SlideShare a Scribd company logo
Hive Join Optimizations:
MR and Spark
Szehon Ho
@hkszehon
Cloudera Software Engineer, Hive Committer and PMC
2© 2014 Cloudera, Inc. All rights reserved.
Background
•  Joins were one of the more challenging pieces of the Hive on Spark
project
•  Many joins added throughout the years in Hive
•  Common (Reduce-side) Join
•  Broadcast (Map-side) Join
•  Bucket Map Join
•  Sort Merge Bucket Join
•  Skew Join
•  More to come
•  Share our research on how different joins work in MR
•  Share how joins are implemented in Hive on Spark
3© 2014 Cloudera, Inc. All rights reserved.
Common Join
•  Known as Reduce-side join
•  Background: Hive (Equi) Join High-Level Requirement:
•  Scan n tables
•  Rows with same value on joinKeys are combined -> Result
•  Process:
•  Mapper: scan, process n tables and produces HiveKey = {JoinKey, TableAlias}, Value = {row}
•  Shuffle Phase:
•  JoinKey used to hash rows of same joinKey value to same reducer
•  TableAlias makes sure reducers gets rows in sorted order by origin table
•  Reducer: Join operator combine rows from different tables to produce JoinResult
•  Worst performance
•  All table data is shuffled around
4© 2014 Cloudera, Inc. All rights reserved.
Common Join
•  Ex: Join by CityId
•  CityId=1 goes to First Reducer (sorted by table)
•  CityId=2 goes to Second Reducer (sorted by table)
CityId CityName
1 San Jose
2 SF
CityId Sales
1 500
2 600
2 400
CityId TableAlias Row Value
1 C San Jose
1 S 500
CityId TableAlias Row Value
2 C SF
2 S 600
2 S 400
{1, San Jose, 500}
{2, San Jose, 600}
{2, San Francisco, 400}
Mapper (Reduce Sink) Reducer (Join Operator)
Cities: C
Sales: S
{1, C}
{1, S}
{2, C}
{2, S}
{2, S}
HiveKey Result
5© 2014 Cloudera, Inc. All rights reserved.
Common Join (MR)
TS Sel/FIl RS
TS Sel/FIl RS
Join Sel/FIl FileSinkOperator Tree
MR Work Tree
MapRedWork
ReduceWorkMapWork
TS Sel/FIl RS
TS Sel/FIl RS
Join Sel/FIl FileSink
Produces HIveKey
Execute on Mapper Execute on Reducer
6© 2014 Cloudera, Inc. All rights reserved.
Common Join
Spark Work Tree
SparkWork
MapWork
TS Sel/FIl ReduceSink
MapWork
TS Sel/FIl ReduceSink
ReduceWork
Join Sel/FIl ReduceSink
union() RepartitionAndSort
WithinPartitions()
Shuffle-Sort Transform
(SPARK-2978)
mapPartition()
mapPartition()
MapWork
MapWork
mapPartition()
ReduceWork
Spark RDD
Transforms
In Spark:
•  Table = RDD
•  Data Operation = RDD transformation
Table RDD
Table RDD
7© 2014 Cloudera, Inc. All rights reserved.
MapJoin
•  Known as Broadcast join
•  Create hashtable from (n-1) small table(s) keyed by Joinkey, broadcasted them in-memory to
mappers processing big-table.
•  Each big-table mapper does lookup of joinkey in small table(s) hashmap -> Join Result
•  Ex: Join by “CityId”
CityId CityName
1 San Jose
2 San Francisco
CityId Sales
1 500
2 600
2 400
CityId Sales
1 700
2 200
2 100
Small Table (HashTable) Big Table (Mapper)
{1, San Jose, 500}
{2, San Francisco, 600}
{2, San Francisco, 400}
{1, San Jose, 700}
{2, San Francisco, 200}
{2, San Francisco, 200}
8© 2014 Cloudera, Inc. All rights reserved.
MapJoin Overview (MR)
HS2
Node1
(Small Table Data)
Node2
(Small Table Data)
Node3 Node4
1. Local Work read,
process small table
HS2
Node3 Node4
2. Create/Upload hashtable
file to distributed cache
Node1 Node2
HS2
Node1
(Big Table)
3. Big Table Mapper
Reads hashTable from
Distributed Cache
Node2
Node3
(Big Table)
Node4
(Big Table)
LocalWork
MapWork MapWork
MapWork
LocalWork
•  More efficient than common join
•  Only small-table(s) are moved around
9© 2014 Cloudera, Inc. All rights reserved.
MapJoin Overview (Spark)
•  Spark Work for Mapjoin very similar to MR Version, use hashtable file
with high replication factor
•  Note1: We run the small-table processing non-local (parallel)
•  Note2: Consideration of Spark broadcast variables for broadcast
10© 2014 Cloudera, Inc. All rights reserved.
MapJoin Decision Implementation
•  Memory req: N-1 tables need to fit into mapper memory
•  Two ways Hive decides a mapjoin
•  Query Hints:
•  SELECT /*+ MAPJOIN(cities) */ * FROM cities JOIN sales on cities.cityId=sales.cityId;
•  Auto-converesion based on file-size (“hive.auto.convert.join”)
•  If N-1 small tables smaller than: “hive.mapjoin.smalltable.filesize”
11© 2014 Cloudera, Inc. All rights reserved.
MapJoin Optimizers
•  Multiple decision-points in query-planning = Different Optimizer Paths
•  MapJoin Optimizers are processors that convert Query Plan
•  “Logical (Compile-time) optimizers” modify a operator-tree, if known at compile-time
how to optimize to mapjoin
•  “Physical (Runtime) optimizers” modify a physical work (MapRedWork, TezWork,
SparkWork), involves more-complex conditional task, when Hive has no info at
compile-time
MapRedLocalWork
TS (Small
Table)
Sel/FIl HashTableSink
MapRedWork
MapWork
TS
(Big Table)
Sel/
FIl MapJoin
Sel/
FIl
FileSink
HashTableDummy
Local
Work
Logical Optimizers => TS (Big Table) Sel/FIl
TS (Small
Table)
Sel/FIl RS
MapJoin Sel/FIl FileSink
Physical Optimizers =>
12© 2014 Cloudera, Inc. All rights reserved.
MapJoin Optimizers (MR)
•  Query Hint: Big/Small Table(s) known at compile-time from hints.
