SlideShare a Scribd company logo
7
Most read
8
Most read
12
Most read
Samuel
Folasayo
How to Use JSONB in PostgreSQL
for Product Attributes Storage
Demonstrating Best Practices and CRUD Operations with JSONB
Joe Nyirenda
Open-source relational database management system.
Advanced data types and powerful querying capabilities.
Designed for scalability, reliability, and SQL compliance.
Introduction to PostgreSQL
What is PostgreSQL?
PostgreSQL Pros & Cons
Pros
ACID compliance.
Rich data types support
(e.g., JSON, arrays, etc.).
Extensible via plugins and
procedures.
Free and open-source.
Cons
Steeper learning curve for
advanced features.
Higher memory
consumption for large
datasets.
What is JSONB?
JSONB Overview
Binary representation of JSON
data in PostgreSQL.
Allows indexing, searching, and
manipulating JSON data more
efficiently.
Better than plain JSON in
performance due to binary
format.
Example JSONB Object
{
"name": "Smartphone",
"price": 299.99,
"category": "Electronics",
"tags": ["mobile", "touchscreen", "camera"],
"details": {
"manufacturer": "TechBrand",
"model": "XPro 2024",
"features": {
"screen_size": "6.5 inches",
"battery": "4000mAh",
"camera": "12MP",
"storage": "128GB"
},
"warranty": "2 years",
"release_date": "2024-10-15"
}
}
Differences Between JSON and JSONB
in PostgreSQL
Storage Format
JSON: Text format
JSONB: Binary format (more efficient)
Indexing
JSON: Limited indexing
JSONB: Supports full indexing (faster
searches)
Performance
JSON: Slower reads (needs re-parsing)
JSONB: Faster reads (pre-parsed)
Flexibility
JSON: Preserves formatting
JSONB: Ideal for querying &
transformations
Insertion Speed
JSON: Faster to insert
JSONB: Slightly slower (binary
conversion)
Data Size
JSON: Stores all formatting
JSONB: Strips extra whitespace (smaller
size)
Modification
JSON: Limited field updates
JSONB: Allows field-level updates
JSONB Pros & Cons
Pros
Efficient storage and
indexing of JSON data.
Supports rich querying
capabilities (e.g., key-value
lookups, path queries).
Ideal for semi-structured
data.
Cons
Slight overhead for
converting JSON to binary
format.
Can become slower with
deeply nested or large
JSON structures.
Perfect for storing flexible, schema-less data.
Excellent for use cases where attributes vary across records (e.g.,
product attributes).
Facilitates easy expansion and adjustment of data models without
schema migration.
Why Use JSONB in PostgreSQL?
Why Use JSONB?
Sample Usage Scenarios for JSONB
Storing Product Attributes
CREATE TABLE products (
id serial PRIMARY KEY,
name text,
attributes jsonb
);
INSERT INTO products (name, attributes)
VALUES ('Laptop', '{"brand": "Dell",
"processor": "Intel i7", "ram": "16GB"}');
INSERT INTO products (name, attributes)
VALUES ('Phone', '{"brand": "Samsung",
"battery": "4000mAh", "ram": "8GB"}');
Querying Specific JSONB Fields
SELECT name, attributes->>'brand' AS brand
FROM products
WHERE attributes @> '{"ram": "16GB"}';
Why JSONB: Attributes vary for each
product.
Why JSONB: Efficient filtering and querying
based on specific fields.
Sample Usage Scenarios for JSONB -
Cont.
Combining JSONB with Traditional
Fields
UPDATE products
SET attributes = jsonb_set(attributes,
'{ram}', '"32GB"')
WHERE name = 'Laptop';
Indexing for Faster Queries
CREATE INDEX idx_product_attributes ON
products USING gin(attributes);
Why JSONB: Allows partial updates without
rewriting the whole JSON object.
Why JSONB: Full-text indexing for fast
retrieval of deeply nested fields.
Updating a Field Inside JSONB
SELECT name, attributes
FROM products
WHERE attributes->>'processor' = 'Intel i7';
Why JSONB: Seamlessly combines structured (name) and unstructured
(attributes) data in queries.
Create a table to store products with JSONB attributes.
Use JSONB for flexible product attributes:
Setting Up the Database
Install PostgreSQL & Create a Database
Create a new database:
createdb your_database_name
CREATE TABLE products (
id serial PRIMARY KEY,
name text,
attributes jsonb
);
Granting Necessary Permissions in
PostgreSQL
Make sure you have admin or necessary privileges:
GRANT ALL PRIVILEGES ON DATABASE your_database TO your_user;
Full CRUD Operations with JSONB
Create: Insert JSONB data into a table.
INSERT INTO products (name, attributes)
VALUES ('Laptop', '{"brand": "Dell", "specs": {"ram": "16GB",
"storage": "512GB"}}'::jsonb);
Read: Retrieve JSONB attributes and filter on keys.
SELECT name, attributes->'brand'
FROM products
WHERE attributes->>'ram' = '16GB';
Delete: Remove records, ensuring JSONB constraints are
respected.
Full CRUD Operations with JSONB - CONT.
Update: Modify specific fields in JSONB objects.
UPDATE products
SET attributes = jsonb_set(attributes, '{specs,storage}',
'"1TB"')
WHERE name = 'Laptop';
DELETE FROM products
WHERE attributes @> '{"brand": "Dell"}';
Python and PostgreSQL Integration
Technologies
psycopg2to connect to
PostgreSQL from Python.
Flask for creating a
lightweight web application.
Step-by-Step
Connect to the database using
psycopg2.
Define API endpoints using
Flask.
Perform CRUD operations and
ensure JSONB fields are
handled properly.
Index JSONB fields on frequently queried keys.
Use GIN indexes for better performance on complex JSONB queries.
Avoid overuse of JSONB for data that fits a strict schema.
GIN Indexes in PostgreSQL for
JSONB
Best Practices:
How to Create GIN Indexes:
CREATE INDEX idx_products_attributes ON products USING GIN (attributes);
Leverage PostgreSQL’s rich indexing and querying options for better
performance.
Combine GIN indexes with filters to optimize performance on JSONB data queries.
Optimization Tips for JSONB in
PostgreSQL
Use jsonb_path_ops GIN indexes for faster key lookups.
Example:
CREATE INDEX idx_products_path_ops ON products USING GIN (attributes
jsonb_path_ops);
Avoid deeply nested JSON structures for performance.
SELECT * FROM products WHERE attributes @> '{"color": "red"}';
Using JSONB for all fields in a table (only for flexible attributes).
Storing large blobs of JSON in a single record without proper
indexing.
Querying deep-nested JSONB without indexing leads to
performance issues.
JSONB Anti-Patterns
What to Avoid:
Set up Flask and PostgreSQL.
Create the CRUD operations for products table.
Use psycopg2.extras.Json to handle JSONB data in SQL queries.
Handle API requests to create, read, update, and delete product attributes.
Integrating CRUD Operations in index.html
Code Walkthrough
Step-by-Step Explanation:
Conclusion
JSONB is highly useful for semi-structured data.
PostgreSQL is powerful and flexible, enabling complex
querying.
Always apply best practices for indexing, querying, and
optimizing JSONB data.

