SlideShare a Scribd company logo
Hybrid MPC for Attitude Control of Spacecraft with
Impulsive Thrusters
P. Sopasakisa, D. Bernardinia,c, H. Strauchb,
S. Bennanid and A. Bemporada,c
a Institute for Advanced Studies Lucca,
b Airbus DS, c ODYS Srl
d European Space Agency
July 14, 2015
Control objectives
Operate in barbecue mode with ωx = 5 deg · s−1,
Achieve high pointing accuracy using impulsive thrusters
Low actuation count
Reasonable computational complexity
1 / 15
I. Attitude Modelling
Reference frame
Body-Fixed Frame:
2 / 15
Nonlinear dynamical model
Notation: ˜Θx, ˜Ψx: pitch and yaw error angles, ωi: angular velocity about
i-axis, ωn = (1 − Jxx/Jyy)ωx.1
d
dt






˜Θx
˜Ψx
ωx
ωy
ωz






=






0 ωx 0 1 0
−ωx 0 0 0 1
0 0 0 0 0
0 0 0 0 ωn
0 0 0 −ωn 0












˜Θx
˜Ψx
ωx
ωy
ωz






+
+






0 0 0
0 0 0
J−1
xx 0 0
0 J−1
yy 0
0 0 J−1
zz








τx
τy
τz


1
A. Kater, “Attitude Control of Upper Stage Launcher During Long Coasting Period,” Master’s thesis, Lehrstuhk fur
Automatisierungs und Regelungstechnik, Christian-Albrechts-University Kiel, Germany, 2013.
3 / 15
Linear Dynamical Model
Assumption: The spin rate equilibrates very fast, i.e., ωx(t) ωr
x.
Model is now written in two parts - the spin model2:
˙ωx = J−1
xx τx
and the nutation/precession model:
d
dt




