Human Vision And The Night Sky Hot To Improve
Your Observing Skills 3rd Edition Michael Borgia
download
https://ebookbell.com/product/human-vision-and-the-night-sky-hot-
to-improve-your-observing-skills-3rd-edition-michael-
borgia-56376388
Explore and download more ebooks at ebookbell.com
Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Human Vision And The Night Sky How To Improve Your Observing Skills
Patrick Moores Practical Astronomy Series 1st Edition Michael Borgia
https://ebookbell.com/product/human-vision-and-the-night-sky-how-to-
improve-your-observing-skills-patrick-moores-practical-astronomy-
series-1st-edition-michael-borgia-1311272
Happiness Flourishing And The Good Life A Transformative Vision For
Human Wellbeing Garrett Thomson
https://ebookbell.com/product/happiness-flourishing-and-the-good-life-
a-transformative-vision-for-human-wellbeing-garrett-thomson-33120942
Exposure Science In The 21st Century A Vision And A Strategy 1st
Edition National Research Council Division On Earth And Life Studies
Board On Environmental Studies And Toxicology Committee On Human And
Environmental Exposure Science In The 21st Century
https://ebookbell.com/product/exposure-science-in-the-21st-century-a-
vision-and-a-strategy-1st-edition-national-research-council-division-
on-earth-and-life-studies-board-on-environmental-studies-and-
toxicology-committee-on-human-and-environmental-exposure-science-in-
the-21st-century-51396972
Between Human And Divine The Catholic Vision In Contemporary
Literature 1st Edition Mary Reichardt
https://ebookbell.com/product/between-human-and-divine-the-catholic-
vision-in-contemporary-literature-1st-edition-mary-reichardt-51382440
Xray Vision The Evolution Of Medical Imaging And Its Human
Significance Richard B Gunderman
https://ebookbell.com/product/xray-vision-the-evolution-of-medical-
imaging-and-its-human-significance-richard-b-gunderman-4983822
Vision A Computational Investigation Into The Human Representation And
Processing Of Visual Information David Marr
https://ebookbell.com/product/vision-a-computational-investigation-
into-the-human-representation-and-processing-of-visual-information-
david-marr-2446888
Sacred Fire A Vision For A Deeper Human And Christian Maturity Ronald
Rolheiser
https://ebookbell.com/product/sacred-fire-a-vision-for-a-deeper-human-
and-christian-maturity-ronald-rolheiser-46313574
Its A Sprawl World After All The Human Cost Of Unplanned Growth And
Visions Of A Better Future Douglas E Morris
https://ebookbell.com/product/its-a-sprawl-world-after-all-the-human-
cost-of-unplanned-growth-and-visions-of-a-better-future-douglas-e-
morris-1634880
Visions Of The Human In Science Fiction And Cyberpunk 1st Edition
Marcus Leaning Birgit Pretzsch
https://ebookbell.com/product/visions-of-the-human-in-science-fiction-
and-cyberpunk-1st-edition-marcus-leaning-birgit-pretzsch-51688460
Human Vision And The Night Sky Hot To Improve Your Observing Skills 3rd Edition Michael Borgia
Human Vision And The Night Sky Hot To Improve Your Observing Skills 3rd Edition Michael Borgia
Patrick Moore’s Practical Astronomy Series
Other Titles in this Series
Telescopes and Techniques (2nd Edn.)
Chris Kitchin
The Art and Science of CCD Astronomy
David Ratledge (Ed.)
The Observer’s Year (Second Edition)
Patrick Moore
Seeing Stars
Chris Kitchin and Robert W. Forrest
Photo-guide to the Constellations
Chris Kitchin
The Sun in Eclipse
Michael Maunder and Patrick Moore
Software and Data for Practical
Astronomers
David Ratledge
Amateur Telescope Making
Stephen F. Tonkin (Ed.)
