostgreSQL)	
  
Spatial	
  Analysis	
  within	
  a	
  Database	
  
John	
  Reiser	
  
Rowan	
  University	
  
Analytics,	
  Systems,	
  and	
  
Applications	
  
reiser@rowan.edu	
  
@johnjreiser	
  
Patrick	
  Woerner	
  
NJ	
  DEP	
  
Endangered	
  Non-­‐Game	
  
Species	
  Program	
  
Patrick.Woerner@dep.nj.gov	
  
609	
  259-­‐6967	
  
Questions,	
  comments?	
  
Thank	
  you!	
  	
  

More Related Content

What's hot (8)

PDF
2010_wsn_independent_assessment_of_mitigation_performance_a_case_study_for_wh...
Denise Weisman
 
PPTX
CEFAPARQUES PROJECT: ICES CEPHALOPODS WORKING GROUP
Jorgelgda
 
PDF
Guerreiro (2014). Biodiversity distribution in the western Sahara-Sahel the r...
Ricardo Guerreiro
 
PDF
Biodiversity change as a human impact gradient in the biosphere reserve of Fe...
Journal of Research in Biology
 
PDF
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...
Agriculture Journal IJOEAR
 
KEY
Fresno Bird Count - an overview for PPSR Workshop at AMNH
Madhusudan Katti
 
PPT
BC Protected Area Research Forum Presentation
nancyanne
 
PDF
scent_station
Matthew Detjen
 
2010_wsn_independent_assessment_of_mitigation_performance_a_case_study_for_wh...
Denise Weisman
 
CEFAPARQUES PROJECT: ICES CEPHALOPODS WORKING GROUP
Jorgelgda
 
Guerreiro (2014). Biodiversity distribution in the western Sahara-Sahel the r...
Ricardo Guerreiro
 
Biodiversity change as a human impact gradient in the biosphere reserve of Fe...
Journal of Research in Biology
 
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...
Agriculture Journal IJOEAR
 
Fresno Bird Count - an overview for PPSR Workshop at AMNH
Madhusudan Katti
 
BC Protected Area Research Forum Presentation
nancyanne
 
scent_station
Matthew Detjen
 

Viewers also liked (20)

PPTX
Mapping the Way - ESRI EdUC 2011
John Reiser
 
PPTX
NJAPPA 2012 - Campus Facilities
John Reiser
 
PDF
Doing more with SQL
John Reiser
 
PPTX
Introduction to 3D Data
John Reiser
 
PPTX
Mapping the Human Environment
John Reiser
 
PDF
NJ MAP: Building a different kind of GIS platform using open source tools.
John Reiser
 
PPTX
Going Mobile with HTML5
John Reiser
 
PPTX
GPS - Fall 2011
John Reiser
 
PPTX
GIS & Facilities - NJAPPA Talk - April 26 2012
John Reiser
 
PPTX
Using Dashboards to Understand Spatial Data
John Reiser
 
PPTX
Classification Systems
John Reiser
 
PPT
Network Analysis in ArcGIS
John Reiser
 
PPTX
Data Models - GIS I
John Reiser
 
PPT
Intro to GIS and Remote Sensing
John Reiser
 
PDF
Barriers to Wildlife Migration Coyote Valley
Colleen Henn
 
PDF
Environmental Resources Inventory Using GIS, City of Englewood, NJ
Mehmet Secilmis
 
PPT
Technical presentation documenting the process to classify land use at the Ce...
Jason Schroeder
 
PPTX
Tema 2
Isabel Perea Mir
 
PPS
Fragmentation revisited 050902
Niels Nielsen
 
PDF
Nechisar park gis based conservation assesment
Asaye Nigussie
 
Mapping the Way - ESRI EdUC 2011
John Reiser
 
NJAPPA 2012 - Campus Facilities
John Reiser
 
Doing more with SQL
John Reiser
 
Introduction to 3D Data
John Reiser
 
Mapping the Human Environment
John Reiser
 
NJ MAP: Building a different kind of GIS platform using open source tools.
John Reiser
 