•  Logical Optimizer: MapJoinProcessor
•  Auto-conversion: Table size not known at compile-time
•  Physical Optimizer: CommonJoinResolver, MapJoinResolver.
•  Create Conditional Tasks with all big/small table possibilities: one picked at runtime
•  Noconditional mode: For some cases, table file-size is known at compile-time and can skip
conditional task, but cannot do this for all queries (join of intermediate results..)
MapRedLocalWork
Cities to HashTable
MapRedWork
Sales to MapJoin
MapRedLocalWork
Sales to HashTable
MapRedWork
Cities to MapJoin
MapRedLocalWork
Cities Sales
Join
Condition1 (Cities Small) Condition2 (Sales Small) Condition3 (Neither Small Enough)
13© 2014 Cloudera, Inc. All rights reserved.
MapJoin Optimizers: Spark
•  Spark Plan: Support for both query-hints and auto-conversion
decisions.
•  Query Hints
•  Logical Optimizer: Reuse MapJoinProcessor
•  Auto-conversion: Use statistics annotated on operators that give estimated
output size (like Tez, CBO), so big/small tables known at compile-time too
•  Logical Optimizer: SparkMapJoinOptimizer
Logical Optimizers =>
MapJoin Operators
TS (Big Table) Sel/FIl
TS (Small
Table)
Sel/FIl RS
MapJoin Sel/FIl FileSink
14© 2014 Cloudera, Inc. All rights reserved.
BucketMapJoin
•  Bucketed tables: rows hash to different bucket files based on bucket-key
•  CREATE TABLE cities (cityid int, value string) CLUSTERED BY (cityId) INTO 2 BUCKETS;
•  Join tables bucketed on join key: For each bucket of table, rows with matching joinKey
values will be in corresponding bucket of other table
•  Like Mapjoin, but big-table mappers load to memory only relevant small-table bucket’s
hashmap
•  Ex: Bucketed by “CityId”, Join by “CityId”
CityId CityName
3 New York
1 San Jose
CityId CityName
2 San Francisco
4 Los Angeles
CityId Sales
1 500
3 6000
1 400
CityId Sales
4 50
2 200
4 45
{1, San Jose, 500}
{3, New York, 6000}
{1, San Jose, 400}
{4, Los Angeles, 50}
{2, San Francisco, 200}
{4, Los Angeles, 45}
15© 2014 Cloudera, Inc. All rights reserved.
Bucket MapJoin Execution
•  Very similar to MapJoin
•  HashTableSink (small-table) writes per-bucket instead of per-table
•  HashTableLoader (big-table mapper) reads per-bucket
16© 2014 Cloudera, Inc. All rights reserved.
BucketMapJoin Optimizers (MR, Spark)
•  Memory Req: Corresponding bucket(s) of small table(s) fit into memory of big
table mapper (less than mapjoin)
•  MR:
•  Query hint && “hive.optimize.bucket.mapjoin”, all information known at compile-time
•  Logical Optimizer: MapJoinProcessor (intermediate operator tree)
•  Spark:
•  Query hint && “hive.optimize.buckert.mapjoin”
•  Logical Optimizer: Reuse MapJoinProcessor
•  Auto-Trigger, done via stats like mapjoin (size calculation estimated to be size/numBuckets)
•  Logical Optimizer: SparkMapJoinOptimizer, does size calculation of small tables via statistics, divides original
number by numBuckets
17© 2014 Cloudera, Inc. All rights reserved.
SMB Join
•  CREATE TABLE cities (cityid int, cityName string) CLUSTERED BY (cityId)
SORTED BY (cityId) INTO 2 BUCKETS;
•  Join tables are bucketed and sorted (per bucket)
•  This allows sort-merge join per bucket.
•  Advance table until find a match
CityId CityName
1 San Jose
3 New York
CityId Sales
1 500
1 400
3 6000
CityId Sales
2 200
4 50
4 45
CityId CityName
2 San Francisco
4 Los Angeles
{1, San Jose, 500}
{1, San Jose, 400}
{3, New York, 6000}
{2, San Francisco, 200}
{4, Los Angeles, 50}
{4, Los Angeles, 45}
18© 2014 Cloudera, Inc. All rights reserved.
SMB Join
•  Same Execution in MR and Spark
•  Run mapper process against a “big-table”, which loads corresponding small-table buckets
•  Mapper reads directly from small-table, no need to create, broadcast small-table hashmap.
•  No size limit on small table (no need to load table into memory)
Node: Small
Table Bucket 2
Node: Small
Table Bucket 1
Node: Big Table Bucket
1
Node: Big Table Bucket
2
MR: Mappers
Spark: MapPartition() Transform
MapWork
MapWork
HS2
19© 2014 Cloudera, Inc. All rights reserved.
SMB Join Optimizers: MR
•  SMB plan needs to identify ‘big-table’: one that mappers run against, will
load ‘small-tables’. Generally can be determined at compile-time
•  User gives query-hints to identify small-tables
•  Triggered by “hive.optimize.bucketmapjoin.sortedmerge”
•  Logical Optimizer: SortedMergeBucketMapJoinProc
•  Auto-trigger: “hive.auto.convert.sortmerge.join.bigtable.selection.policy”
class chooses big-table
•  Triggered by “hive.auto.convert.sortmerge.join”
•  Logical Optimizer: SortedBucketMapJoinProc
TS (Big Table) Sel/FIl
TS (Small
Table)
Sel/FIl DummyStore
SMBMapJoin Sel/FIl FileSink
Logical Optimizers:
SMB Join Operator
20© 2014 Cloudera, Inc. All rights reserved.
SMB Join Optimizers: Spark
•  Query-hints
•  Logical Optimizer: SparkSMBJoinHintOptimizer
•  Auto-Conversion
•  Logical Optimizer: SparkSortMergeJoinOptimizer
TS (Big Table) Sel/FIl
TS (Small
Table)
Sel/FIl DummyStore
SMBMapJoin Sel/FIl FileSink
Logical Optimizers:
SMB Join Operator
21© 2014 Cloudera, Inc. All rights reserved.
SMB vs MapJoin Decision (MR)
•  SMB->MapJoin path
•  In many cases, mapjoin is faster than SMB join so we choose mapjoin if possible