˜Θx
˜Ψx
ωy
ωz



 =




ωr
x 1
−ωr
x 1
ωr
n
−ωr
n








˜Θx
˜Ψx
ωy
ωz



 +



J−1
yy
J−1
zz




τy
τz
2
The spin rate ωx is controlled with a simple but efficient P-controller.
4 / 15
Linear Dynamical Model
We introduce the state variable
x(t) = ˜Θx(t) ˜Ψx(t) ωy(t) ωz(t) ,
and the input vector
u(t) = τy(t) τz(t) ,
the nutation/precession model, after discretisation, is written concisely as
x(k + 1) = Ax(k) + Bu(k).
5 / 15
II. Impulsive Thrusters
Minimum impulse effect
Minimum impulse effect: thrusters cannot produce arbitrarily small
torques, thus uk is constrained in
U = [−umax, −umin] ∪ {0} ∪ [umin, umax]
We introduce the binary vectors δ− and δ+ so that3
δ−
(k) = [u(k) ≤ −umin],
δ+
(k) = [u(k) ≥ umin],
and the auxiliary variable ηk defined as4
ηi(k) = [δ−
i (k) ∨ δ+
i (k)] · ui(k)
3
Symbols ≤ and ≥ are element-wise comparison operators.
4
Here ηi(k) stands for the i-th component of vector η(k) at time k.
6 / 15
Minimum impulse effect
To detect thruster actuation we use the variable
v(k) = [δ−
(k) ∨ δ+
(k)]
and we recast the system dynamics as
z(k + 1) = Az(k) + Bη(k) + f,
γ(k + 1) = γ(k) + [ 1 1 ] v(k),
where γ(k) is the total actuation count up to time k on which we impose:
γ(k) ≤ γmax.
7 / 15
III. Hybrid MPC
Penalty function
For a sequence of control actions πN = {u(k), v(k), η(k), δ±(k)}N−1
k=0 we
define the total penalty function with horizon N as
V (πN ; x0, γ0) VN (x(N), γ(N)) +
N−1
k=0
(x(k), z(k)),
where is the stage cost
(x, z) Qx p
Penalises the
pointing inaccuracy
+ Rz p
and VN is the terminal cost,
VN (x(N), γ(N)) QN x(N) p + ρ(γ(N) − γ0)
Penalises the tot.
actuation count
along the horizon
.
8 / 15
Hybrid MPC - problem formulation
MPC problem formulation:
min
πN
V (πN ; x0, γ0)
s.t. x(0) = x0, γ(0) = γ0,
Hybrid dynamics, for k ∈ N[0,Nu−1],
δ±
(k) = 0, for k ∈ N[Nu,N−1],
9 / 15
IV. Simulations
Barbecue mode
2 4 6 8 10 12 14 16 18 20
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
time [s]
Rollrateerror[deg]
Absolute value of tracking error on ω
x
Figure : ωx converges fast to its set-point.
10 / 15
Pointing Accuracy
−4 −3 −2 −1 0 1 2
−6
−5
−4
−3
−2
−1
0
1
2
pitch error [deg]
yawerror[deg]
Tracking error on pitch and yaw
PD
LQ
HMPC
Figure : HMPC achieves higher pointing accuracy compared to optimally tuned
PD and LQR controllers (which do not account for the MI effect).
11 / 15
Actuation Count
50 100 150 200 250 300
−200
−100
0
100
200
LQRTorque[Nm]
50 100 150 200 250 300
−200
−100
0
100
200
PDTorque[Nm]
50 100 150 200 250 300
−4000
−2000
0
2000
HMPCTorque[Nm]
Time [s]
50 100 150 200 250 300
0
200
400
600
LQRTorque[Nm]
50 100 150 200 250 300
−200
−100
0
100
200
PDTorque[Nm]
50 100 150 200 250 300
−5000
0
5000
HMPCTorque[Nm]
Time [s]
Figure : HMPC achieves a significantly lower actuation count. Left: ωy, Right:
ωz.
12 / 15
...with additive disturbances
−12 −10 −8 −6 −4 −2 0 2 4 6
−4
−2
0
2
4
6
8
10
12
14
pitch error [deg]
yawerror[deg]
Tracking error on pitch and yaw
Tsim
=500
PD
LQ
HMPC
Figure : Simulations in presence of a constant additive disturbance on uk of
6Nm.
13 / 15
Performance assessment
Performance indicators: (i) actuation count on axes y and z, (ii) total
actuation count, (iii) total squared deviation
Jr =
Tsim
k=0
˜Θ2
x(k) + ˜Ψ2
x(k) .
Table : Simulation results over an interval Tsim = 300s (nominal conditions).
Thruster activations
Jr
x-axis y-axis z-axis total
PD controller 9 7 34 50 0.4741
LQ controller 9 21 36 66 0.3858
Hybrid MPC 9 4 5 18 0.0811
14 / 15
Performance assessment
Table : Simulation results over an interval Tsim = 300s (with additive
disturbances of 6Nm).
Thruster activations
Jr
x-axis y-axis z-axis total
PD controller 9 11 30 50 0.4454
LQ controller 9 26 40 75 0.3878
Hybrid MPC 9 16 5 30 0.0880
15 / 15
Thank you for your attention

More Related Content

PDF
Distributed solution of stochastic optimal control problem on GPUs
Pantelis Sopasakis
 
PDF
Sloshing-aware MPC for upper stage attitude control
Pantelis Sopasakis
 
PDF
Recursive Compressed Sensing
Pantelis Sopasakis
 
PDF
Fast parallelizable scenario-based stochastic optimization
Pantelis Sopasakis
 
PDF
Robust model predictive control for discrete-time fractional-order systems
Pantelis Sopasakis
 
PDF
Real Time Code Generation for Nonlinear Model Predictive Control
Behzad Samadi
 
PDF
Model Predictive Control based on Reduced-Order Models
Pantelis Sopasakis
 
PDF
Accelerated reconstruction of a compressively sampled data stream
Pantelis Sopasakis
 
Distributed solution of stochastic optimal control problem on GPUs
Pantelis Sopasakis
 
Sloshing-aware MPC for upper stage attitude control
Pantelis Sopasakis
 
Recursive Compressed Sensing
Pantelis Sopasakis
 
Fast parallelizable scenario-based stochastic optimization
Pantelis Sopasakis
 
Robust model predictive control for discrete-time fractional-order systems
Pantelis Sopasakis
 
Real Time Code Generation for Nonlinear Model Predictive Control
Behzad Samadi
 
Model Predictive Control based on Reduced-Order Models
Pantelis Sopasakis
 
Accelerated reconstruction of a compressively sampled data stream
Pantelis Sopasakis
 

What's hot (20)

PDF
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...
CDSL_at_SNU
 
PDF
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Oracle-based algorithms for high-dimensional polytopes.
Vissarion Fisikopoulos
 
PDF
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
QMC: Operator Splitting Workshop, Open Problems - Heinz Bauschke, Mar 23, 2018
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Response Surface in Tensor Train format for Uncertainty Quantification
Alexander Litvinenko
 
PDF
Engineering formula sheet
sankalptiwari
 
PDF
Output Regulator_LinkedIn
David Alavi, M.Sc., E.I.T.
 