Going Mobile with HTML5
John Reiser
 
GPS - Fall 2011
John Reiser
 
GIS & Facilities - NJAPPA Talk - April 26 2012
John Reiser
 
Using Dashboards to Understand Spatial Data
John Reiser
 
Classification Systems
John Reiser
 
Network Analysis in ArcGIS
John Reiser
 
Data Models - GIS I
John Reiser
 
Intro to GIS and Remote Sensing
John Reiser
 
Barriers to Wildlife Migration Coyote Valley
Colleen Henn
 
Environmental Resources Inventory Using GIS, City of Englewood, NJ
Mehmet Secilmis
 
Technical presentation documenting the process to classify land use at the Ce...
Jason Schroeder
 
Fragmentation revisited 050902
Niels Nielsen
 
Nechisar park gis based conservation assesment
Asaye Nigussie
 
Ad

Similar to Habitat Change Analysis Project (20)

PPTX
rpa-fragmentation-riitters-march-2017.pptx
DGWFSouthPunjab
 
PPT
Ncssa bcm-vegetation condition monitoring workshop
peterm38
 
PPTX
Deforestation diagnostics
CIFOR-ICRAF
 
PPT
E-Bird and Climate Change distribution and abundance models, John Alexander
National Wildlife Federation
 
PPTX
Thackway national cond
Richard Thackway
 
PPTX
JRV – Landrace gap analysis AGM16 Melbourne
Decision and Policy Analysis Program
 
PPTX
Framework for assessing and reporting resilience of native vegetation
Richard Thackway
 
PDF
BAMS_1.pdf
LiezelCabugao
 
PPTX
Reef fish, newcomers to macro-ecology
Alison Specht
 
PPTX
July 29-330-Michael Margo
Soil and Water Conservation Society
 
PDF
2016 conservation track: geospatial and temporal population analysis of short...
GIS in the Rockies
 
PPTX
Using VAST to inform the development regional environmental accounts
Richard Thackway
 
PDF
Climate Change Atlas: New England and northern New York
Northern Institute of Applied Climate Science
 
PPTX
Development and application of core attributes, A first approximation nation...
Richard Thackway
 
PPTX
Overview of vegetation management – VAST as a solution
Richard Thackway
 
PPTX
Eco-Logical GIS
Bill Bass
 
PPTX
Assessing and reporting resilience of native vegetation using metrics of stru...
Richard Thackway
 
PDF
Hawaii Pacific GIS Conference 2012: Water Resources - Hawaii's Fluvial System...
Hawaii Geographic Information Coordinating Council
 
PPT
Knowledge Base by Jerry Mead, Ph.D., Assistant Scientist & Section Leader, Ac...
Kim Beidler
 
PPTX
A framework for assessing and projecting climate change effects on forest com...
Jennifer Costanza
 
rpa-fragmentation-riitters-march-2017.pptx
DGWFSouthPunjab
 
Ncssa bcm-vegetation condition monitoring workshop
peterm38
 
Deforestation diagnostics
CIFOR-ICRAF
 
E-Bird and Climate Change distribution and abundance models, John Alexander
National Wildlife Federation
 
Thackway national cond
Richard Thackway
 
JRV – Landrace gap analysis AGM16 Melbourne
Decision and Policy Analysis Program
 
Framework for assessing and reporting resilience of native vegetation
Richard Thackway
 
BAMS_1.pdf
LiezelCabugao
 
Reef fish, newcomers to macro-ecology
Alison Specht
 
July 29-330-Michael Margo
Soil and Water Conservation Society
 
2016 conservation track: geospatial and temporal population analysis of short...
GIS in the Rockies
 
Using VAST to inform the development regional environmental accounts
Richard Thackway
 
Climate Change Atlas: New England and northern New York
Northern Institute of Applied Climate Science
 
Development and application of core attributes, A first approximation nation...
Richard Thackway
 