Observing Meteors, Comets, Supernovae
and other Transient Phenomena
Neil Bone
Astronomical Equipment for Amateurs
Martin Mobberley
Transit: When Planets Cross the Sun
Michael Maunder and Patrick Moore
Practical Astrophotography
Jeffrey R. Charles
Observing the Moon
Peter T. Wlasuk
Deep-Sky Observing
Steven R. Coe
AstroFAQs
Stephen Tonkin
The Deep-Sky Observer’s Year
Grant Privett and Paul Parsons
Field Guide to the Deep Sky Objects
Mike Inglis
Choosing and Using a Schmidt-Cassegrain
Telescope
Rod Mollise
Astronomy with Small Telescopes
Stephen F. Tonkin (Ed.)
Solar Observing Techniques
Chris Kitchin
How to Photograph the Moon and Planets
with Your Digital Camera
Tony Buick
Pattern Asterisms: A New Way to Chart the
Stars
John Chiravalle
Observing the Planets
Peter T. Wlasuk
Light Pollution
Bob Mizon
Using the Meade ETX
Mike Weasner
Practical Amateur Spectroscopy
Stephen F. Tonkin (Ed.)
More Small Astronomical Observatories
Patrick Moore (Ed.)
Observer’s Guide to Stellar Evolution
Mike Inglis
How to Observe the Sun Safely
Lee Macdonald
The Practical Astronomer’s Deep-Sky
Companion
Jess K. Gilmour
Observing Comets
Nick James and Gerald North
Observing Variable Stars
Gerry A. Good
Visual Astronomy in the Suburbs
Antony Cooke
Astronomy of the Milky Way: The
Observer’s Guide to the Northern and
Southern Milky Way (2 volumes)
Mike Inglis
The NexStar User’s Guide
Michael W. Swanson
Observing Binary and Double Stars
Bob Argyle (Ed.)
Navigating the Night Sky
Guilherme de Almeida
The New Amateur Astronomer
Martin Mobberley
Care of Astronomical Telescopes and
Accessories
M. Barlow Pepin
Astronomy with a Home Computer
Neale Monks
Visual Astronomy Under Dark Skies
Antony Cooke
Lunar and Planetary Webcam User’s Guide
Martin Mobberley
The Urban Astronomer’s Guide
Rod Mollise
Digital Astrophotography
David Rutledge
CCD Astrophotography: High-Quality
Imaging from the Suburbs
Human Vision
and the
Night Sky
Hot to Improve Your
Observing Skills
Michael P. Borgia
Library of Congress Control Number: 2005938491
ISBN-10: 0-387-30776-1 Printed on acid-free paper.
ISBN-13: 978-0387-30776-3
© 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this
publication of trade names,trademarks,service marks,and similar terms,even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to pro-
prietary rights.
Printed in the United States of America. (EB/BP)
9 8 7 6 5 4 3 2 1
springer.com
“Daddy, I wanna get a ladder and touch the Moon”
Robert Michael Borgia
Age 3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 The Integrated Observing System. Part I: Your Eyes . . . . . . . . . . . . . . . 1
2 The Integrated Observing System. Part II: Your Equipment . . . . . . . . . 19
3 Putting the Integrated Observing System Together . . . . . . . . . . . . . . . 51
4 First Night Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5 Mysteries of the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6 Secrets of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7 Mercury, Venus, and the Inner Solar System . . . . . . . . . . . . . . . . . . . . . 119
8 The Enigmas of Mars, the Red Planet . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9 Comets and Asteroids, the Cosmic Leftovers of Creation . . . . . . . . . . . 159
10 Jupiter and Saturn, Kings of Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
11 The Outer Worlds; Uranus, Neptune, Pluto, and Beyond . . . . . . . . . . . . 195
12 Twinkle, Twinkle Little Star (Now Knock It Off!) . . . . . . . . . . . . . . . . . 207
13 Faint, Fuzzy Things. Part I: Phenomena Galactica . . . . . . . . . . . . . . . . 227
14 Faint, Fuzzy Things. Part II: The Island Universes . . . . . . . . . . . . . . . . 249
Contents
vii
Contents
Appendix A
Object Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Appendix B
Scales and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Appendix C
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
viii
For years, the images have blazed through your imagination. They are the
magnificent full-color photographs returned by the Hubble Space Telescope and
its sister Great Observatories1
of the grand depths of the cosmos. From the “pillars
of creation,” considered to be Hubble’s signature image, to the incomprehensible
depths of the Hubble Deep Fields to the intricate details imaged in the surface and
cloud tops of Mars or Jupiter, the power of the Hubble Telescope to turn on the
public to science is unparalled in the history of modern culture. They also have
spurred new telescope sales to unimagined highs. And after years of watching the
heavens through the eyes of NASA, you’ve decided it’s time to see it for yourself.