•  We spawn 1 mapper per bucket = large overhead if table has huge number bucket files
•  Enabled by “hive.auto.convert.sortmerge.join.to.mapjoin”
•  Physical Optimizer: SortMergeJoinResolver
MapRedWork
MapWork
SMB Join Work
MapRedLocalWork
MapRedWork
MapRedLocalWork
MapRedWork
Conditional MapJoin Work
MapRedWork
MapWork
MapJoin Option MapJoin Option SMB Option
22© 2014 Cloudera, Inc. All rights reserved.
SMB vs MapJoin Decision (Spark)
•  Make decision at compile-time via stats and config for Mapjoin vs
SMB join (can determine mapjoin at compile-time)
•  Logical Optimizer: SparkJoinOptimizer
•  If hive.auto.convert.join && hive.auto.convert.sortmerge.join.to.mapjoin and
tables fit into memory, delegate to MapJoin logical optimizers
•  If SMB enabled && (! hive.auto.convert.sortmerge.join.to.mapjoin or tables do
not fit into memory) , delegate to SMB Join logical optimizers.
23© 2014 Cloudera, Inc. All rights reserved.
Skew Join
•  Skew keys = key with high frequencies, will overwhelm that key’s
reducer in common join
•  Perform a common join for non-skew keys, and perform map join for skewed
keys.
•  A join B on A.id=B.id, with A skewing for id=1, becomes
•  A join B on A.id=B.id and A.id!=1 union
•  A join B on A.id=B.id and A.id=1
•  If B doesn’t skew on id=1, then #2 will be a map join.
24© 2014 Cloudera, Inc. All rights reserved.
Skew Join Optimizers (Compile Time, MR)
•  Skew keys identified by: create table … skewed by (key) on
(key_value);
•  Activated by “hive.optimize.skewjoin.compiletime”
•  Logical Optimizer: SkewJoinOptimizer looks at table metadata
•  We fixed bug with converting to mapjoin for skewed rows, HIVE-8610
TS Fil (Skewed Rows) ReduceSink
TS Fil (Skewed Rows) ReduceSink
Join
TS Fil (non-skewed) ReduceSink
TS Fil (non-skewed) ReduceSink
Join
Union
25© 2014 Cloudera, Inc. All rights reserved.
Skew Join Optimizers (Runtime, MR)
•  Activated by “hive.optimize.skewjoin”
•  Physical Optimizer: SkewJoinResolver
•  During join operator, key is skewed if it passes “hive.skewjoin.key” threshold
•  Skew key is skipped and values are copied to separate directories
•  Those directories are processed by conditional mapjoin task.
MapRedLocalWork
Tab1 to HashTable
MapRedWork
Tab2 is bigtable
MapRedLocalWork
Tab2 to HashTable
MapRedWork
Tab1 is bigtable
MapRedLocalWork
Tab1 Tab2
Join
Condition1(Skew Key Join) Condition2(Skew Key Join)Task3
Tab1 Skew Keys
Tab2 Skew Keys
26© 2014 Cloudera, Inc. All rights reserved.
Skew Join (Spark)
•  Compile-time optimizer
•  Logical Optimizer: Re-use SkewJoinOptimizer
•  Runtime optimizer
•  Physical Optimizer: SparkSkewJoinResolver, similar to SkewJoinResolver.
•  Main challenge is to break up some SparkTask that involve aggregations follow
by join, in skewjoin case, in order to insert conditional task.
27© 2014 Cloudera, Inc. All rights reserved.
MR Join Class Diagram (Enjoy)
SkewJoinOptimizer
(hive.optimize.skewjoin.compiletime)
MapJoinProcessor
BucketMapJoinOptimizer
(hive.optimize.bucket.mapjoin)
Tables are skewed N-1 join tables fit
in memory
User provides join hints
&& Tables bucketed
Users provides
Join hints
&& Tables bucketed
&& Tables Sorted
User provides
Join hints
Tables are skewed,
Skew metadata
available
Tables bucketed &&
Tables Sorted
SortedMergeBucketMapJoinOptimizer
(hive.optimize.bucketmapjoin.sortedmerge)
SortedMergeBucketMapJoinProc
(if contains MapJoin operator)
SortedBucketMapJoinProc
(ihive.auto.convert.sortmerge.join)
MapJoinFactory
(if contains MapJoin, SMBJoin operator)
SortMergeJoinResolver
(hive.auto.convert.join && hive.auto.convert.sortmerge.join.to.mapjoin)
MapJoinResolver
(if contains MapWork with MapLocalWork)
SkewJoinResolver
(hive.optimize.skew.join)
CommonJoinResolver
(hive.auto.convert.join)
SMB MapJoin
Skew Join
With MapJoin
Skew Join
With MapJoin
MapJoin MapJoin Bucket MapJoin Bucket MapJoin Bucket MapJoin
28© 2014 Cloudera, Inc. All rights reserved.
Spark Join Class Diagram (Enjoy)
SkewJoinOptimizer
(hive.optimize.skewjoin.compiletime)
SparkMapJoinProcessor
BucketMapJoinOptimizer
(hive.optimize.bucket.mapjoin)
Tables are skewed,
Skew metadata
available
N-1 join tables fit
in memory
User provides join hints
&& Tables bucketed
Users provides
Join hints
&& Tables bucketed
&& Tables Sorted
User provides
Join hints
Tables are skewed Tables bucketed &&
Tables Sorted
SparkSMBJoinHintOptimizer
(if contains MapJoin operator)
SparkSortMergeJoinOptimizer
(hive.auto.convert.sortmerge.join &&
! hive.auto.convert.sortmerge.join.to.mapjoin)
GenSparkWork
SparkSortMergeMapJoinFactory
(if contains SMBMapJoin operator)
SparkMapJoinResolver
(if SparkWork contains MapJoinOperator)
SkewJoinResolver
(hive.optimize.skew.join)
Skew Join
With MapJoin
Skew Join
With MapJoin
MapJoin or
Bucket Mapjoin
MapJoin Bucket MapJoin SMB MapJoin SMB MapJoin
SparkMapJoinOptimizer
(hive.auto.convert.join &&
hive.auto.convert.sortmerge.join.to.mapjoin)
29© 2014 Cloudera, Inc. All rights reserved.
Hive on Spark Join Team
•  Szehon Ho (Cloudera)
•  Chao Sun (Cloudera)
•  Jimmy Xiang (Cloudera)
•  Rui Li (Intel)
•  Suhas Satish (MapR)
•  Na Yang (MapR)
Thank you.