PDF
Random Number Generators 2018
rinnocente
 
PDF
Phase Retrieval: Motivation and Techniques
Vaibhav Dixit
 
PDF
Sampled-Data Piecewise Affine Slab Systems: A Time-Delay Approach
Behzad Samadi
 
PDF
HSFC Physics formula sheet
oneill95
 
PDF
Calculus III
Laurel Ayuyao
 
PDF
Richard Everitt's slides
Christian Robert
 
PDF
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Absorbing Random Walk Centrality
Michael Mathioudakis
 
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Guillaume Costeseque
 
PDF
Memory Efficient Adaptive Optimization
rohananil
 
PDF
Ece4510 notes10
K. M. Shahrear Hyder
 
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...
CDSL_at_SNU
 
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
The Statistical and Applied Mathematical Sciences Institute
 
Oracle-based algorithms for high-dimensional polytopes.
Vissarion Fisikopoulos
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
The Statistical and Applied Mathematical Sciences Institute
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
The Statistical and Applied Mathematical Sciences Institute
 
QMC: Operator Splitting Workshop, Open Problems - Heinz Bauschke, Mar 23, 2018
The Statistical and Applied Mathematical Sciences Institute
 
Response Surface in Tensor Train format for Uncertainty Quantification
Alexander Litvinenko
 
Engineering formula sheet
sankalptiwari
 
Output Regulator_LinkedIn
David Alavi, M.Sc., E.I.T.
 
Random Number Generators 2018
rinnocente
 
Phase Retrieval: Motivation and Techniques
Vaibhav Dixit
 
Sampled-Data Piecewise Affine Slab Systems: A Time-Delay Approach
Behzad Samadi
 
HSFC Physics formula sheet
oneill95
 
Calculus III
Laurel Ayuyao
 
Richard Everitt's slides
Christian Robert
 
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
The Statistical and Applied Mathematical Sciences Institute
 
Absorbing Random Walk Centrality
Michael Mathioudakis
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Guillaume Costeseque
 
Memory Efficient Adaptive Optimization
rohananil
 
Ece4510 notes10
K. M. Shahrear Hyder
 
Ad

Viewers also liked (6)

PDF
Amiodarone administration
Pantelis Sopasakis
 
PDF
Optimal Control: Perspectives from the Variational Principles of Mechanics
ismail_hameduddin
 
PDF
Optimal Control System Design
M Reza Rahmati
 
PPTX
Optimal control system
Rakshita Upadhyay
 
PDF
Optimal control systems
masmuhtadi
 
Amiodarone administration
Pantelis Sopasakis
 
Optimal Control: Perspectives from the Variational Principles of Mechanics
ismail_hameduddin
 
Optimal Control System Design
M Reza Rahmati
 
Optimal control system
Rakshita Upadhyay
 
Optimal control systems
masmuhtadi
 
Ad

Similar to HMPC for Upper Stage Attitude Control (20)

PDF
EAGES Proceedings - D. N. Sinitsyn
Stephan Aubin
 
PDF
EENG519FinalProjectReport
Daniel K
 
PDF
Controller design of inverted pendulum using pole placement and lqr
eSAT Publishing House
 
PDF
Controller design of inverted pendulum using pole placement and lqr
eSAT Journals
 
PDF
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
Thomas Templin
 
PDF
Quadcopter Design for Payload Delivery
Onyebuchi nosiri
 
PDF
Quadcopter Design for Payload Delivery
Onyebuchi nosiri
 
PDF
Lelt 240 semestre i-2021
FrancoMaytaBernal
 
PDF
A kernel-free particle method: Smile Problem Resolved
Kaiju Capital Management
 
