Machine	Learning	Made	Easy
by	using	Hivemall
Research	Engineer
Makoto	YUI	@myui
<myui@treasure-data.com>
bit.ly/hivemall
12016/07/13 DB tech showcase
➢2015/04 Joined Treasure Data, Inc.
➢1st Research Engineer in Treasure Data
➢My mission in TD is developing ML-as-a-Service
(MLaaS)
➢2010/04-2015/03 Senior Researcher at National
Institute of Advanced Industrial Science and
Technology, Japan.
➢Worked on a large-scale Machine Learning project
and Parallel Databases
➢2009/03 Ph.D. in Computer Science from NAIST
➢XML native database and Parallel Database systems
Who	am		I	?
2
External
Integrations
SQL
Server
CRM
RDBMS
App log
Sensor
Apache log
ERP
Hive
Batch
Adhoc
Presto
API
ODBC
JDBC
PUSH
Treasure Agent
BI tools
Data analysis
Data Collectors
Embedded
Embulk
Mobile SDK
JS SDK
Treasure Data Cloud Service
Machine
Learning
900,000
Records stored
per sec.
3
0
2000
4000
6000
8000
10000
12000
(単位)10億レコード
サービス開始
Series	A	Funding
100社導入
Gartner社「Cool	Vendor	in	
Big	Data」に選定される
10兆件
5兆レコード
数字でみる トレジャーデータ (2014年10月):
40万レコード 毎秒インポートされるデータの数
10兆レコード以上 インポートされたデータの数
120億 アドテク業界のお客様1社によって毎日送られてくるデー
タ
Data Imported to Treasure Data
4
1. What is Hivemall (short intro.)
2. Why Hivemall (motivations etc.)
3. How to use Hivemall
Agenda
5
What is Hivemall
Scalable machine learning library built as a collection of Hive
UDFs, licensed under the Apache License v2
Hadoop	HDFS
MapReduce
(MRv1)
Hivemall
Apache	YARN
Apache	Tez
DAG	processing
Machine Learning
Query Processing
Parallel Data
Processing Framework
Resource Management
Distributed File System
SparkSQL
Apache	Spark
MESOS
Hive Pig
MLlib
6
Won	IDG’s	InfoWorld	2014
Bossie Awards 2014: The best open source big data tools
InfoWorld's top picks in distributeddata processing, data analytics,machine
learning,NoSQL databases,and the Hadoop ecosystem
(awarded along w/ Spark, Tez, Jupyter notebook, Pandas, Impala, Kafka)
bit.ly/hivemall-award
7
Classification
✓ Perceptron
✓ Passive	Aggressive	(PA,	PA1,	
PA2)
✓ Confidence	Weighted	(CW)
✓ Adaptive	Regularization	of	
Weight	Vectors	(AROW)
✓ Soft	Confidence	Weighted	
(SCW)
✓ AdaGrad+RDA
✓ Factorization	Machines
✓ RandomForest	Classification
Regression
✓Logistic	Regression	(SGD)
✓PA	Regression
✓AROW	Regression
✓AdaGrad(logistic	loss)
✓AdaDELTA (logistic	loss)
✓Factorization	Machines
✓RandomForest	Regression
List of supported Algorithms
8
List of supported Algorithms
Classification	
✓ Perceptron
✓ Passive	Aggressive	(PA,	PA1,	
PA2)
✓ Confidence	Weighted	(CW)
✓ Adaptive	Regularization	of	
Weight	Vectors	(AROW)
✓ Soft	Confidence	Weighted	
(SCW)
✓ AdaGrad+RDA
✓ Factorization	Machines
✓ RandomForest	Classification
Regression
✓Logistic	Regression	(SGD)
✓AdaGrad(logistic	loss)
✓AdaDELTA (logistic	loss)
✓PA	Regression
✓AROW	Regression
✓Factorization	Machines
✓RandomForest	Regression
SCW is a good first choice
Try RandomForest if SCW does
not work
Logistic regression is good for
getting a probability of a
positive class
Factorization Machines is good
where features are sparse and
categorical ones
9
List of Algorithms for Recommendation
K-Nearest	Neighbor
✓ Minhash and	b-Bit	Minhash
(LSH	variant)
✓ Similarity	Search	on	Vector	
Space
(Euclid/Cosine/Jaccard/Angular)
Matrix	Completion
✓ Matrix	Factorization
✓ Factorization	Machines	
(regression)
each_top_k function	of	Hivemall	is	
useful	for	recommending	top-k	items
10
Other Supported Algorithms
Anomaly	Detection
✓ Local	Outlier	Factor	(LoF)
Feature	Engineering
✓Feature	Hashing
✓Feature	Scaling
(normalization,	z-score)	
✓ TF-IDF	vectorizer
✓ Polynomial	Expansion
(Feature	Pairing)
✓ Amplifier
NLP
✓Basic	Englist text	Tokenizer	
✓Japanese	Tokenizer	
(Kuromoji)