You make the trip to the department store and pick up that shiny new “500×” tele-
scope, set it up and soon you’re in business.
Unfortunately, the high initial expectations usually give way to disappointment.
Instead of seeing the magnificent swirling clouds of gas in the Orion Nebula, you
see a pale green-gray cloud with a couple of nondescript stars lurking nearby. The
swirling red, yellow and brown storms of Jupiter are nowhere to be seen; only
varying shades of gray in the planet’s cloud bands, assuming you can see bands at
all! And Mars? After waiting all night for the red planet to rise up over the morning
horizon, you are greeted by nothing more than a featureless reddish-orange dot.
After a few weeks of this, the telescope suddenly is no longer making the nightly
trip outside. Soon the scope only gets outside one night a week and not long after
that, it becomes a place to hang laundry. It need not be that way for the sky you
long to see is out there.You just need to learn how to see it. If you are that person,
Introduction
1
NASA’s “Great Observatories” include the Hubble Space Telescope (launched 1990), the Compton
Gamma Ray Observatory (launched 1991, de-orbited 2001), the Chandra X-Ray Observatory (launched
1999) and the Spitzer Space Telescope (launched late 2003).
ix
Introduction
then this book is for you. If you own a larger telescope and feel you have run out
of challenges, then you’ve got the right book too. One thing that many people who
do not study the sky don’t understand is that astronomy is the one and only science
where ordinary people with an ordinary education can make the discoveries that
electrify the public and even alter the course of modern science. Amateurs dis-
covered the great comets Hale–Bopp, Hyakutake, West and Ikeya–Seki. Amateurs
today are even helping to discover new planets around distant suns. Indeed, with
the attention of most professional astronomers focused on non-visible wave-
lengths, most major discoveries made in visible-light astronomy today are made
by amateur astronomers just like us.
The opportunities for discovery,learning and wonder are absolutely endless,but
it also takes an enormous amount of work. If you’re willing to do it, then please
read on. I wrote this book to share with you what I have had to learn through hard
trial and (a lot of) error. I hope to share with you so as to limit your frustration,
increase learning and most of all expand your joy in this amazing hobby and lim-
itless science. We’ll begin in the pages ahead by discussing the critical elements of
the integrated observing system. This system has three critical components all of
which must work correctly and in harmony for you to have success. These are the
observer’s eyes, his equipment, and lastly his brain. A perfect scope and flawless
vision are useless without the knowledge of how to use it and of what it is you are
looking for, what to expect when observing and why that particular object is of
such interest. A well-trained mind and a perfect scope are of little use if the eyes
are in poor health or are adversely affected by factors external to the eyes or exter-
nal to the body. Perfect eyes and a well-trained mind will not perceive very much
if the telescope cannot produce a sharp image because it is poorly maintained or
its optics or mounting are of poor quality. Our first three chapters are about
preparing and training the eyes, acquiring the right equipment for your particu-
lar needs including some frank advice about how to shop for that first serious tele-
scope, then we will talk about training the mind, the need to gain knowledge and
then putting it all together to make observing fun, enriching, and satisfying.
Once you have all the tools in place, we’ll go out in the field for a test run and
put our eyes, brain and telescope to work. We’ll walk through a typical first night
in the field by planning and executing an observing session where time can be an
issue, both in terms of being ready for a precise moment and making use of time
of limited quantity. The first night out can be the most wonderful night of your life
as an amateur astronomer, or the night that turns you off the hobby completely.
We’ll talk about how to make it the former rather than the latter by teaching you
to manage your time, your equipment, yourself and perhaps most importantly,
your expectations.
