This document summarizes a research paper that uses genetic algorithms to optimize traffic light timing at intersections to minimize traffic. It first describes modeling traffic light intersections using Petri nets. It then explains how genetic algorithms can be used for optimization by coding the problem variables in chromosomes, defining a fitness function to evaluate populations over generations, and using operators like mutation and crossover. The fitness function aims to minimize average traffic light cycle times based on 14 parameters related to light timing and vehicle wait times at two intersections. The genetic algorithm optimization of traffic light timing parameters is found to improve traffic flow at intersections.