More Related Content

What's hot (20)

PDF
Apache Spark At Scale in the Cloud
Databricks
 
PDF
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxData
 
PDF
Hudi architecture, fundamentals and capabilities
Nishith Agarwal
 
PPTX
Tez Shuffle Handler: Shuffling at Scale with Apache Hadoop
DataWorks Summit
 
PDF
Tuning Apache Spark for Large-Scale Workloads Gaoxiang Liu and Sital Kedia
Databricks
 
PPTX
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Mike Percy
 
PDF
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
Databricks
 
PPTX
Hive + Tez: A Performance Deep Dive
DataWorks Summit
 
PDF
PySpark Best Practices
Cloudera, Inc.
 
PPTX
Why your Spark Job is Failing
DataWorks Summit
 
PDF
Apache Kafka Architecture & Fundamentals Explained
confluent
 
PPTX
Apache Arrow Flight Overview
Jacques Nadeau
 
PPTX
Extending Apache Ranger Authorization Beyond Hadoop: Review of Apache Ranger ...
DataWorks Summit
 
PDF
Dive into PySpark
Mateusz Buśkiewicz
 
PDF
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
PDF
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
PDF
Hive tuning
Michael Zhang
 
PDF
From Query Plan to Query Performance: Supercharging your Apache Spark Queries...
Databricks
 
PDF
Delta Lake: Optimizing Merge
Databricks
 
PDF
Spark shuffle introduction
colorant
 
Apache Spark At Scale in the Cloud
Databricks
 
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxData
 
Hudi architecture, fundamentals and capabilities
Nishith Agarwal
 
Tez Shuffle Handler: Shuffling at Scale with Apache Hadoop
DataWorks Summit
 
Tuning Apache Spark for Large-Scale Workloads Gaoxiang Liu and Sital Kedia
Databricks
 
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Mike Percy
 
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
Databricks
 
Hive + Tez: A Performance Deep Dive
DataWorks Summit
 
PySpark Best Practices
Cloudera, Inc.
 
Why your Spark Job is Failing
DataWorks Summit
 
Apache Kafka Architecture & Fundamentals Explained
confluent
 
Apache Arrow Flight Overview
Jacques Nadeau
 
Extending Apache Ranger Authorization Beyond Hadoop: Review of Apache Ranger ...
DataWorks Summit
 
Dive into PySpark
Mateusz Buśkiewicz
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Hive tuning
Michael Zhang
 
From Query Plan to Query Performance: Supercharging your Apache Spark Queries...
Databricks
 
Delta Lake: Optimizing Merge
Databricks
 
Spark shuffle introduction
colorant
 

Viewers also liked (18)

PDF
Hive on spark berlin buzzwords
Szehon Ho
 
PDF
Gunther hagleitner:apache hive & stinger
hdhappy001
 
PDF
TriHUG Feb: Hive on spark
trihug
 
PDF
Strata Stinger Talk October 2013
alanfgates
 
PPTX
Hive2.0 sql speed-scale--hadoop-summit-dublin-apr-2016
alanfgates
 
PPTX
Cost-based query optimization in Apache Hive 0.14
Julian Hyde
 
PPT
Hive User Meeting March 2010 - Hive Team
Zheng Shao
 
PPTX
Hadoop, Hive, Spark and Object Stores
Steve Loughran
 
PDF
Optimizing Hive Queries
DataWorks Summit
 
PDF
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
Mark Rittman
 
PPTX
Empower Hive with Spark
DataWorks Summit
 
PPTX
Using Apache Hive with High Performance
Inderaj (Raj) Bains
 
PPTX
Hive: Loading Data
Benjamin Leonhardi
 
PDF
Introduction to Apache Hive
Avkash Chauhan
 
PDF
Intro to HBase Internals & Schema Design (for HBase users)
alexbaranau
 
PDF
SQL to Hive Cheat Sheet
Hortonworks
 
PDF
Intro to HBase
alexbaranau
 
PPTX
Hive on spark is blazing fast or is it final
Hortonworks
 
Hive on spark berlin buzzwords
Szehon Ho
 
Gunther hagleitner:apache hive & stinger
hdhappy001
 
TriHUG Feb: Hive on spark
trihug
 
Strata Stinger Talk October 2013
alanfgates
 
Hive2.0 sql speed-scale--hadoop-summit-dublin-apr-2016
alanfgates
 
Cost-based query optimization in Apache Hive 0.14
Julian Hyde
 
Hive User Meeting March 2010 - Hive Team
Zheng Shao
 
Hadoop, Hive, Spark and Object Stores
Steve Loughran
 
Optimizing Hive Queries
DataWorks Summit
 
Gluent New World #02 - SQL-on-Hadoop : A bit of History, Current State-of-the...
Mark Rittman
 
Empower Hive with Spark
DataWorks Summit
 
Using Apache Hive with High Performance
Inderaj (Raj) Bains
 
Hive: Loading Data
Benjamin Leonhardi
 
Introduction to Apache Hive
Avkash Chauhan
 
Intro to HBase Internals & Schema Design (for HBase users)
alexbaranau
 
SQL to Hive Cheat Sheet
Hortonworks
 
Intro to HBase
alexbaranau
 
Hive on spark is blazing fast or is it final
Hortonworks
 
Ad

Similar to Hive join optimizations (20)