Now that you’ve put it all together,in the next ten chapters,we will take the grand
tour of the universe, starting close in with the Moon then making our way further
and further out into space. In each chapter, we will do three things. First we’ll talk
in depth about each object as a physical entity. We’ll then talk some about the
history of that object from the point of view of the human experience, how did we
come to know what we know and why is it important to us? Knowledge is what in
turn makes us curious; it is as much a part of being human as breathing. A small
primer to arouse curiosity makes us seek more knowledge. That in turn makes us
more curious. The desire to gain knowledge is therefore self-perpetuating so long
x
as we can continue to satisfy our curiosity.As long as we can satisfy that urge, then
the hobby will remain satisfying and self-fulfilling. Finally we will help manage
expectations. You will never see in the telescope what the amazing pictures
returned by the Hubble or Keck telescopes can. For this reason, all the images pro-
duced in this book are my own. I am a very amateur astrophotographer and I’m
still working after many years on mastering the art of image processing (unsharp
mask, anyone?). The pictures are far from perfect in many cases because most of
what you see in a telescope is far from perfect, not to mention the photographer.
The motion of Earth’s atmosphere distorts the planets and the nebulae and galax-
ies are washed out by light pollution.Astrophotography is an enormous challenge,
as my own images prove over and over. The pictures more accurately represent
what you might see in an actual telescope.
Finally we will challenge you. Each chapter ends with a series of projects that
will show you how to do so much more than simply gaze through a scope.You will
challenge and train your eyes, learn how to pick the right equipment for what you
want to do, how to organize yourself and how to gain knowledge. You will track
sunspots, locate the Apollo landing sites, study the geography of Mars, wonder at
the remarkable resonance of Jupiter’s moons,and discover why Mercury andVenus
behave so differently from each other.We’ll learn the techniques that amateurs just
like you and me use to hunt the sky for comets or rouge asteroids. We’ll go into
deep space and discover how astronomers learned to measure grand distances in
the universe, watch stars brighten and fade both predictably and unpredictably.
We’ll take the grand view and the up-close view of nebulae, galaxies and clusters
and learn from where each type came and what makes each object important to
us. Then we will discuss Messier’s famous catalog and learn how to earn amateur
astronomy’s ultimate right of passage,finding every object on that list in one single
night.
Ready? Then let’s go stargazing!
Introduction xi
CHAPTER ONE
One of the most terrible misconceptions about astronomy that those who are first
getting into the hobby have is that it’s an easy source of instant gratification. Set
the scope up, look through it and be amazed. Astronomy, like many hobbies just
does not work out that way. Your ability to be successful and have enjoyment in
astronomy is based entirely on your willingness to work at the art-form of observ-
ing and the quality of your equipment. If you’ve ever played golf (I have and I use
the word loosely), you will understand this. It takes many years of practice, con-
sistent effort and a willingness to study the game to make a good golfer. A good
player also needs the proper equipment. He needs clubs that are the right length
for both his body and arms. The clubs must be of the proper flexibility for your
game’s strengths and weaknesses. Stiff shafts deliver more accurate shots while
flexible shafts deliver greater distance. You just do not walk on a golf course and
expect to play“all-square”with Tiger Woods.A good golfer is a complete integrated
system, the perfect marriage of clubs, player, practice and ability. Just the same,
you should not expect to step up to a department store telescope and be able to
instantly see all the grandeur that the heavens have to offer on the first night. You
need to have the right equipment and you need to have the willingness to learn
how to use it and care for it. Your eyes, your brain and your telescope are all part
of an integrated observing system. Visual astronomy is an art-form as much as it
is a science. Success is based on equal parts of quality equipment, carefully honed
skills and good fortune.Astronomy, like any challenging hobby, is very hard work.
About twenty years ago,I had reached that critical mass point in amateur astron-
omy. My “500×” Tasco department store telescope had basically become a coat
hangar in my bedroom. Its 50mm (2 inch) objective lens adequately showed the
disk of Jupiter, the rings of Saturn and the phases of the Moon and Venus. But
under the moderately light polluted skies of northwestern New Jersey, even the
sky’s brightest deep sky wonders were virtually invisible to me. Anything fainter
The Integrated
Observing System.