Overview of vegetation management – VAST as a solution
Richard Thackway
 
Eco-Logical GIS
Bill Bass
 
Assessing and reporting resilience of native vegetation using metrics of stru...
Richard Thackway
 
Hawaii Pacific GIS Conference 2012: Water Resources - Hawaii's Fluvial System...
Hawaii Geographic Information Coordinating Council
 
Knowledge Base by Jerry Mead, Ph.D., Assistant Scientist & Section Leader, Ac...
Kim Beidler
 
A framework for assessing and projecting climate change effects on forest com...
Jennifer Costanza
 
Ad

More from John Reiser (16)

PPTX
Python and GIS: Improving Your Workflow
John Reiser
 
PDF
Python Programming and GIS
John Reiser
 
PPTX
Portfolio Workshop
John Reiser
 
PPTX
GIS Day at BCC 2012
John Reiser
 
PPTX
Mapping the Way
John Reiser
 
PPTX
New Jersey Land Change Viewer
John Reiser
 
PPTX
Measurement and Scale
John Reiser
 
PPTX
Map Projections
John Reiser
 
PPT
Geodatabases
John Reiser
 
PPTX
GIS Modeling
John Reiser
 
PPTX
Data Storage and Processing
John Reiser
 
PPT
GIS Data Types
John Reiser
 
PPTX
Getting your Data Out There: An Introduction to Distributed GIS
John Reiser
 
PPTX
IMGIS - Brief History of Mapping
John Reiser
 
PPTX
Internet-enabled GIS - Spring 2011
John Reiser
 
PPT
Internet-enabled GIS for Planners
John Reiser
 
Python and GIS: Improving Your Workflow
John Reiser
 
Python Programming and GIS
John Reiser
 
Portfolio Workshop
John Reiser
 
GIS Day at BCC 2012
John Reiser
 
Mapping the Way
John Reiser
 
New Jersey Land Change Viewer
John Reiser
 
Measurement and Scale
John Reiser
 
Map Projections
John Reiser
 
Geodatabases
John Reiser
 
GIS Modeling
John Reiser
 
Data Storage and Processing
John Reiser
 
GIS Data Types
John Reiser
 
Getting your Data Out There: An Introduction to Distributed GIS
John Reiser
 
IMGIS - Brief History of Mapping
John Reiser
 
Internet-enabled GIS - Spring 2011
John Reiser
 
Internet-enabled GIS for Planners
John Reiser
 

Recently uploaded (20)

PPTX
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
PPTX
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
PPT
DRUGS USED IN THERAPY OF SHOCK, Shock Therapy, Treatment or management of shock
Rajshri Ghogare
 
PDF
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PPTX
PROTIEN ENERGY MALNUTRITION: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
PDF
Virat Kohli- the Pride of Indian cricket
kushpar147
 
PPTX
Continental Accounting in Odoo 18 - Odoo Slides
Celine George
 
PPTX
Rules and Regulations of Madhya Pradesh Library Part-I
SantoshKumarKori2
 
PPTX
Digital Professionalism and Interpersonal Competence
rutvikgediya1
 
PDF
My Thoughts On Q&A- A Novel By Vikas Swarup
Niharika
 
PPTX
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
PPTX
Unlock the Power of Cursor AI: MuleSoft Integrations
Veera Pallapu
 
PPTX
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
PPTX
Virus sequence retrieval from NCBI database
yamunaK13
 
PPTX
Top 10 AI Tools, Like ChatGPT. You Must Learn In 2025
Digilearnings
 
PPTX
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
PPTX
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
PPTX
I INCLUDED THIS TOPIC IS INTELLIGENCE DEFINITION, MEANING, INDIVIDUAL DIFFERE...
parmarjuli1412
 
PPTX
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
PDF
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
DRUGS USED IN THERAPY OF SHOCK, Shock Therapy, Treatment or management of shock
Rajshri Ghogare
 