PPTX
Tez Data Processing over Yarn
InMobi Technology
 
PDF
Introduction to Spark on Hadoop
Carol McDonald
 
PDF
Tez: Accelerating Data Pipelines - fifthel
t3rmin4t0r
 
PDF
Hadoop eco system with mapreduce hive and pig
KhanKhaja1
 
PPT
Hive
Srinath Reddy
 
PPTX
Hadoop_EcoSystem_Pradeep_MG
Pradeep MG
 
PDF
Hadoop
devakalyan143
 
PPT
Hadoop Hive Talk At IIT-Delhi
Joydeep Sen Sarma
 
PPTX
Big Data and NoSQL for Database and BI Pros
Andrew Brust
 
PDF
Migrating Apache Hive Workload to Apache Spark: Bridge the Gap with Zhan Zhan...
Databricks
 
PDF
Lecture 2 part 3
Jazan University
 
PDF
Streaming SQL Foundations: Why I ❤ Streams+Tables
C4Media
 
PPTX
Hadoop and HBase experiences in perf log project
Mao Geng
 
PPTX
Map reduce presentation
Ahmad El Tawil
 
KEY
Patch Maps
aubreyholland
 
PPTX
Interactive SQL POC on Hadoop (Hive, Presto and Hive-on-Tez)
Sudhir Mallem
 
PPTX
Dive into spark2
Gal Marder
 
PPTX
AI與大數據數據處理 Spark實戰(20171216)
Paul Chao
 
PPT
Hive Evolution: ApacheCon NA 2010
John Sichi
 
PPTX
Big Data Processing
Michael Ming Lei
 
Tez Data Processing over Yarn
InMobi Technology
 
Introduction to Spark on Hadoop
Carol McDonald
 
Tez: Accelerating Data Pipelines - fifthel
t3rmin4t0r
 
Hadoop eco system with mapreduce hive and pig
KhanKhaja1
 
Hadoop_EcoSystem_Pradeep_MG
Pradeep MG
 
Hadoop Hive Talk At IIT-Delhi
Joydeep Sen Sarma
 
Big Data and NoSQL for Database and BI Pros
Andrew Brust
 
Migrating Apache Hive Workload to Apache Spark: Bridge the Gap with Zhan Zhan...
Databricks
 
Lecture 2 part 3
Jazan University
 
Streaming SQL Foundations: Why I ❤ Streams+Tables
C4Media
 
Hadoop and HBase experiences in perf log project
Mao Geng
 
Map reduce presentation
Ahmad El Tawil
 
Patch Maps
aubreyholland
 
Interactive SQL POC on Hadoop (Hive, Presto and Hive-on-Tez)
Sudhir Mallem
 
Dive into spark2
Gal Marder
 
AI與大數據數據處理 Spark實戰(20171216)
Paul Chao
 
Hive Evolution: ApacheCon NA 2010
John Sichi
 
Big Data Processing
Michael Ming Lei
 
Ad

More from Szehon Ho (9)

PPTX
Incremental Iceberg Table Replication at Scale
Szehon Ho
 
PPTX
Iceberg Geo Type: Transforming Geospatial Data Management at Scale
Szehon Ho
 
PPTX
Iceberg Geo Type: Transforming Geospatial Data Management at Scale
Szehon Ho
 
PPTX
Incremental Iceberg Table Replication At Scale.pptx
Szehon Ho
 
PDF
Icebergs Best Secret A Guide to Metadata Tables
Szehon Ho
 
PPTX
Icebergs Best Secret A Guide to Metadata Tables
Szehon Ho
 
PPTX
Hive on mesos Strata
Szehon Ho
 
PPTX
Hive paris
Szehon Ho
 
PDF
Hive on kafka
Szehon Ho
 
Incremental Iceberg Table Replication at Scale
Szehon Ho
 
Iceberg Geo Type: Transforming Geospatial Data Management at Scale
Szehon Ho
 
Iceberg Geo Type: Transforming Geospatial Data Management at Scale
Szehon Ho
 
Incremental Iceberg Table Replication At Scale.pptx
Szehon Ho
 
Icebergs Best Secret A Guide to Metadata Tables
Szehon Ho
 
Icebergs Best Secret A Guide to Metadata Tables
Szehon Ho
 
Hive on mesos Strata
Szehon Ho
 
Hive paris
Szehon Ho
 
Hive on kafka
Szehon Ho
 

Recently uploaded (20)

PDF
NewMind AI Weekly Chronicles – July’25, Week III
NewMind AI
 
PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PDF
Researching The Best Chat SDK Providers in 2025
Ray Fields
 
PDF
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
PDF
RAT Builders - How to Catch Them All [DeepSec 2024]
malmoeb
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PPTX
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
PDF
GDG Cloud Munich - Intro - Luiz Carneiro - #BuildWithAI - July - Abdel.pdf
Luiz Carneiro
 
PDF
Per Axbom: The spectacular lies of maps
Nexer Digital
 
PDF
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
PDF
State-Dependent Conformal Perception Bounds for Neuro-Symbolic Verification
Ivan Ruchkin
 
PPTX
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
PPTX
Introduction to Flutter by Ayush Desai.pptx
ayushdesai204
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PPTX
Agile Chennai 18-19 July 2025 | Workshop - Enhancing Agile Collaboration with...
AgileNetwork
 
PDF
TrustArc Webinar - Navigating Data Privacy in LATAM: Laws, Trends, and Compli...
TrustArc
 
PPTX
Farrell_Programming Logic and Design slides_10e_ch02_PowerPoint.pptx
bashnahara11
 
PDF
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
NewMind AI Weekly Chronicles – July’25, Week III
NewMind AI
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
Researching The Best Chat SDK Providers in 2025
Ray Fields
 
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
RAT Builders - How to Catch Them All [DeepSec 2024]
malmoeb
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
The Future of Artificial Intelligence (AI)
Mukul
 
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
GDG Cloud Munich - Intro - Luiz Carneiro - #BuildWithAI - July - Abdel.pdf
Luiz Carneiro
 
Per Axbom: The spectacular lies of maps
Nexer Digital
 
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
State-Dependent Conformal Perception Bounds for Neuro-Symbolic Verification
Ivan Ruchkin
 
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
Introduction to Flutter by Ayush Desai.pptx
ayushdesai204
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
Agile Chennai 18-19 July 2025 | Workshop - Enhancing Agile Collaboration with...
AgileNetwork
 
TrustArc Webinar - Navigating Data Privacy in LATAM: Laws, Trends, and Compli...
TrustArc
 