More Related Content

Similar to How to Use JSONB in PostgreSQL for Product Attributes Storage (20)

PPTX
NoSQL on ACID: Meet Unstructured Postgres
EDB
 
PDF
Postgres vs Mongo / Олег Бартунов (Postgres Professional)
Ontico
 
PPT
Do More with Postgres- NoSQL Applications for the Enterprise
EDB
 
PPTX
You, me, and jsonb
Arielle Simmons
 
PDF
NoSQL Best Practices for PostgreSQL / Дмитрий Долгов (Mindojo)
Ontico
 
PDF
Json in Postgres - the Roadmap
EDB
 
PDF
Postgre(No)SQL - A JSON journey
Nicola Moretto
 
PDF
Oh, that ubiquitous JSON !
Alexander Korotkov
 
PDF
NoSQL Now: Postgres - The NoSQL Cake You Can Eat
DATAVERSITY
 
PDF
NoSQL and Spatial Database Capabilities using PostgreSQL
EDB
 
PDF
CREATE INDEX … USING VODKA. VODKA CONNECTING INDEXES, Олег Бартунов, Александ...
Ontico
 
PPTX
Application Development & Database Choices: Postgres Support for non Relation...
EDB
 
PDF
EDB NoSQL German Webinar 2015
EDB
 
PDF
An evening with Postgresql
Joshua Drake
 
PDF
Stefan Hochdörfer - The NoSQL Store everyone ignores: PostgreSQL - NoSQL matt...
NoSQLmatters
 
PDF
Postgres NoSQL - Delivering Apps Faster
EDB
 
PDF
Postgres: The NoSQL Cake You Can Eat
EDB
 
PDF
NoSQL для PostgreSQL: Jsquery — язык запросов
CodeFest
 
ODP
Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...
Yandex
 
ODP
PostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander Korotkov
Nikolay Samokhvalov
 
