This document discusses optimizing Apache Spark machine learning workloads on OpenPOWER platforms. It provides an overview of Spark, machine learning, and deep learning. It then discusses how OpenPOWER systems are well-suited for these workloads due to features like high memory bandwidth, large caches, and GPU support. The document outlines various techniques for tuning Spark performance on OpenPOWER, such as configuration of executors, cores, memory, and storage levels. It also presents examples analyzing the performance of a matrix factorization machine learning application under different Spark configurations.