PDF
1.3428190.pdf
SabinAdhikari25
 
PDF
tema 5 mecánica de vuelo: Stability & Control
estelaarana1
 
PDF
Digital control for power electronic Conversters
RichardMadanda1
 
PDF
IC Design of Power Management Circuits (III)
Claudia Sin
 
PDF
Chapter 2 dynamic characteristics of instruments
talbachew tadesse nadew
 
PDF
sublabel accurate convex relaxation of vectorial multilabel energies
Fujimoto Keisuke
 
PDF
Fir 05 dynamics 2-dof
nguyendattdh
 
PDF
Fir 05 dynamics
nguyendattdh
 
PDF
Analysis
Chủ tịch Toàn
 
PDF
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Shizuoka Inst. Science and Tech.
 
PPTX
Study of using particle swarm for optimal power flow
Mohamed Abuella
 
EAGES Proceedings - D. N. Sinitsyn
Stephan Aubin
 
EENG519FinalProjectReport
Daniel K
 
Controller design of inverted pendulum using pole placement and lqr
eSAT Publishing House
 
Controller design of inverted pendulum using pole placement and lqr
eSAT Journals
 
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
Thomas Templin
 
Quadcopter Design for Payload Delivery
Onyebuchi nosiri
 
Quadcopter Design for Payload Delivery
Onyebuchi nosiri
 
Lelt 240 semestre i-2021
FrancoMaytaBernal
 
A kernel-free particle method: Smile Problem Resolved
Kaiju Capital Management
 
1.3428190.pdf
SabinAdhikari25
 
tema 5 mecánica de vuelo: Stability & Control
estelaarana1
 
Digital control for power electronic Conversters
RichardMadanda1
 
IC Design of Power Management Circuits (III)
Claudia Sin
 
Chapter 2 dynamic characteristics of instruments
talbachew tadesse nadew
 
sublabel accurate convex relaxation of vectorial multilabel energies
Fujimoto Keisuke
 
Fir 05 dynamics 2-dof
nguyendattdh
 
Fir 05 dynamics
nguyendattdh
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Shizuoka Inst. Science and Tech.
 
Study of using particle swarm for optimal power flow
Mohamed Abuella
 

More from Pantelis Sopasakis (18)

PDF
Smart Systems for Urban Water Demand Management
Pantelis Sopasakis
 
PDF
OpenTox API introductory presentation
Pantelis Sopasakis
 
PDF
Water demand forecasting for the optimal operation of large-scale water networks
Pantelis Sopasakis
 
PDF
Drinking Water Networks: Challenges and opportunites
Pantelis Sopasakis
 
PDF
Controlled administration of Amiodarone using a Fractional-Order Controller
Pantelis Sopasakis
 
PDF
OpenTox API: Lessons learnt, limitations and challenges
Pantelis Sopasakis
 
PDF
Just Another QSAR Project under OpenTox
Pantelis Sopasakis
 
PDF
ToxOtis: A Java Interface to the OpenTox Predictive Toxicology Network
Pantelis Sopasakis
 
PDF
Frobenious theorem
Pantelis Sopasakis
 
PDF
Set convergence
Pantelis Sopasakis
 
PDF
Polytopes inside polytopes
Pantelis Sopasakis
 
PDF
Environmental Risk Assessment on the web
Pantelis Sopasakis
 
PDF
Modelling & Control of Drinkable Water Networks
Pantelis Sopasakis
 
PDF
EFFINET - Initial Presentation
Pantelis Sopasakis
 
PDF
Παρουσίαση Προόδου Διδακτορικού
Pantelis Sopasakis
 
PDF
Physiologically Based Modelling and Predictive Control
Pantelis Sopasakis
 
PDF
Nonlinear observer design
Pantelis Sopasakis
 
PDF
Modelling and Control of Biological and Physiological Systems
Pantelis Sopasakis
 
Smart Systems for Urban Water Demand Management
Pantelis Sopasakis
 
OpenTox API introductory presentation
Pantelis Sopasakis
 
Water demand forecasting for the optimal operation of large-scale water networks
Pantelis Sopasakis
 
Drinking Water Networks: Challenges and opportunites
Pantelis Sopasakis
 
Controlled administration of Amiodarone using a Fractional-Order Controller
Pantelis Sopasakis
 