NoSQL on ACID: Meet Unstructured Postgres
EDB
 
Postgres vs Mongo / Олег Бартунов (Postgres Professional)
Ontico
 
Do More with Postgres- NoSQL Applications for the Enterprise
EDB
 
You, me, and jsonb
Arielle Simmons
 
NoSQL Best Practices for PostgreSQL / Дмитрий Долгов (Mindojo)
Ontico
 
Json in Postgres - the Roadmap
EDB
 
Postgre(No)SQL - A JSON journey
Nicola Moretto
 
Oh, that ubiquitous JSON !
Alexander Korotkov
 
NoSQL Now: Postgres - The NoSQL Cake You Can Eat
DATAVERSITY
 
NoSQL and Spatial Database Capabilities using PostgreSQL
EDB
 
CREATE INDEX … USING VODKA. VODKA CONNECTING INDEXES, Олег Бартунов, Александ...
Ontico
 
Application Development & Database Choices: Postgres Support for non Relation...
EDB
 
EDB NoSQL German Webinar 2015
EDB
 
An evening with Postgresql
Joshua Drake
 
Stefan Hochdörfer - The NoSQL Store everyone ignores: PostgreSQL - NoSQL matt...
NoSQLmatters
 
Postgres NoSQL - Delivering Apps Faster
EDB
 
Postgres: The NoSQL Cake You Can Eat
EDB
 
NoSQL для PostgreSQL: Jsquery — язык запросов
CodeFest
 
Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...
Yandex
 
PostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander Korotkov
Nikolay Samokhvalov
 

More from techprane (17)

PDF
REDIS + FastAPI: Implementing a Rate Limiter
techprane
 
PDF
Performance Optimization MongoDB: Compound Indexes
techprane
 
PPTX
SSO with Social Login Integration & FastAPI Simplified
techprane
 
PDF
A Beginner's Guide to Tortoise ORM and PostgreSQL
techprane
 
PDF
Boost Your API with Asynchronous Programming in FastAPI
techprane
 
PDF
Top 10 Network Troubleshooting Commands.pdf
techprane
 
PPTX
Using jq to Process and Query MongoDB Logs
techprane
 
PPTX
How to Integrate PostgreSQL with Prometheus
techprane
 
PPTX
10 Basic Git Commands to Get You Started
techprane
 
PPTX
Top Linux 10 Commands for Windows Admins
techprane
 
PPTX
Implementing full text search with Apache Solr
techprane
 
PPTX
How to Overcome Doubts as a New Developer(Imposter Syndrome)
techprane
 
PDF
A Beginners Guide to Building MicroServices with FastAPI
techprane
 
PDF
Implementing Schema Validation in MongoDB with Pydantic
techprane
 
PPTX
Storing Large Image Files in MongoDB Using GRIDFS
techprane
 
PPTX
Open Source Mapping with Python, and MongoDB
techprane
 
PPTX
Learning MongoDB Aggregations in 10 Minutes
techprane
 
REDIS + FastAPI: Implementing a Rate Limiter
techprane
 
Performance Optimization MongoDB: Compound Indexes
techprane
 
SSO with Social Login Integration & FastAPI Simplified
techprane
 
A Beginner's Guide to Tortoise ORM and PostgreSQL
techprane
 
Boost Your API with Asynchronous Programming in FastAPI
techprane
 
Top 10 Network Troubleshooting Commands.pdf
techprane
 
Using jq to Process and Query MongoDB Logs
techprane
 
How to Integrate PostgreSQL with Prometheus
techprane
 
10 Basic Git Commands to Get You Started
techprane
 
Top Linux 10 Commands for Windows Admins
techprane
 
Implementing full text search with Apache Solr
techprane
 
How to Overcome Doubts as a New Developer(Imposter Syndrome)
techprane
 
A Beginners Guide to Building MicroServices with FastAPI
techprane
 
Implementing Schema Validation in MongoDB with Pydantic
techprane
 
Storing Large Image Files in MongoDB Using GRIDFS
techprane
 
Open Source Mapping with Python, and MongoDB
techprane
 
Learning MongoDB Aggregations in 10 Minutes
techprane
 
Ad

Recently uploaded (20)

PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PPTX
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PPT
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
PDF
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
PDF
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
PPTX
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PPTX
Digital Circuits, important subject in CS
contactparinay1
 
PDF
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
PDF
🚀 Let’s Build Our First Slack Workflow! 🔧.pdf
SanjeetMishra29
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
DOCX
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
Digital Circuits, important subject in CS
contactparinay1
 