Part I: Your Eyes
1
Human Vision and the Night Sky
than the naked eye threshold was invisible. Though I was twenty years old and
working my way through college,I saved carefully and purchased a Celestron Super
C8 Plus in May 1986. I was able to turn it into the night sky in time to catch the
retreating Comet 1P/Halley, just before it disappeared into the cosmic deep for
another seventy-six years.This proved to be my first great disappointment.Though
it appeared larger and brighter in the new telescope, it still appeared dull and
featureless. I was puzzled at reading the descriptions of the comet written by the
leading amateur astronomical observers of the time who were using equipment
much the same as I was, many in the same general area of the country. They
described it as dynamic with many differing features in both the coma and tail that
I just could not begin to make out. Why was this? It was because I did not know
how to see.
The Apollo-era geologist Farouk El Baz once said, “Anyone can look, but few
really see.” “Seeing” is the great skill that makes an astronomer successful at the
eyepiece. Learning how to see requires a great deal of patience and practice. It also
requires some understanding of how the most important piece of astronomical
equipment you own works, your own eyes! The human eye is an amazing evolu-
tion in biological optics. It is one of the few sight organs belonging to any species
that is capable of imaging both faint light and in color. Cats, for example, have
extremely keen night vision, but are completely color-blind. What is sometimes
difficult to understand about the human eye is that the eye cannot image color and
faint light at the same time. First, lets take a closer look at the eye and the way it
is built.We will then discuss several important observing considerations and tech-
niques that affect the way the eye works and the way the brain perceives. These
factors include dark adaptation, the use of averted vision, light pollution, the con-
dition of both the physical organism (you) and the condition of the atmosphere.
The Eyes in the Dark
The operating principles of the eye are rather simple. A clear organic lens (the
cornea) focuses light entering the eye.This lens refracts light onto the retina,a pro-
jection surface at the back of the eye. The amount of light that reaches the retina
2
Figure 1.1. Anatomy
of the human eye.
is controlled by an involuntary muscle array called an “iris.” The iris opens and
closes the pupil, the center opening of the eye. The pupil dilates between a diam-
eter of anywhere between 1 and 8 millimeters. The wider the pupil can open, the
more light can enter.An involuntary reflex centered in the rearmost portion of the
brain controls the opening of the pupil. As ambient light levels decline, the brain
opens the pupil wider to allow more light to enter. This process of dark adapta-
tion requires time and care. If you step out of your home straight to the eyepiece
of a telescope aimed at a faint galaxy near the limit of the telescope’s reach, I
promise that you will not see it, even if the object is directly in the center of your
field of view. The most important step to take in preparing yourself to view the sky
is to allow you a proper opportunity to adapt to the dark. Your pupil will dilate to
near-maximum aperture (opening) within a few seconds. It will still require a con-
siderable amount of time for the eye to complete electrochemical changes that will
occur in the retina. Successfully completing this requires removing yourself from
any bright light source for a minimum of thirty minutes before any serious observ-
ing can begin. Take extra care to avoid any exposure to light ranging from white
to the higher energy end of the spectrum (toward blue). Avoiding all extraneous
light is better yet.Over the first fifteen minutes,your eyes will gain nearly two mag-
nitudes in sensitivity. By thirty minutes, your eyes are nearly fully dark-adapted.
Although the eyes will grow slightly more sensitive over the next ninety minutes,
the huge majority of your dark-adaptation is completed within that first half-hour.
If you must use a light, always make sure that it is red. The eye is least sensitive to
the lower energy, longer wavelengths of red light. This is not to suggest that any
light is a good thing at all, but if you must use one, keep it red. You can purchase
a quality red lens flashlight through many astronomy warehouses or pilot supply
shops (pilots must also take care to dark adapt before flying at night).Any exposure
to white light will spoil your dark-adaptation almost instantly. You will then have
to start over again.