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PROTIEN ENERGY MALNUTRITION: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
Virat Kohli- the Pride of Indian cricket
kushpar147
 
Continental Accounting in Odoo 18 - Odoo Slides
Celine George
 
Rules and Regulations of Madhya Pradesh Library Part-I
SantoshKumarKori2
 
Digital Professionalism and Interpersonal Competence
rutvikgediya1
 
My Thoughts On Q&A- A Novel By Vikas Swarup
Niharika
 
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
Unlock the Power of Cursor AI: MuleSoft Integrations
Veera Pallapu
 
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
Virus sequence retrieval from NCBI database
yamunaK13
 
Top 10 AI Tools, Like ChatGPT. You Must Learn In 2025
Digilearnings
 
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
I INCLUDED THIS TOPIC IS INTELLIGENCE DEFINITION, MEANING, INDIVIDUAL DIFFERE...
parmarjuli1412
 
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 

Habitat Change Analysis Project

  • 1. A  programmatic  GIS  approach  to   analyzing  wildlife  habitat  change  in   New  Jersey   NEARC  2015   Prepared  by:          Patrick  Woerner,  GIS  Specialist,  NJ  Division  of  Fish  and  Wildlife          John  Reiser,  GISP,  Business  Intelligence  Analyst,  Rowan  University          Sharon  Petzinger,  Senior  Zoologist,  NJ  Division  of  Fish  and  Wildlife  
  • 2. •  Rapid  Urbanization/Suburban  Sprawl*   •  Roughly  ~15,000  acres  per  year   •  Rate  of  sprawl  development  gained  momentum   (~7%  increase)  over  last  two  decades  (while  less  land   available)   •  Urban  surpassed  upland  forest  as  dominant  land   type  as  of  2007   •  Increased  impervious  surface  by  nearly  nine  football   fields  per  day  (2002-­‐2007)   •  Myth  of  Population  Growth  as  Driver   •  Residential  land  grew  nearly  twice  as  fast  as   population  during  1986-­‐2007  period  (4x  the  rate  of   population  growth  in  the  2002-­‐2007  period)*   •  Habitat  Loss   •  Habitat  Destruction   •  Habitat  Fragmentation  (loss  of  habitat  functionality)     NJ  Landscape  Context   *  Hasse  and  Lathrop  (2010)  Changing  Landscapes  in  the  Garden  State:  Urban  Growth  and  Open   Space  Loss  in  NJ  1986  thru  2007.  
  • 3. NJDEP  Land  Use/Land   Cover  Data  (LULC)   •  Statewide  aerial  photo   interpreted   •  Modified  Anderson    (USGS)   Classification  System   •  Hierarchical,  86  unique  codes   •  Available  for  1986,  1995,  2002,   2007,  2012,…  2015?   •  Multiple  uses,  but  intended  as  a   resource  for  change  analysis   Landscape  Project   •  Habitat  mapping  for  E,  T,  SC   wildlife  based  on  occurrences   and  LULC-­‐derived  habitat  data   •  Associates  each  species  with   specific  set  of  LULC  classes   according  to  habitat   requirements   •  Used  for  conservation  planning,   environmental  review,  habitat   management  ,  acquisitions,  land   use  regulation   Urban  Growth  and  Open   Space  Loss  in  NJ  1986-­‐2007   •  Ongoing  studies  based  on  LULC   examining  NJ  urban  growth  and   land  use  change   •  Provides  “report  card”  on  urban   growth  and  open  space  loss   looking  at  time  periods  1986-­‐95   (t1),  1995-­‐02  (t2)  2002-­‐07  (t3)   and  2007-­‐12  (t4)   •  General  reporting  on  LULC   categories  used  to  inform  policy   Basis  of  HCAP  