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
🚀 Let’s Build Our First Slack Workflow! 🔧.pdf
SanjeetMishra29
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
Ad

How to Use JSONB in PostgreSQL for Product Attributes Storage

  • 1. Samuel Folasayo How to Use JSONB in PostgreSQL for Product Attributes Storage Demonstrating Best Practices and CRUD Operations with JSONB Joe Nyirenda
  • 2. Open-source relational database management system. Advanced data types and powerful querying capabilities. Designed for scalability, reliability, and SQL compliance. Introduction to PostgreSQL What is PostgreSQL?
  • 3. PostgreSQL Pros & Cons Pros ACID compliance. Rich data types support (e.g., JSON, arrays, etc.). Extensible via plugins and procedures. Free and open-source. Cons Steeper learning curve for advanced features. Higher memory consumption for large datasets.
  • 4. What is JSONB? JSONB Overview Binary representation of JSON data in PostgreSQL. Allows indexing, searching, and manipulating JSON data more efficiently. Better than plain JSON in performance due to binary format. Example JSONB Object { "name": "Smartphone", "price": 299.99, "category": "Electronics", "tags": ["mobile", "touchscreen", "camera"], "details": { "manufacturer": "TechBrand", "model": "XPro 2024", "features": { "screen_size": "6.5 inches", "battery": "4000mAh", "camera": "12MP", "storage": "128GB" }, "warranty": "2 years", "release_date": "2024-10-15" } }
  • 5. Differences Between JSON and JSONB in PostgreSQL Storage Format JSON: Text format JSONB: Binary format (more efficient) Indexing JSON: Limited indexing JSONB: Supports full indexing (faster searches) Performance JSON: Slower reads (needs re-parsing) JSONB: Faster reads (pre-parsed) Flexibility JSON: Preserves formatting JSONB: Ideal for querying & transformations Insertion Speed JSON: Faster to insert JSONB: Slightly slower (binary conversion) Data Size JSON: Stores all formatting JSONB: Strips extra whitespace (smaller size) Modification JSON: Limited field updates JSONB: Allows field-level updates
  • 6. JSONB Pros & Cons Pros Efficient storage and indexing of JSON data. Supports rich querying capabilities (e.g., key-value lookups, path queries). Ideal for semi-structured data. Cons Slight overhead for converting JSON to binary format. Can become slower with deeply nested or large JSON structures.
  • 7. Perfect for storing flexible, schema-less data. Excellent for use cases where attributes vary across records (e.g., product attributes). Facilitates easy expansion and adjustment of data models without schema migration. Why Use JSONB in PostgreSQL? Why Use JSONB?
  • 8. Sample Usage Scenarios for JSONB Storing Product Attributes CREATE TABLE products ( id serial PRIMARY KEY, name text, attributes jsonb ); INSERT INTO products (name, attributes) VALUES ('Laptop', '{"brand": "Dell", "processor": "Intel i7", "ram": "16GB"}'); INSERT INTO products (name, attributes) VALUES ('Phone', '{"brand": "Samsung", "battery": "4000mAh", "ram": "8GB"}'); Querying Specific JSONB Fields SELECT name, attributes->>'brand' AS brand FROM products WHERE attributes @> '{"ram": "16GB"}'; Why JSONB: Attributes vary for each product. Why JSONB: Efficient filtering and querying based on specific fields.
  • 9. Sample Usage Scenarios for JSONB - Cont. Combining JSONB with Traditional Fields UPDATE products SET attributes = jsonb_set(attributes, '{ram}', '"32GB"') WHERE name = 'Laptop'; Indexing for Faster Queries CREATE INDEX idx_product_attributes ON products USING gin(attributes); Why JSONB: Allows partial updates without rewriting the whole JSON object. Why JSONB: Full-text indexing for fast retrieval of deeply nested fields. Updating a Field Inside JSONB SELECT name, attributes FROM products WHERE attributes->>'processor' = 'Intel i7'; Why JSONB: Seamlessly combines structured (name) and unstructured (attributes) data in queries.
  • 10. Create a table to store products with JSONB attributes. Use JSONB for flexible product attributes: Setting Up the Database Install PostgreSQL & Create a Database Create a new database: createdb your_database_name CREATE TABLE products ( id serial PRIMARY KEY, name text, attributes jsonb );
  • 11. Granting Necessary Permissions in PostgreSQL Make sure you have admin or necessary privileges: GRANT ALL PRIVILEGES ON DATABASE your_database TO your_user;
  • 12. Full CRUD Operations with JSONB Create: Insert JSONB data into a table. INSERT INTO products (name, attributes) VALUES ('Laptop', '{"brand": "Dell", "specs": {"ram": "16GB", "storage": "512GB"}}'::jsonb); Read: Retrieve JSONB attributes and filter on keys. SELECT name, attributes->'brand' FROM products WHERE attributes->>'ram' = '16GB';
  • 13. Delete: Remove records, ensuring JSONB constraints are respected. Full CRUD Operations with JSONB - CONT. Update: Modify specific fields in JSONB objects. UPDATE products SET attributes = jsonb_set(attributes, '{specs,storage}', '"1TB"') WHERE name = 'Laptop'; DELETE FROM products WHERE attributes @> '{"brand": "Dell"}';
  • 14. Python and PostgreSQL Integration Technologies psycopg2to connect to PostgreSQL from Python. Flask for creating a lightweight web application. Step-by-Step Connect to the database using psycopg2. Define API endpoints using Flask. Perform CRUD operations and ensure JSONB fields are handled properly.
  • 15. Index JSONB fields on frequently queried keys. Use GIN indexes for better performance on complex JSONB queries. Avoid overuse of JSONB for data that fits a strict schema. GIN Indexes in PostgreSQL for JSONB Best Practices: How to Create GIN Indexes: CREATE INDEX idx_products_attributes ON products USING GIN (attributes);
  • 16. Leverage PostgreSQL’s rich indexing and querying options for better performance. Combine GIN indexes with filters to optimize performance on JSONB data queries. Optimization Tips for JSONB in PostgreSQL Use jsonb_path_ops GIN indexes for faster key lookups. Example: CREATE INDEX idx_products_path_ops ON products USING GIN (attributes jsonb_path_ops); Avoid deeply nested JSON structures for performance. SELECT * FROM products WHERE attributes @> '{"color": "red"}';
  • 17. Using JSONB for all fields in a table (only for flexible attributes). Storing large blobs of JSON in a single record without proper indexing. Querying deep-nested JSONB without indexing leads to performance issues. JSONB Anti-Patterns What to Avoid:
  • 18. Set up Flask and PostgreSQL. Create the CRUD operations for products table. Use psycopg2.extras.Json to handle JSONB data in SQL queries. Handle API requests to create, read, update, and delete product attributes. Integrating CRUD Operations in index.html Code Walkthrough Step-by-Step Explanation:
  • 19. Conclusion JSONB is highly useful for semi-structured data. PostgreSQL is powerful and flexible, enabling complex querying. Always apply best practices for indexing, querying, and optimizing JSONB data.