Once your night vision is fully adapted, you are ready to make maximum use of
your eyes. Take a look at the changes in the night sky. Now that you can see stars
that are only one-sixth as bright as when you started, the sky looks a lot more
crowded than it did just thirty minutes ago. How many stars can you actually see?
There are some 6,000 stars in the sky that are brighter than the naked-eye limit of
magnitude 6.0. The most sharp-eyed observer might be able to see to magnitude
6.5 if there is no light pollution present.A good test of both the acuity of your dark
vision and the transparency of your sky is to count the stars within the Great
Square of Pegasus.This asterism is visible during late summer,fall and early winter
in the northern hemisphere nearly directly overhead. Later in this chapter we’ll
give you the details of a simple naked-eye observing project to use this area of sky
as a test-bed to check the darkness of your sky and sharpness of your night vision
and preparation.
If you are disappointed with your results, try this little trick. Look slightly away
from the observing target. Move the center of your gaze off to the east or west of
the Great Square.Keep your attention centered on the contents of the Great Square.
How many more stars leap into view now? The reason why is because of the con-
struction of the retina. Your retina is composed of two different types of photor-
eceptive cells. The type of cell that dominates the center of the retina are called
“cones.” These cells are not very common among other species. They have the
The Integrated Observing System. Part I: Your Eyes 3
Human Vision and the Night Sky
unique ability to perceive color. The signals transmitted by the cone cells are then
transmitted via the optic nerve and assembled into a complete image in the brain.
These cells do have one important weakness however. They require a substantial
amount of light energy to stimulate the photochemical reaction within them. The
faint light generated by stars and other deep-sky phenomena usually are not up to
the job of firing the cones. As a result of this, turning to look at a faint object in
the corner of your vision will often cause it to disappear altogether. To see faint
objects, one must use a different type of photoreceptor.
The cells that make up the outer 80% of the retina are different both in shape
and character from the cones. These cells, called“rods,”are designed to detect very
faint levels of light. They cannot however see in color. The rod cells see only in
gray; the average viewer can detect approximately forty different shades.To see the
faintest objects in the sky, it is critical to use the rods effectively. When striving to
detect the faintest objects by looking straight at them, you are focusing that object
on the cones of the retina. If there is not enough light to stimulate the cones, you
will never detect the object.By directing your gaze slightly off to the side,you allow
the light of the object to fall on the rods where you are far more likely to detect
the object. This technique is called averted vision and is a crucial skill to be mas-
tered. It is, unfortunately, counterintuitive. That is to say, it is a technique that goes
against everything that seems natural for you to do.Averted vision requires a great
deal of practice.An experienced observer, hunting down a faint galaxy, never looks
at anything straight on.
Light Pollution
A composite photograph of Earth’s surface at night taken from space shows the
alarming spread of surface lighting at night. The east coast of the United States is
clearly recognizable in any wide-angle picture of the planet at night. The problem
is that most of this light goes to waste. Instead of shining down on the ground to
illuminate our streets at night, they instead scatter huge amounts of light into the
night sky.This is what astronomers call“light pollution.”Light pollution is no good
for anybody. It wastes uncountable billions of dollars per year in electricity, scat-
ters unwanted light in the eyes of drivers and ruins the natural beauty of the night
sky. In urban inner cities, so much light from unshielded high-pressure sodium
streetlights is scattered into the sky that only the brightest stars and planets can
be seen. I remember one particularly horrid night in New York where despite a
clear sky and unrestricted visibility, I found the limiting visual magnitude to be
just slightly better than +2.0. I could barely make out Polaris to the north, but
Zubenelgenubi (the brightest star in Libra, magnitude +2.8) could not be seen at
all. The sky that night in Flushing Meadow resembled the view one might have
from inside a milk bottle. It did not help on that late August night that the U.S.
Open tennis tournament was being played to my south while the bright lights of
Shea Stadium flared not far to the north. The city skyline loomed brilliantly to the
west and the lights of suburban Long Island soared the view to the east. That is
the horror of light pollution at its very worst. Unless you’re content with views of
the planets and their brightest moons, a view from the city will surely spoil
4
anyone’s enthusiasm for astronomy.In urban areas,this background sky glow from
city lights is brighter than the stars trying to shine through it. When this is the
case, there’s no way for that object to shine through.