Farrell_Programming Logic and Design slides_10e_ch02_PowerPoint.pptx
bashnahara11
 
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 

Hive join optimizations

  • 1. Hive Join Optimizations: MR and Spark Szehon Ho @hkszehon Cloudera Software Engineer, Hive Committer and PMC
  • 2. 2© 2014 Cloudera, Inc. All rights reserved. Background •  Joins were one of the more challenging pieces of the Hive on Spark project •  Many joins added throughout the years in Hive •  Common (Reduce-side) Join •  Broadcast (Map-side) Join •  Bucket Map Join •  Sort Merge Bucket Join •  Skew Join •  More to come •  Share our research on how different joins work in MR •  Share how joins are implemented in Hive on Spark
  • 3. 3© 2014 Cloudera, Inc. All rights reserved. Common Join •  Known as Reduce-side join •  Background: Hive (Equi) Join High-Level Requirement: •  Scan n tables •  Rows with same value on joinKeys are combined -> Result •  Process: •  Mapper: scan, process n tables and produces HiveKey = {JoinKey, TableAlias}, Value = {row} •  Shuffle Phase: •  JoinKey used to hash rows of same joinKey value to same reducer •  TableAlias makes sure reducers gets rows in sorted order by origin table •  Reducer: Join operator combine rows from different tables to produce JoinResult •  Worst performance •  All table data is shuffled around
  • 4. 4© 2014 Cloudera, Inc. All rights reserved. Common Join •  Ex: Join by CityId •  CityId=1 goes to First Reducer (sorted by table) •  CityId=2 goes to Second Reducer (sorted by table) CityId CityName 1 San Jose 2 SF CityId Sales 1 500 2 600 2 400 CityId TableAlias Row Value 1 C San Jose 1 S 500 CityId TableAlias Row Value 2 C SF 2 S 600 2 S 400 {1, San Jose, 500} {2, San Jose, 600} {2, San Francisco, 400} Mapper (Reduce Sink) Reducer (Join Operator) Cities: C Sales: S {1, C} {1, S} {2, C} {2, S} {2, S} HiveKey Result
  • 5. 5© 2014 Cloudera, Inc. All rights reserved. Common Join (MR) TS Sel/FIl RS TS Sel/FIl RS Join Sel/FIl FileSinkOperator Tree MR Work Tree MapRedWork ReduceWorkMapWork TS Sel/FIl RS TS Sel/FIl RS Join Sel/FIl FileSink Produces HIveKey Execute on Mapper Execute on Reducer
  • 6. 6© 2014 Cloudera, Inc. All rights reserved. Common Join Spark Work Tree SparkWork MapWork TS Sel/FIl ReduceSink MapWork TS Sel/FIl ReduceSink ReduceWork Join Sel/FIl ReduceSink union() RepartitionAndSort WithinPartitions() Shuffle-Sort Transform (SPARK-2978) mapPartition() mapPartition() MapWork MapWork mapPartition() ReduceWork Spark RDD Transforms In Spark: •  Table = RDD •  Data Operation = RDD transformation Table RDD Table RDD
  • 7. 7© 2014 Cloudera, Inc. All rights reserved. MapJoin •  Known as Broadcast join •  Create hashtable from (n-1) small table(s) keyed by Joinkey, broadcasted them in-memory to mappers processing big-table. •  Each big-table mapper does lookup of joinkey in small table(s) hashmap -> Join Result •  Ex: Join by “CityId” CityId CityName 1 San Jose 2 San Francisco CityId Sales 1 500 2 600 2 400 CityId Sales 1 700 2 200 2 100 Small Table (HashTable) Big Table (Mapper) {1, San Jose, 500} {2, San Francisco, 600} {2, San Francisco, 400} {1, San Jose, 700} {2, San Francisco, 200} {2, San Francisco, 200}
  • 8. 8© 2014 Cloudera, Inc. All rights reserved. MapJoin Overview (MR) HS2 Node1 (Small Table Data) Node2 (Small Table Data) Node3 Node4 1. Local Work read, process small table HS2 Node3 Node4 2. Create/Upload hashtable file to distributed cache Node1 Node2 HS2 Node1 (Big Table) 3. Big Table Mapper Reads hashTable from Distributed Cache Node2 Node3 (Big Table) Node4 (Big Table) LocalWork MapWork MapWork MapWork LocalWork •  More efficient than common join •  Only small-table(s) are moved around
  • 9. 9© 2014 Cloudera, Inc. All rights reserved. MapJoin Overview (Spark) •  Spark Work for Mapjoin very similar to MR Version, use hashtable file with high replication factor •  Note1: We run the small-table processing non-local (parallel) •  Note2: Consideration of Spark broadcast variables for broadcast
  • 10. 10© 2014 Cloudera, Inc. All rights reserved. MapJoin Decision Implementation •  Memory req: N-1 tables need to fit into mapper memory •  Two ways Hive decides a mapjoin •  Query Hints: •  SELECT /*+ MAPJOIN(cities) */ * FROM cities JOIN sales on cities.cityId=sales.cityId; •  Auto-converesion based on file-size (“hive.auto.convert.join”) •  If N-1 small tables smaller than: “hive.mapjoin.smalltable.filesize”
  • 11. 11© 2014 Cloudera, Inc. All rights reserved. MapJoin Optimizers •  Multiple decision-points in query-planning = Different Optimizer Paths •  MapJoin Optimizers are processors that convert Query Plan •  “Logical (Compile-time) optimizers” modify a operator-tree, if known at compile-time how to optimize to mapjoin •  “Physical (Runtime) optimizers” modify a physical work (MapRedWork, TezWork, SparkWork), involves more-complex conditional task, when Hive has no info at compile-time MapRedLocalWork TS (Small Table) Sel/FIl HashTableSink MapRedWork MapWork TS (Big Table) Sel/ FIl MapJoin Sel/ FIl FileSink HashTableDummy Local Work Logical Optimizers => TS (Big Table) Sel/FIl TS (Small Table) Sel/FIl RS MapJoin Sel/FIl FileSink Physical Optimizers =>