11
Ø CTR prediction of Ad click logs
• Freakout Inc., Fan communication, and more
• Replaced Spark MLlib w/ Hivemall at company X
Industry use cases of Hivemall
http://www.slideshare.net/masakazusano75/sano-hmm-2015051212
ØGender prediction of Ad click logs
• Scaleout Inc. and Fan commucations
http://eventdots.jp/eventreport/458208
Industry use cases of Hivemall
13
Industry use cases of Hivemall
Ø Value prediction of Real estates
• Livesense
http://www.slideshare.net/y-ken/real-estate-tech-with-hivemall 14
Source: http://itnp.net/article/2016/02/18/2286.html
Industry use cases of Hivemall
15
ØChurn Detection
• OISIX
Industry use cases of Hivemall
http://www.slideshare.net/TaisukeFukawa/hivemall-meetup-vol2-oisix 16
17
会員サービスの解約予測
•10万人の会員による定期購
買が会社全体の売上、利益を
左右するが、解約リスクのあ
る会員を事前に把握、防止す
る策を欠いていた
• 統計の専門知識無しで機械学習
• 解約予測リストへのポイント付
与により解約率が半減
• 解約リスクを伴う施策、イベン
トを炙り出すと同時に、非解約
者の特徴的な行動も把握可能に
• リスク度合いに応じて UI を変
更するなど間接的なサービス改
善も実現
•機械学習を行い、過去1ヶ月間
のデータをもとに未来1ヶ月間
に解約する可能性の高い顧客リ
ストを作成
•具体的には、学習用テーブル作
成 -> 正規化 -> 学習モデル作成
-> ロジスティック回帰の各ステ
ップをTD + Hivemall を用いて
クエリで簡便に実現
Web
Mobile
属性情報
行動ログ
クレーム情報
流入元
利用サービス情報
直接施策
間接施策
ポイント付与 ケアコール
成功体験への誘導UI 変更
予測に使うデータ
ØRecommendation
• Portal site
Industry use cases of Hivemall
18
1. What is Hivemall (short intro.)
2. Why Hivemall (motivations etc.)
3. How to use Hivemall
Agenda
19
Why	Hivemall
1. In	my	experience	working	on	ML,	I	used	Hive	
for	preprocessing	and	Python	(scikit-learn	etc.)	
for	ML.	This	was	INEFFICIENT	and	ANNOYING.	
Also,	Python	is	not	as	scalable	as	Hive.
2. Why	not	run	ML	algorithms	inside	Hive?	Less	
components	to	manage	and	more	scalable.
That’s	why	I	build	Hivemall.
20
How	I	used	to	do	ML	projects	before	Hivemall
Given	raw	data	stored	on	Hadoop	HDFS
Raw
Data
HDFS
S3 Feature	Vector
height:173cm
weight:60kg
age:34
gender: man
…
Extract-Transform-Load
Machine	Learning
file
21
How	I	used	to	do	ML	projects	before	Hivemall
Given	raw	data	stored	on	Hadoop	HDFS
Raw
Data
HDFS
S3 Feature	Vector
height:173cm
weight:60kg
age:34
gender: man
…
Extract-Transform-Load
file
Need to do expensive
data preprocessing
(Joins, Filtering, and Formatting of
Data that does not fit in memory)
Machine	Learning 22
How	I	used	to	do	ML	projects	before	Hivemall
Given	raw	data	stored	on	Hadoop	HDFS
Raw
Data
HDFS
S3 Feature	Vector
height:173cm
weight:60kg
age:34
gender: man
…
Extract-Transform-Load
file
Do not scale
Have to learn R/Python APIs
23
How	I	used	to	do	ML	before	Hivemall
Given	raw	data	stored	on	Hadoop	HDFS
Raw
Data
HDFS
S3 Feature	Vector
height:173cm
weight:60kg
age:34
gender: man
…
Extract-Transform-Load
Does not meet my needs
In terms of its scalability, ML algorithms, and usability
I ❤ scalable
SQL query
24
Framework User	interface
Mahout Java	API	Programming
Spark	MLlib/MLI Scala	API	programming
Scala	Shell	(REPL)
H2O R	programming
GUI
Cloudera	Oryx Http	REST	API	programming
Vowpal	Wabbit
(w/	Hadoop	streaming)
C++	API	programming
Command	Line
Survey	on	existing	ML	frameworks
Existing	distributed	machine	learning	frameworks
are	NOT	easy	to	use
25
Hivemall’s Vision:	ML	on	SQL
Classification	with	Mahout
CREATE	TABLE	lr_model	AS
SELECT
feature,	-- reducers	perform	model	averaging	in	
parallel
avg(weight)	as	weight
FROM	(
SELECT	logress(features,label,..)	as	(feature,weight)
FROM	train
)	t	-- map-only	task
GROUP	BY	feature;	-- shuffled	to	reducers
✓Machine	Learning	made	easy	for	SQL	
developers	(ML	for	the	rest	of	us)
✓Interactive	and	Stable	APIs	w/ SQL	abstraction
This	SQL	query	automatically	runs	in	
parallel	on	Hadoop	 26
Hivemall	on	Apache	Spark
Installation	is	very	easy	as	follows:
$	spark-shell	--packages	maropu:hivemall-spark:0.0.6	