  • 4. •  Tracking  of  habitat  loss  and  fragmentation,   the  two  greatest  threats  to  wildlife   populations     •  Satisfies    State  Wildlife  Action  Plan   conservation  objectives  of  evaluating   species-­‐specific  and  regional  habitat   change  every  five  years  and  assessing   trends  in  loss  and  conversion     •  Baseline  component  for  development  of   species  status  assessments  and  recovery   plans  and  use  in  Delphi  Status  Review   process   •  Tool  to  guide  and  monitor  effectiveness  of   habitat  conservation  planning,  land-­‐use   regulation  and  planning,  land  management,   restoration  and  preservation  efforts     Overview  &  Applications  
  • 5. •  Programmatic  approach  to  analysis  to   obtain  multi-­‐level  estimates  of  habitat   change     •  Covers  four  time  periods,  spanning  nearly   three  decades  (T1:  1986  –  1995,  T2:  1995  –   2002,  T3:  2002  –  2007    and  T4:  2007-­‐2012)   •  Incorporates  range  extents  for  60  species,   across  five  taxon  (birds,  mammals,  reptiles,   amphibians,  and  invertebrates)       Overview  &  Applications   Common  Name   Allegheny  Woodrat   Least  Tern   American  Bi6ern   Loggerhead  Shrike   American  Kestrel   Long-­‐eared  Owl   Arogos  Skipper   Longtail  Salamander   Bald  Eagle   Mitchell's  Satyr   Banner  Clubtail   Northeastern  Beach  Tiger  Beetle   Barred  Owl   Northern  Goshawk   Black-­‐crowned  Night-­‐heron   Northern  Harrier   Black  Rail   Northern  Pine  Snake   Black  Skimmer   Osprey   Blue-­‐spo6ed  Salamander   Peregrine  Falcon   Bobcat   Pied-­‐billed  Grebe   Bobolink   Pine  Barrens  Treefrog   Bog  Turtle   Piping  Plover   Bronze  Copper   Red-­‐headed  Woodpecker   Brook  Snaketail   Red-­‐shouldered  Hawk   Ca6le  Egret   Red  Knot   Checkered  White   Robust  Baske6ail   Cope's  Gray  Treefrog   Roseate  Tern   Corn  Snake   Savannah  Sparrow   Eastern  Tiger  Salamander   Sedge  Wren   Frosted  Elfin   Short-­‐eared  Owl   Golden-­‐winged  Warbler   Silver-­‐bordered  FriNllary   Grasshopper  Sparrow   Superb  Jewelwing   Gray  Petaltail   Timber  Ra6lesnake   Harpoon  Clubtail   Upland  Sandpiper   Henslow's  Sparrow   Vesper  Sparrow   Horned  Lark   Wood  Turtle   Indiana  Bat   Yellow-­‐crowned  Night-­‐heron   Kennedy's  Emerald  
  • 6. Overview  &  Applications   Nuanced,  multi-­‐dimension  species-­‐  and  habitat-­‐  specific   change  metrics   •  Species-­‐feature  label  specific  (e.g.  nesting  vs.  foraging)     •  Not  only  loss/gain/net  change,  but  also  transitions  between  different  habitat   categories   •  Fragmentation  analysis  -­‐  number  of  patches,  average,  median,  minimum,   maximum  patch  size  and  average,  median,  minimum,  maximum  edge-­‐to-­‐area   ratio   •  %  change  in  habitat  category  in  relation  to  total  area  of  all  habitat  (all   categories)   •  %  change  in  habitat  category  in  relation  to  all  change  to  non-­‐habitat   •  %  change  of  a  habitat  category  in  relation  to  total  acreage  of  that  category   •  Secondary  Analysis  of  WMAs,  preservation  areas,  regulated  areas…  
  • 7. •  To  form  basis  of  comparative   analysis,  base  layers  created   following  Landscape  Project   method  using  LULC  from:   •  1986   •  1995   •  2002   •  2007   •  2012   Data  Development   LANDSCAPE BASE LAYER DATA DEVELOPMENT LULC Major Roads Landscape Base Layer Water Buffer (100m) Riparian Clipped by Combined with Erased by || Flood Prone Hydric Soils Wetlands Water Buffer (50m)