  • 12. 12© 2014 Cloudera, Inc. All rights reserved. MapJoin Optimizers (MR) •  Query Hint: Big/Small Table(s) known at compile-time from hints. •  Logical Optimizer: MapJoinProcessor •  Auto-conversion: Table size not known at compile-time •  Physical Optimizer: CommonJoinResolver, MapJoinResolver. •  Create Conditional Tasks with all big/small table possibilities: one picked at runtime •  Noconditional mode: For some cases, table file-size is known at compile-time and can skip conditional task, but cannot do this for all queries (join of intermediate results..) MapRedLocalWork Cities to HashTable MapRedWork Sales to MapJoin MapRedLocalWork Sales to HashTable MapRedWork Cities to MapJoin MapRedLocalWork Cities Sales Join Condition1 (Cities Small) Condition2 (Sales Small) Condition3 (Neither Small Enough)
  • 13. 13© 2014 Cloudera, Inc. All rights reserved. MapJoin Optimizers: Spark •  Spark Plan: Support for both query-hints and auto-conversion decisions. •  Query Hints •  Logical Optimizer: Reuse MapJoinProcessor •  Auto-conversion: Use statistics annotated on operators that give estimated output size (like Tez, CBO), so big/small tables known at compile-time too •  Logical Optimizer: SparkMapJoinOptimizer Logical Optimizers => MapJoin Operators TS (Big Table) Sel/FIl TS (Small Table) Sel/FIl RS MapJoin Sel/FIl FileSink
  • 14. 14© 2014 Cloudera, Inc. All rights reserved. BucketMapJoin •  Bucketed tables: rows hash to different bucket files based on bucket-key •  CREATE TABLE cities (cityid int, value string) CLUSTERED BY (cityId) INTO 2 BUCKETS; •  Join tables bucketed on join key: For each bucket of table, rows with matching joinKey values will be in corresponding bucket of other table •  Like Mapjoin, but big-table mappers load to memory only relevant small-table bucket’s hashmap •  Ex: Bucketed by “CityId”, Join by “CityId” CityId CityName 3 New York 1 San Jose CityId CityName 2 San Francisco 4 Los Angeles CityId Sales 1 500 3 6000 1 400 CityId Sales 4 50 2 200 4 45 {1, San Jose, 500} {3, New York, 6000} {1, San Jose, 400} {4, Los Angeles, 50} {2, San Francisco, 200} {4, Los Angeles, 45}
  • 15. 15© 2014 Cloudera, Inc. All rights reserved. Bucket MapJoin Execution •  Very similar to MapJoin •  HashTableSink (small-table) writes per-bucket instead of per-table •  HashTableLoader (big-table mapper) reads per-bucket
  • 16. 16© 2014 Cloudera, Inc. All rights reserved. BucketMapJoin Optimizers (MR, Spark) •  Memory Req: Corresponding bucket(s) of small table(s) fit into memory of big table mapper (less than mapjoin) •  MR: •  Query hint && “hive.optimize.bucket.mapjoin”, all information known at compile-time •  Logical Optimizer: MapJoinProcessor (intermediate operator tree) •  Spark: •  Query hint && “hive.optimize.buckert.mapjoin” •  Logical Optimizer: Reuse MapJoinProcessor •  Auto-Trigger, done via stats like mapjoin (size calculation estimated to be size/numBuckets) •  Logical Optimizer: SparkMapJoinOptimizer, does size calculation of small tables via statistics, divides original number by numBuckets
  • 17. 17© 2014 Cloudera, Inc. All rights reserved. SMB Join •  CREATE TABLE cities (cityid int, cityName string) CLUSTERED BY (cityId) SORTED BY (cityId) INTO 2 BUCKETS; •  Join tables are bucketed and sorted (per bucket) •  This allows sort-merge join per bucket. •  Advance table until find a match CityId CityName 1 San Jose 3 New York CityId Sales 1 500 1 400 3 6000 CityId Sales 2 200 4 50 4 45 CityId CityName 2 San Francisco 4 Los Angeles {1, San Jose, 500} {1, San Jose, 400} {3, New York, 6000} {2, San Francisco, 200} {4, Los Angeles, 50} {4, Los Angeles, 45}
  • 18. 18© 2014 Cloudera, Inc. All rights reserved. SMB Join •  Same Execution in MR and Spark •  Run mapper process against a “big-table”, which loads corresponding small-table buckets •  Mapper reads directly from small-table, no need to create, broadcast small-table hashmap. •  No size limit on small table (no need to load table into memory) Node: Small Table Bucket 2 Node: Small Table Bucket 1 Node: Big Table Bucket 1 Node: Big Table Bucket 2 MR: Mappers Spark: MapPartition() Transform MapWork MapWork HS2
  • 19. 19© 2014 Cloudera, Inc. All rights reserved. SMB Join Optimizers: MR •  SMB plan needs to identify ‘big-table’: one that mappers run against, will load ‘small-tables’. Generally can be determined at compile-time •  User gives query-hints to identify small-tables •  Triggered by “hive.optimize.bucketmapjoin.sortedmerge” •  Logical Optimizer: SortedMergeBucketMapJoinProc •  Auto-trigger: “hive.auto.convert.sortmerge.join.bigtable.selection.policy” class chooses big-table •  Triggered by “hive.auto.convert.sortmerge.join” •  Logical Optimizer: SortedBucketMapJoinProc TS (Big Table) Sel/FIl TS (Small Table) Sel/FIl DummyStore SMBMapJoin Sel/FIl FileSink Logical Optimizers: SMB Join Operator
  • 20. 20© 2014 Cloudera, Inc. All rights reserved. SMB Join Optimizers: Spark •  Query-hints •  Logical Optimizer: SparkSMBJoinHintOptimizer •  Auto-Conversion •  Logical Optimizer: SparkSortMergeJoinOptimizer TS (Big Table) Sel/FIl TS (Small Table) Sel/FIl DummyStore SMBMapJoin Sel/FIl FileSink Logical Optimizers: SMB Join Operator