27
1. What is Hivemall
2. Why Hivemall
3. How to use Hivemall
Agenda
28
How	to	use	Hivemall
Machine
Learning
Training
Prediction
Prediction
Model
Label
Feature	
Vector
Feature	Vector
Label
Data	preparation 29
Create external table e2006tfidf_train(
rowid int,
label float,
features ARRAY<STRING>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '¥t'
COLLECTION ITEMS TERMINATED BY ",“
STORED AS TEXTFILE LOCATION '/dataset/E2006-tfidf/train';
How	to	use	Hivemall	- Data	preparation
Define	a	Hive	table	for	training/testing	data
30
How	to	use	Hivemall
Machine
Learning
Training
Prediction
Prediction
Model
Label
Feature	
Vector
Feature	Vector
Label
Feature	Engineering
31
create view e2006tfidf_train_scaled
as
select
rowid,
rescale(target,${min_label},${max_label})
as label,
features
from
e2006tfidf_train;
Applying a Min-Max Feature Normalization
How	to	use	Hivemall	- Feature	Engineering
Transforming	a	label	value	
to	a	value	between	0.0	and	1.0
32
How	to	use	Hivemall
Machine
Learning
Training
Prediction
Prediction
Model
Label
Feature	
Vector
Feature	Vector
Label
Training
33
How	to	use	Hivemall	- Training
CREATE TABLE lr_model AS
SELECT
feature,
avg(weight) as weight
FROM (
SELECT logress(features,label,..)
as (feature,weight)
FROM train
) t
GROUP BY feature
Training	by	logistic	regression
map-only	task	to	learn	a	prediction	model
Shuffle	map-outputs	to	reduces	by	feature
Reducers	perform	model	averaging	
in	parallel
34
How	to	use	Hivemall	- Training
CREATE TABLE news20b_cw_model1 AS
SELECT
feature,
voted_avg(weight) as weight
FROM
(SELECT
train_cw(features,label)
as (feature,weight)
FROM
news20b_train
) t
GROUP BY feature
Training	of	Confidence	Weighted	Classifier
Vote	to	use	negative	or	positive	
weights	for	avg
+0.7,	+0.3,	+0.2,	-0.1,	+0.7
Training	for	the	CW	classifier
35
How	to	use	Hivemall
Machine
Learning
Training
Prediction
Prediction
Model
Label
Feature	
Vector
Feature	Vector
Label
Prediction
36
How	to	use	Hivemall	- Prediction
CREATE TABLE lr_predict
as
SELECT
t.rowid,
sigmoid(sum(m.weight)) as prob
FROM
testing_exploded t LEFT OUTER JOIN
lr_model m ON (t.feature = m.feature)
GROUP BY
t.rowid
Prediction	is	done	by	LEFT	OUTER	JOIN
between	test	data	and	prediction	model
No	need	to	load	the	entire	model	into	memory
37
Real-time	prediction
Machine
Learning
Batch Training on Hadoop
Online Prediction on RDBMS
Prediction
Model
Label
Feature	
Vector
Feature	Vector
Label
Export	
prediction	model
bit.ly/hivemall-rtp
38
Export Prediction Model to a RDBMS
Any RDBMS
TD export
Periodical export is very easy
in Treasure Data
103 -0.4896543622016907
104 -0.0955817922949791
105 0.12560302019119263
106 0.09214721620082855
39
Prediction
Model
Real-time	Prediction	on	MySQL
SIGMOID(x) = 1.0 / (1.0 + exp(-x))
Prediction
Model
Label
Feature Vector
SELECT
sigmoid(sum(t.value * m.weight)) as prob
FROM
testing_exploded t LEFT OUTER JOIN
prediction_model m ON (t.feature = m.feature)
Online prediction on MySQL
Index lookups are very
efficient in RDBMSs
40
RandomForest in Hivemall
Ensemble of Decision Trees
41
Training of RandomForest
42
Prediction of RandomForest
43
44
https://console.treasuredata.com/jobs/75633717
Conclusion
Hivemall	provides	a	collection	of	machine	
learning	algorithms	as	Hive	UDFs/UDTFs
Ø For	SQL	users	that	need	ML
Ø For	whom	already	using	Hive
Ø Easy-of-use	and	scalability	in	mind
Do not require coding, packaging, compiling or
introducing a new programming language or APIs.
Hivemall’s Positioning
Treasure	Data	provides	ML-as-a-Service	using	
the	latest	version	of	Hivemall
45
We	support	machine	learning	in	Cloud
Any	feature	request?	Or,	questions?
46