  • 8. •  Species-­‐habitat  associations   derived  from  the  Landscape  Project     for  each  unique  species-­‐feature  label   (type  of  occurrence)  combination   •  Habitat  selections  modified  to  meet   purpose  of  change  analysis   •  Species-­‐habitat  associations  based   on:     •  peer-­‐reviewed  scientific  literature   •  occurrence-­‐land  use  analysis  to  determine   preferential  selection  of  certain  habitats   (i.e.,  LULC  codes  used  disproportionally  to   their  availability  within  a  species  range)     •  ENSP  research  and  expert  opinion     Data  Development  
  • 9. Attribute  Descriptions       Data  Development   Field  Name   Description   biopid   Internal  (ENSP)  identification  code  used  for  individual  species   spcid   Another  internal  (ENSP)  identification  code  used  for  individual  species   spccommonn   Common  name  of  species   lusort   There  are  94  lucodes  for  each  species.  This  number  sorts  each  lucode  for   each  species.   lucode   NJDEP  modified  Anderson  system  land  use/land  cover  (lulc)  code.  For   more  information:   http://www.state.nj.us/dep/gis/digidownload/metadata/lulc07/ anderson2007.html   lupick   whether  or  not  the  corresponding  lucode  was  considered  to  be  “habitat”   for  a  given  species.   type   broad  category  of  lucode   label   specific  category  of  lucode   rip_only   if  contains  “YES”,  this  signifies  for  that  specific  lucode,  only  the  area  that   falls  within  the  riparian  layer  were  selected.   patchrules   Not  implemented  in  this  version  of  the  HCAP   size_req   Patch  size  thresholds  for  specified  species   core_req   “Core”  requirement  for  specified  species     habcat   which  habitat  category  the  lucode  was  categorized  as  for  that  given   species  
  • 10. •  For  reporting  purposes  96  Anderson   codes  grouped  into  18  habitat   categories  (habcats)     Data  Development  
  • 11. •  Species  range  extents  built  by  generating  minimum  convex  hull  on  occurrence  area  data   and  by  incorporating  biologists'  feedback   •  Road-­‐bound  blocks  used  as  consistent  units  of  analysis  across  all  species     Data  Development   Timber  Rattlesnake     Range  Extent  and  Road  Blocks  
  • 12. Any  polygons  matching  the  location  criteria  and  the  classification  criteria  are   included  and  coded  for  presence  or  absence  in  any  time  period.   Data  Development  
  • 13. Top  level  view  of  overall  habitat  impacts  –  gains  and  losses   Habitat  Change   Legend Transitional GAIN LOSS Stable Habitat
  • 14. Detailed  change  based  on  time  of  habitat  change   Habitat  Change   Legend Transitional GAIN T1 GAIN T2 GAIN T3 GAIN T4 LOSS T1 LOSS T2 LOSS T3 LOSS T4 Stable Habitat
  • 15. •  Species  range  extents  built  by  generating  minimum  convex  hull  on  occurrence  area   data  and  by  incorporating  biologists'  feedback     Golden-­‐winged  Warbler   Golden-­‐Winged  Warbler  Range  
  • 16. Suitable  habitat  selected  based  on  range  extent  and  matching  land  use  codes.   Golden-­‐winged  Warbler  