Editor's Notes

  • #3: Location-Based Insights: Aids in decision-making for businesses, urban planning, and environmental studies. Mapping & Visualization: Helps visualize patterns and optimize routes for supply chains and deliveries. Proximity Search: Powers apps like food delivery and ride-sharing by locating nearby services. Efficient Queries: Geospatial databases (e.g., MongoDB) improve performance for location-based searches. Real-Time Tracking: Supports tracking vehicles, aircraft, and ships for logistics and navigation.
  • #4: Location-Based Insights: Aids in decision-making for businesses, urban planning, and environmental studies. Mapping & Visualization: Helps visualize patterns and optimize routes for supply chains and deliveries. Proximity Search: Powers apps like food delivery and ride-sharing by locating nearby services. Efficient Queries: Geospatial databases (e.g., MongoDB) improve performance for location-based searches. Real-Time Tracking: Supports tracking vehicles, aircraft, and ships for logistics and navigation.
  • #5: Location-Based Insights: Aids in decision-making for businesses, urban planning, and environmental studies. Mapping & Visualization: Helps visualize patterns and optimize routes for supply chains and deliveries. Proximity Search: Powers apps like food delivery and ride-sharing by locating nearby services. Efficient Queries: Geospatial databases (e.g., MongoDB) improve performance for location-based searches. Real-Time Tracking: Supports tracking vehicles, aircraft, and ships for logistics and navigation.
  • #6: Location-Based Insights: Aids in decision-making for businesses, urban planning, and environmental studies. Mapping & Visualization: Helps visualize patterns and optimize routes for supply chains and deliveries. Proximity Search: Powers apps like food delivery and ride-sharing by locating nearby services. Efficient Queries: Geospatial databases (e.g., MongoDB) improve performance for location-based searches. Real-Time Tracking: Supports tracking vehicles, aircraft, and ships for logistics and navigation.
  • #10: For the complete step-by-step guide on how to set up PostgreSQL, click the link below: Read the Complete Guide Here
  • #13: Download the source code here
  • #14: Download the full source code here
  • #18: Download the complete source code here