More Related Content

PDF
Using Graphs for Data Analysis
PDF
Apache: Big Data North America 2017 参加報告 #streamctjp
PDF
How to go into production your machine learning models? #CWT2017
PDF
Database as code in Devops - DBを10分間で1000個構築するDB仮想化テクノロジーとは?(Adam)
PDF
[Azureビッグデータ関連サービスとHortonworks勉強会] Azure HDInsight
PDF
[de:code 2019] [DP10] Build 2019 Azure AI & Data Platform 最新アップデート
PDF
Achieving compute and storage independence for data-driven workloads
PPTX
Apache Spark: Usage and Roadmap in Hadoop
Using Graphs for Data Analysis
Apache: Big Data North America 2017 参加報告 #streamctjp
How to go into production your machine learning models? #CWT2017
Database as code in Devops - DBを10分間で1000個構築するDB仮想化テクノロジーとは?(Adam)
[Azureビッグデータ関連サービスとHortonworks勉強会] Azure HDInsight
[de:code 2019] [DP10] Build 2019 Azure AI & Data Platform 最新アップデート
Achieving compute and storage independence for data-driven workloads
Apache Spark: Usage and Roadmap in Hadoop

What's hot (17)

PDF
MongoDB World 2019: Implementation and Operationalization of MongoDB Sharding...
PDF
[Connect(); // Japan 2016] Microsoft の AI 開発最新アップデート ~ Cognitive Services からA...
PPTX
141106 actifio overview
PPTX
What is aerospike database and why is it vastly superior to other database an...
PPTX
Aerospike for machine learning
PDF
Big Data Taiwan 2014 Keynote 4: Monetize Enterprise Data – Big Data 在台灣的經典應用與行動
PDF
Bot Framework & Azure cognitive service簡介
PDF
HPC DAY 2017 | The network part in accelerating Machine-Learning and Big-Data
PPTX
Audax Group: CIO Perspectives - Managing The Copy Data Explosion
PDF
Building Killr Applications with DSE
PDF
Building Killr Applications with DataStax Enterprise
PDF
Slide Webinar NetApp 30 Gennaio
PDF
Overview of how NetApp IT Runs NetApp Technology in Their Enterprise
PPTX
The rise of big data governance: insight on this emerging trend from active o...
PPTX
New Benchmark for High-end Storage - Huawei OceanStor 18000 V3 High-end Storage
PDF
インフラを意識せずにSaaS開発ができる! さくらの次世代PaaS「Hacobune」
PDF
20100806 cloudera 10 hadoopable problems webinar
MongoDB World 2019: Implementation and Operationalization of MongoDB Sharding...
[Connect(); // Japan 2016] Microsoft の AI 開発最新アップデート ~ Cognitive Services からA...
141106 actifio overview
What is aerospike database and why is it vastly superior to other database an...
Aerospike for machine learning
Big Data Taiwan 2014 Keynote 4: Monetize Enterprise Data – Big Data 在台灣的經典應用與行動
Bot Framework & Azure cognitive service簡介
HPC DAY 2017 | The network part in accelerating Machine-Learning and Big-Data
Audax Group: CIO Perspectives - Managing The Copy Data Explosion
Building Killr Applications with DSE
Building Killr Applications with DataStax Enterprise
Slide Webinar NetApp 30 Gennaio
Overview of how NetApp IT Runs NetApp Technology in Their Enterprise
The rise of big data governance: insight on this emerging trend from active o...
New Benchmark for High-end Storage - Huawei OceanStor 18000 V3 High-end Storage