  • 17. Top  level  view  of  overall  habitat  impacts  –  gains  and  losses   Golden-­‐winged  Warbler   Legend Transitional GAIN LOSS Stable Habitat
  • 18. Detailed  change  based  on  time  of  habitat  change   Golden-­‐winged  Warbler   Legend Transitional GAIN T1 GAIN T2 GAIN T3 GAIN T4 LOSS T1 LOSS T2 LOSS T3 LOSS T4 Stable Habitat
  • 19. -­‐12,000   -­‐10,000   -­‐8,000   -­‐6,000   -­‐4,000   -­‐2,000   0   2,000   4,000   Net  1986-­‐1995   Net  1995-­‐2002   Net  2002-­‐2007   Net  2007-­‐2012   Net  1986-­‐2012   Timeframe   Net  Acres   Net  Changes  (acres)  in  Golden-­‐winged  Warbler  Habitat:  1986-­‐2012   Golden-­‐winged  Warbler  
  • 20. -­‐20,000   -­‐15,000   -­‐10,000   -­‐5,000   0   5,000   10,000   15,000   20,000   25,000   Net  1986-­‐1995   Net  1995-­‐2002   Net  2002-­‐2007   Net  2007-­‐2012   Net  1986-­‐2012   Net  Acres   Timeframe   Net  Changes  (acres)  in  Golden-­‐winged  Warbler  Non-­‐habitat   Types   NON-­‐HABITAT  AGRICULTURE   NON-­‐HABITAT  NATURAL   NON-­‐HABITAT  URBAN   HABITAT   Golden-­‐winged  Warbler  
  • 21. Non-­‐habitat  Urban   y  =  -­‐2592.9x  +  12122   R²  =  0.9394   Habitat   y  =  1977.7x  -­‐  7426.2   R²  =  0.4341   -­‐8,000   -­‐6,000   -­‐4,000   -­‐2,000   0   2,000   4,000   6,000   8,000   10,000   12,000   Net  1986-­‐1995   Net  1995-­‐2002   Net  2002-­‐2007   Net  2007-­‐2012   Net  Acres   Timeframe   Net  Changes  (acres)  in  Golden-­‐winged  Warbler  Non-­‐habitat   Types   NON-­‐HABITAT  AGRICULTURE   NON-­‐HABITAT  NATURAL   NON-­‐HABITAT  URBAN   HABITAT   Golden-­‐winged  Warbler  
  • 22. -­‐15,000   -­‐10,000   -­‐5,000   0   5,000   10,000   15,000   20,000   Net  1986-­‐1995   Net  1995-­‐2002   Net  2002-­‐2007   Net  2007-­‐2012   Net  Acres   Timeframe   Net  Change  in  Golden-­‐winged  Warbler  Habitat  Types   SHRUB  UPLAND   SHRUB  WETLAND   UPLAND  FOREST  CON   UPLAND  FOREST  DEC   UPLAND  FOREST  MIX   WETEMERG   WETLAND  FOREST  CON   WETLAND  FOREST  DEC   WETLAND  FOREST  MIX   Golden-­‐winged  Warbler  
  • 23. -­‐20,000   -­‐15,000   -­‐10,000   -­‐5,000   0   5,000   10,000   15,000   20,000   25,000   Net  1986-­‐1995   Net  1995-­‐2002   Net  2002-­‐2007   Net  2007-­‐2012   Net  1986-­‐2012   Net  Acres   Timeframe   Net  Change  in  Golden-­‐winged  Warbler  Habitat  Types   HABITAT  PRIMARY  GWWA   HABITAT  SECONDARY  GWWA   NON-­‐HABITAT  AGRICULTURE   NON-­‐HABITAT  NATURAL   NON-­‐HABITAT  URBAN   Golden-­‐winged  Warbler  
  • 24. Statewide  E&T  Habitat  Change   -­‐150000   -­‐100000   -­‐50000   0   50000   100000   150000   200000   T1   T2   T3   T4   Acres   Time  Period   GAIN   LOSS   Net  Change   Annualized  Change  11,740   13,839   11,919   4,928  
  • 25. Gloucester  County     Harrison  Township  
  • 26. Morris  County     Washington  Township  
  • 27. •  Data  was  prepped  using  ArcGIS   •  Union  LULC  layers  to  create  base  data  with  Anderson  Level  IV  codes  for  five  time   periods.   •  Eliminate  sliver  polygons   •  Data  was  loaded  into  PostgreSQL   •  Custom  SQL  functions  perform  the  selections  and  filtering  necessary   •  Database  views  provide  for  easy  reporting  and  allow  for  access  using   ArcGIS  software   Data-­‐Driven  Analysis  