OpenTox API: Lessons learnt, limitations and challenges
Pantelis Sopasakis
 
Just Another QSAR Project under OpenTox
Pantelis Sopasakis
 
ToxOtis: A Java Interface to the OpenTox Predictive Toxicology Network
Pantelis Sopasakis
 
Frobenious theorem
Pantelis Sopasakis
 
Set convergence
Pantelis Sopasakis
 
Polytopes inside polytopes
Pantelis Sopasakis
 
Environmental Risk Assessment on the web
Pantelis Sopasakis
 
Modelling & Control of Drinkable Water Networks
Pantelis Sopasakis
 
EFFINET - Initial Presentation
Pantelis Sopasakis
 
Παρουσίαση Προόδου Διδακτορικού
Pantelis Sopasakis
 
Physiologically Based Modelling and Predictive Control
Pantelis Sopasakis
 
Nonlinear observer design
Pantelis Sopasakis
 
Modelling and Control of Biological and Physiological Systems
Pantelis Sopasakis
 

Recently uploaded (20)

PDF
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
Doc9.....................................
SofiaCollazos
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PPTX
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
PDF
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
PDF
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PDF
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
PDF
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
PDF
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PDF
How ETL Control Logic Keeps Your Pipelines Safe and Reliable.pdf
Stryv Solutions Pvt. Ltd.
 
PPTX
The Future of AI & Machine Learning.pptx
pritsen4700
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
Doc9.....................................
SofiaCollazos
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
The Future of Artificial Intelligence (AI)
Mukul
 
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
How ETL Control Logic Keeps Your Pipelines Safe and Reliable.pdf
Stryv Solutions Pvt. Ltd.
 
The Future of AI & Machine Learning.pptx
pritsen4700
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 