インフラを意識せずにSaaS開発ができる! さくらの次世代PaaS「Hacobune」
20100806 cloudera 10 hadoopable problems webinar
Ad

Viewers also liked (6)

PPT
Error analysis randomforest
PDF
Random Forests: The Vanilla of Machine Learning - Anna Quach
PDF
Visualization and Machine Learning - for exploratory data ...
PDF
Model Automation in R
PDF
PPTX
10 R Packages to Win Kaggle Competitions
Error analysis randomforest
Random Forests: The Vanilla of Machine Learning - Anna Quach
Visualization and Machine Learning - for exploratory data ...
Model Automation in R
10 R Packages to Win Kaggle Competitions
Ad

Similar to Hivemall dbtechshowcase 20160713 #dbts2016 (20)

PDF
Powering Real­time Decision Engines in Finance and Healthcare using Open Sour...
PDF
Big data for product managers
PDF
Strategic Direction Session: Deliver Next-Gen IT Ops with CA Mainframe Operat...
PDF
Splunk AI & Machine Learning Roundtable 2019 - Zurich
PDF
Big Data for Product Managers
PPTX
Legacy IBM Systems and Splunk: Security, Compliance and Uptime
PDF
Bitrock manufacturing
PPTX
There are 250 Database products, are you running the right one?
PDF
Take Action: The New Reality of Data-Driven Business
PDF
Hey IT, Meet OT with Hima Mukkamala
PDF
Radical Optimization: How the Internet of Things, 3D Printing and Innovative ...
PDF
Analyzing Big Data - Jeff Scheel
PDF
Roadshow Chicago - Introduction
PPTX
SF Big Analytics Meetup - Exact Count Distinct with Apache Kylin
PPTX
Intelligent data summit: Self-Service Big Data and AI/ML: Reality or Myth?
PPTX
Analytics gets Agile
PDF
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStream
PDF
When Downtime Isn’t an Option: Performance Optimization Analytics in the Era ...
PPTX
How to Guarantee Exact COUNT DISTINCT Queries with Sub-Second Latency on Mass...
PPTX
How to Guarantee Exact Count Distinct Queries with Sub-Second Latency on Mass...
Powering Real­time Decision Engines in Finance and Healthcare using Open Sour...
Big data for product managers
Strategic Direction Session: Deliver Next-Gen IT Ops with CA Mainframe Operat...
Splunk AI & Machine Learning Roundtable 2019 - Zurich
Big Data for Product Managers
Legacy IBM Systems and Splunk: Security, Compliance and Uptime
Bitrock manufacturing
There are 250 Database products, are you running the right one?
Take Action: The New Reality of Data-Driven Business
Hey IT, Meet OT with Hima Mukkamala
Radical Optimization: How the Internet of Things, 3D Printing and Innovative ...
Analyzing Big Data - Jeff Scheel
Roadshow Chicago - Introduction
SF Big Analytics Meetup - Exact Count Distinct with Apache Kylin
Intelligent data summit: Self-Service Big Data and AI/ML: Reality or Myth?
Analytics gets Agile
IoT Meets Big Data: The Opportunities and Challenges by Syed Hoda of ParStream
When Downtime Isn’t an Option: Performance Optimization Analytics in the Era ...
How to Guarantee Exact COUNT DISTINCT Queries with Sub-Second Latency on Mass...
How to Guarantee Exact Count Distinct Queries with Sub-Second Latency on Mass...