  • 21. 21© 2014 Cloudera, Inc. All rights reserved. SMB vs MapJoin Decision (MR) •  SMB->MapJoin path •  In many cases, mapjoin is faster than SMB join so we choose mapjoin if possible •  We spawn 1 mapper per bucket = large overhead if table has huge number bucket files •  Enabled by “hive.auto.convert.sortmerge.join.to.mapjoin” •  Physical Optimizer: SortMergeJoinResolver MapRedWork MapWork SMB Join Work MapRedLocalWork MapRedWork MapRedLocalWork MapRedWork Conditional MapJoin Work MapRedWork MapWork MapJoin Option MapJoin Option SMB Option
  • 22. 22© 2014 Cloudera, Inc. All rights reserved. SMB vs MapJoin Decision (Spark) •  Make decision at compile-time via stats and config for Mapjoin vs SMB join (can determine mapjoin at compile-time) •  Logical Optimizer: SparkJoinOptimizer •  If hive.auto.convert.join && hive.auto.convert.sortmerge.join.to.mapjoin and tables fit into memory, delegate to MapJoin logical optimizers •  If SMB enabled && (! hive.auto.convert.sortmerge.join.to.mapjoin or tables do not fit into memory) , delegate to SMB Join logical optimizers.
  • 23. 23© 2014 Cloudera, Inc. All rights reserved. Skew Join •  Skew keys = key with high frequencies, will overwhelm that key’s reducer in common join •  Perform a common join for non-skew keys, and perform map join for skewed keys. •  A join B on A.id=B.id, with A skewing for id=1, becomes •  A join B on A.id=B.id and A.id!=1 union •  A join B on A.id=B.id and A.id=1 •  If B doesn’t skew on id=1, then #2 will be a map join.
  • 24. 24© 2014 Cloudera, Inc. All rights reserved. Skew Join Optimizers (Compile Time, MR) •  Skew keys identified by: create table … skewed by (key) on (key_value); •  Activated by “hive.optimize.skewjoin.compiletime” •  Logical Optimizer: SkewJoinOptimizer looks at table metadata •  We fixed bug with converting to mapjoin for skewed rows, HIVE-8610 TS Fil (Skewed Rows) ReduceSink TS Fil (Skewed Rows) ReduceSink Join TS Fil (non-skewed) ReduceSink TS Fil (non-skewed) ReduceSink Join Union
  • 25. 25© 2014 Cloudera, Inc. All rights reserved. Skew Join Optimizers (Runtime, MR) •  Activated by “hive.optimize.skewjoin” •  Physical Optimizer: SkewJoinResolver •  During join operator, key is skewed if it passes “hive.skewjoin.key” threshold •  Skew key is skipped and values are copied to separate directories •  Those directories are processed by conditional mapjoin task. MapRedLocalWork Tab1 to HashTable MapRedWork Tab2 is bigtable MapRedLocalWork Tab2 to HashTable MapRedWork Tab1 is bigtable MapRedLocalWork Tab1 Tab2 Join Condition1(Skew Key Join) Condition2(Skew Key Join)Task3 Tab1 Skew Keys Tab2 Skew Keys
  • 26. 26© 2014 Cloudera, Inc. All rights reserved. Skew Join (Spark) •  Compile-time optimizer •  Logical Optimizer: Re-use SkewJoinOptimizer •  Runtime optimizer •  Physical Optimizer: SparkSkewJoinResolver, similar to SkewJoinResolver. •  Main challenge is to break up some SparkTask that involve aggregations follow by join, in skewjoin case, in order to insert conditional task.
  • 27. 27© 2014 Cloudera, Inc. All rights reserved. MR Join Class Diagram (Enjoy) SkewJoinOptimizer (hive.optimize.skewjoin.compiletime) MapJoinProcessor BucketMapJoinOptimizer (hive.optimize.bucket.mapjoin) Tables are skewed N-1 join tables fit in memory User provides join hints && Tables bucketed Users provides Join hints && Tables bucketed && Tables Sorted User provides Join hints Tables are skewed, Skew metadata available Tables bucketed && Tables Sorted SortedMergeBucketMapJoinOptimizer (hive.optimize.bucketmapjoin.sortedmerge) SortedMergeBucketMapJoinProc (if contains MapJoin operator) SortedBucketMapJoinProc (ihive.auto.convert.sortmerge.join) MapJoinFactory (if contains MapJoin, SMBJoin operator) SortMergeJoinResolver (hive.auto.convert.join && hive.auto.convert.sortmerge.join.to.mapjoin) MapJoinResolver (if contains MapWork with MapLocalWork) SkewJoinResolver (hive.optimize.skew.join) CommonJoinResolver (hive.auto.convert.join) SMB MapJoin Skew Join With MapJoin Skew Join With MapJoin MapJoin MapJoin Bucket MapJoin Bucket MapJoin Bucket MapJoin
  • 28. 28© 2014 Cloudera, Inc. All rights reserved. Spark Join Class Diagram (Enjoy) SkewJoinOptimizer (hive.optimize.skewjoin.compiletime) SparkMapJoinProcessor BucketMapJoinOptimizer (hive.optimize.bucket.mapjoin) Tables are skewed, Skew metadata available N-1 join tables fit in memory User provides join hints && Tables bucketed Users provides Join hints && Tables bucketed && Tables Sorted User provides Join hints Tables are skewed Tables bucketed && Tables Sorted SparkSMBJoinHintOptimizer (if contains MapJoin operator) SparkSortMergeJoinOptimizer (hive.auto.convert.sortmerge.join && ! hive.auto.convert.sortmerge.join.to.mapjoin) GenSparkWork SparkSortMergeMapJoinFactory (if contains SMBMapJoin operator) SparkMapJoinResolver (if SparkWork contains MapJoinOperator) SkewJoinResolver (hive.optimize.skew.join) Skew Join With MapJoin Skew Join With MapJoin MapJoin or Bucket Mapjoin MapJoin Bucket MapJoin SMB MapJoin SMB MapJoin SparkMapJoinOptimizer (hive.auto.convert.join && hive.auto.convert.sortmerge.join.to.mapjoin)
  • 29. 29© 2014 Cloudera, Inc. All rights reserved. Hive on Spark Join Team •  Szehon Ho (Cloudera) •  Chao Sun (Cloudera) •  Jimmy Xiang (Cloudera) •  Rui Li (Intel) •  Suhas Satish (MapR) •  Na Yang (MapR)