HMPC for Upper Stage Attitude Control

  • 1. Hybrid MPC for Attitude Control of Spacecraft with Impulsive Thrusters P. Sopasakisa, D. Bernardinia,c, H. Strauchb, S. Bennanid and A. Bemporada,c a Institute for Advanced Studies Lucca, b Airbus DS, c ODYS Srl d European Space Agency July 14, 2015
  • 2. Control objectives Operate in barbecue mode with ωx = 5 deg · s−1, Achieve high pointing accuracy using impulsive thrusters Low actuation count Reasonable computational complexity 1 / 15
  • 5. Nonlinear dynamical model Notation: ˜Θx, ˜Ψx: pitch and yaw error angles, ωi: angular velocity about i-axis, ωn = (1 − Jxx/Jyy)ωx.1 d dt       ˜Θx ˜Ψx ωx ωy ωz       =       0 ωx 0 1 0 −ωx 0 0 0 1 0 0 0 0 0 0 0 0 0 ωn 0 0 0 −ωn 0             ˜Θx ˜Ψx ωx ωy ωz       + +       0 0 0 0 0 0 J−1 xx 0 0 0 J−1 yy 0 0 0 J−1 zz         τx τy τz   1 A. Kater, “Attitude Control of Upper Stage Launcher During Long Coasting Period,” Master’s thesis, Lehrstuhk fur Automatisierungs und Regelungstechnik, Christian-Albrechts-University Kiel, Germany, 2013. 3 / 15
  • 6. Linear Dynamical Model Assumption: The spin rate equilibrates very fast, i.e., ωx(t) ωr x. Model is now written in two parts - the spin model2: ˙ωx = J−1 xx τx and the nutation/precession model: d dt     ˜Θx ˜Ψx ωy ωz     =     ωr x 1 −ωr x 1 ωr n −ωr n         ˜Θx ˜Ψx ωy ωz     +    J−1 yy J−1 zz     τy τz 2 The spin rate ωx is controlled with a simple but efficient P-controller. 4 / 15
  • 7. Linear Dynamical Model We introduce the state variable x(t) = ˜Θx(t) ˜Ψx(t) ωy(t) ωz(t) , and the input vector u(t) = τy(t) τz(t) , the nutation/precession model, after discretisation, is written concisely as x(k + 1) = Ax(k) + Bu(k). 5 / 15
  • 9. Minimum impulse effect Minimum impulse effect: thrusters cannot produce arbitrarily small torques, thus uk is constrained in U = [−umax, −umin] ∪ {0} ∪ [umin, umax] We introduce the binary vectors δ− and δ+ so that3 δ− (k) = [u(k) ≤ −umin], δ+ (k) = [u(k) ≥ umin], and the auxiliary variable ηk defined as4 ηi(k) = [δ− i (k) ∨ δ+ i (k)] · ui(k) 3 Symbols ≤ and ≥ are element-wise comparison operators. 4 Here ηi(k) stands for the i-th component of vector η(k) at time k. 6 / 15
  • 10. Minimum impulse effect To detect thruster actuation we use the variable v(k) = [δ− (k) ∨ δ+ (k)] and we recast the system dynamics as z(k + 1) = Az(k) + Bη(k) + f, γ(k + 1) = γ(k) + [ 1 1 ] v(k), where γ(k) is the total actuation count up to time k on which we impose: γ(k) ≤ γmax. 7 / 15
  • 12. Penalty function For a sequence of control actions πN = {u(k), v(k), η(k), δ±(k)}N−1 k=0 we define the total penalty function with horizon N as V (πN ; x0, γ0) VN (x(N), γ(N)) + N−1 k=0 (x(k), z(k)), where is the stage cost (x, z) Qx p Penalises the pointing inaccuracy + Rz p and VN is the terminal cost, VN (x(N), γ(N)) QN x(N) p + ρ(γ(N) − γ0) Penalises the tot. actuation count along the horizon . 8 / 15
  • 13. Hybrid MPC - problem formulation MPC problem formulation: min πN V (πN ; x0, γ0) s.t. x(0) = x0, γ(0) = γ0, Hybrid dynamics, for k ∈ N[0,Nu−1], δ± (k) = 0, for k ∈ N[Nu,N−1], 9 / 15
  • 15. Barbecue mode 2 4 6 8 10 12 14 16 18 20 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 time [s] Rollrateerror[deg] Absolute value of tracking error on ω x Figure : ωx converges fast to its set-point. 10 / 15
  • 16. Pointing Accuracy −4 −3 −2 −1 0 1 2 −6 −5 −4 −3 −2 −1 0 1 2 pitch error [deg] yawerror[deg] Tracking error on pitch and yaw PD LQ HMPC Figure : HMPC achieves higher pointing accuracy compared to optimally tuned PD and LQR controllers (which do not account for the MI effect). 11 / 15
  • 17. Actuation Count 50 100 150 200 250 300 −200 −100 0 100 200 LQRTorque[Nm] 50 100 150 200 250 300 −200 −100 0 100 200 PDTorque[Nm] 50 100 150 200 250 300 −4000 −2000 0 2000 HMPCTorque[Nm] Time [s] 50 100 150 200 250 300 0 200 400 600 LQRTorque[Nm] 50 100 150 200 250 300 −200 −100 0 100 200 PDTorque[Nm] 50 100 150 200 250 300 −5000 0 5000 HMPCTorque[Nm] Time [s] Figure : HMPC achieves a significantly lower actuation count. Left: ωy, Right: ωz. 12 / 15
  • 18. ...with additive disturbances −12 −10 −8 −6 −4 −2 0 2 4 6 −4 −2 0 2 4 6 8 10 12 14 pitch error [deg] yawerror[deg] Tracking error on pitch and yaw Tsim =500 PD LQ HMPC Figure : Simulations in presence of a constant additive disturbance on uk of 6Nm. 13 / 15
  • 19. Performance assessment Performance indicators: (i) actuation count on axes y and z, (ii) total actuation count, (iii) total squared deviation Jr = Tsim k=0 ˜Θ2 x(k) + ˜Ψ2 x(k) . Table : Simulation results over an interval Tsim = 300s (nominal conditions). Thruster activations Jr x-axis y-axis z-axis total PD controller 9 7 34 50 0.4741 LQ controller 9 21 36 66 0.3858 Hybrid MPC 9 4 5 18 0.0811 14 / 15
  • 20. Performance assessment Table : Simulation results over an interval Tsim = 300s (with additive disturbances of 6Nm). Thruster activations Jr x-axis y-axis z-axis total PD controller 9 11 30 50 0.4454 LQ controller 9 26 40 75 0.3878 Hybrid MPC 9 16 5 30 0.0880 15 / 15
  • 21. Thank you for your attention