More from Makoto Yui (20)

PDF
Apache Hivemall and my OSS experience
PDF
Introduction to Apache Hivemall v0.5.2 and v0.6
PDF
Introduction to Apache Hivemall v0.5.0
PDF
Idea behind Apache Hivemall
PDF
Introduction to Apache Hivemall v0.5.0
PDF
What's new in Hivemall v0.5.0
PDF
What's new in Apache Hivemall v0.5.0
PDF
Revisiting b+-trees
PDF
Incubating Apache Hivemall
PDF
Hivemall meets Digdag @Hackertackle 2018-02-17
PDF
Apache Hivemall @ Apache BigData '17, Miami
PDF
機械学習のデータ並列処理@第7回BDI研究会
PDF
Podling Hivemall in the Apache Incubator
PDF
Dots20161029 myui
PDF
Hadoopsummit16 myui
PDF
HadoopCon'16, Taipei @myui
PDF
3rd Hivemall meetup
PDF
Recommendation 101 using Hivemall
PDF
Introduction to Hivemall
PDF
Tdtechtalk20160425myui
Apache Hivemall and my OSS experience
Introduction to Apache Hivemall v0.5.2 and v0.6
Introduction to Apache Hivemall v0.5.0
Idea behind Apache Hivemall
Introduction to Apache Hivemall v0.5.0
What's new in Hivemall v0.5.0
What's new in Apache Hivemall v0.5.0
Revisiting b+-trees
Incubating Apache Hivemall
Hivemall meets Digdag @Hackertackle 2018-02-17
Apache Hivemall @ Apache BigData '17, Miami
機械学習のデータ並列処理@第7回BDI研究会
Podling Hivemall in the Apache Incubator
Dots20161029 myui
Hadoopsummit16 myui
HadoopCon'16, Taipei @myui
3rd Hivemall meetup
Recommendation 101 using Hivemall
Introduction to Hivemall
Tdtechtalk20160425myui

Recently uploaded (20)

PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
PPTX
Principal presentation for NAAC (1).pptx
PPTX
ai_satellite_crop_management_20250815030350.pptx
PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPTX
mechattonicsand iotwith sensor and actuator
PDF
Java Basics-Introduction and program control
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Computer organization and architecuture Digital Notes....pdf
PPTX
Measurement Uncertainty and Measurement System analysis
PPTX
Petroleum Refining & Petrochemicals.pptx
PDF
Unit1 - AIML Chapter 1 concept and ethics
PDF
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
Principal presentation for NAAC (1).pptx
ai_satellite_crop_management_20250815030350.pptx
Information Storage and Retrieval Techniques Unit III
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Exploratory_Data_Analysis_Fundamentals.pdf
mechattonicsand iotwith sensor and actuator
Java Basics-Introduction and program control
Management Information system : MIS-e-Business Systems.pptx
Computer organization and architecuture Digital Notes....pdf
Measurement Uncertainty and Measurement System analysis
Petroleum Refining & Petrochemicals.pptx
Unit1 - AIML Chapter 1 concept and ethics
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf

Hivemall dbtechshowcase 20160713 #dbts2016