  • 28. •  PL/pgsql  functions  perform  selections  and  spatial  functions  to  produce   individual  species’  habitat  layers.   •  Polygons  are  selected,  a  bitmask  is  calculated  for  presence  of  habitat   within  a  time  period,  and  a  view  is  created  to  make  an  ArcGIS  layer.     Habitat  Selection  Process  
  • 29. •  A  bitmask  was  employed  to  accurately  and  concisely  store  the  habitat   status  for  a  given  polygon  for  a  given  species.     •  Allows  for  quick  selection  of  habitat  meeting  certain  time  periods.   •  Allows  for  easy  change  to  species  habitat  status   •  Riparian-­‐specific  habitat   •  Core/patch  size  requirements   Using  a  Bitmask  
  • 30. •  Some  species  have  additional  constraints,  such  as:   •  Certain  land  uses  must  be  within  a  riparian  zone  to  be  considered  habitat   •  Land  use  patches  must  exceed  a  certain  size   •  “Core”  (inward  buffering)  of  a  habitat  patch  must  exceed  a  size  threshold   •  PL/pgsql  functions  handle  these  constraints  in  additional  passes  over  the   data.   •  Wherever  possible,  simple  value  comparisons  are  performed  instead  of   spatial  comparisons,  which  are  expensive.   •  Riparian  is  a  “precompiled”  flag  for  each  base  polygon   •  Core  threshold  function  requires  spatial  analysis  –  all  performed  in  SQL   •  SELECT newregionid, period, ST_Multi(ST_MakeValid( ( ST_Dump(ST_Buffer(shape, -295.276)) ).geom )) as shape FROM biopid45_rd •  PostGIS  has  many  spatial  functions  and  operators.   Additional  Habitat  Constraints  
  • 31. •  Once  all  of  the  habitat  layers  have  been  calculated,  we  can  count  the   number  of  species  that  consider  a  given  base  land  use  polygon  as   potential  habitat.   •  Counts  are  performed  for  each  time  period  and  can  be  used  to  show   change  in  available  habitat  due  to  increased  development.     Species  “Richness”  
  • 33. •  Using  Tableau  with  the  spatial   database  enables  interactive   dashboards  to  be  created  for  all  of  the   species.   •  An  interactive  website  with  graphs,   maps,  and  other  reports  planned  for     mid-­‐2016.   •  Interactive  demo  of  a  habitat  change   dashboard.     Interactive  Reporting  
  • 34. •  Having  this  process  in  PL/pgsql  and  PostGIS  has  considerable  benefits:   •  ArcGIS  ModelBuilder  could  not  handle  multiple  iterations  (species,  time  periods).   •  ArcGIS  Desktop  was  slow  to  perform  individual  steps.   •  Parameters  (such  as  a  species’  land  use  –  habitat  preferences  and  patch  size   requirements)  are  in  tables  –  no  need  to  modify  the  SQL.   •  Time  to  produce  a  single  habitat  feature  class  ranges  from  11  seconds  to  7  minutes.   •  Entire  analysis  can  be  recalculated  in  a  matter  of  hours.   •  PostgreSQL  and  PostGIS  are  free,  well  supported  software  projects.     •  All  of  the  logic  is  in  version  control.   •  Potential  drawbacks:   •  Spatial  SQL  may  be  unfamiliar  and  is  a  different  approach  to  the  data  than  Desktop   GIS  analysis.   •  Need  a  DBA  (or  become  familiar  with  PostgreSQL)   Spatial  Analysis  within  a  Database  
  • 35. John  Reiser   Rowan  University   Analytics,  Systems,  and   Applications   [email protected]   @johnjreiser   Patrick  Woerner   NJ  DEP   Endangered  Non-­‐Game   Species  Program   [email protected]   609  259-­‐6967   Questions,  comments?   Thank  you!