In some suburban communities, light pollution is being pushed back. Some
communities are replacing high-pressure sodium lights with low-pressure sodium.
These lights shine at wavelengths that are not quite as damaging as are high-
pressure lights. Many of these lights are also shielded so that the light they emit is
directed at the ground where it is needed, not into eyes of drivers or into the
evening sky. This can yield as much as two full magnitudes of improvement in the
transparency of the sky. Many communities have passed laws mandating the use
of lights that restrict sky glow, and recently the Massachusetts state legislature
passed a law mandating such measures for the entire state.2
The best solution
however for dealing with light pollution is to get away from it altogether. In many
areas, driving about an hour away from bright city lights will do wonders to clear
the view. Stars down to near the naked-eye threshold creep into view and the sky
turns a deep clear black except for one milky colored band that refuses to vanish.
It may take a city-based observer exposed to his first dark sky a moment or two
to realize what that glow is. When he does however, it becomes obvious why our
galaxy is named the “Milky Way.” If you are serious about astronomy, do whatever
it takes to find a good dark-sky site.No matter how good your eyes,your technique
and your equipment it will not do you a lick of good if the glory of the sky is hidden
behind streetlight glare. If you do not belong to one, now is the time to find a good
astronomy club. Nearly all clubs have a line on a good dark-sky site where their
members go to observe on a regular basis, scheduled or otherwise. For your tele-
scope, you may wish to consider a light-pollution rejection filter; but for your eyes,
there is no better way to deal with light pollution than to be rid of it.
Hypoxia and the Physical
Organism
As crucial as the condition of the sky is the physical condition of the observer. The
observer may have the perfect combination of sky conditions and observing tech-
nique yet is unable to see the faintest details of objects or see at all if he is betrayed
by his own physical condition. Two key contributors to the physical health and
efficiency of the eyes are adequate supplies of vitamin A and the ability to respi-
rate and metabolize oxygen. In any modern industrial society, vitamin A deficien-
cies are almost unheard of. Taking massive quantities of it will not give anyone
super-human vision and can in fact be harmful. Still, a healthy diet is a must for
good ocular health.
A greater factor that affects many people is the body’s ability to take in (respi-
rate),distribute and metabolize oxygen.The inability of the body to deliver oxygen
The Integrated Observing System. Part I: Your Eyes 5
2
In an unfortunate “mistake”, the state Senate “lost” the bill and failed to physically deliver it to Gov-
ernor Jean Smart for her signature. Since it went missing for more than ten days and the Legislature
was no longer in session, the promising legislation was accidentally “pocket vetoed” under the provi-
sions of the Massachusetts constitution. That’s politics!
Human Vision and the Night Sky
to the tissues is called “hypoxia.” Hypoxia can result from many potential factors.
The eyes are the most oxygen hungry organs in the body and their efficiency
rapidly deteriorates when an adequate supply of oxygen is not available. To make
matters worse, the first part of the eye to be affected by hypoxia is the rod cells of
the retina, the detectors of low-level light. Several potential factors can be involved
in determining how efficiently the body can distribute and metabolize oxygen.The
first such variable is the amount of oxygen available in the atmosphere. Hypoxia
caused by a lack of oxygen is called“hypoxic hypoxia.”At sea level,the partial pres-
sure of oxygen in the atmosphere is approximately 220 millibars. This amount of
oxygen is plenty for the body to use but in order to get the oxygen into the blood-
stream; it must be forced through the walls of the aveoli. This is done by ambient
air pressure, which at sea level is approximately 1,013 millibars (29.92 inches Hg).
As you climb higher in the atmosphere,the ratio of oxygen to other gasses remains
the same.3
But the pressure of the air falls off dramatically with increasing altitude.
This is of interest to us because many astronomers seek to flee the effects of light
pollution and weather by climbing the mountains. Today, many of the world’s
premier observatories are on extremely high mountaintops ranging 14,000 feet or
higher above sea level.At this altitude, the partial pressure of oxygen in the atmos-
phere is only 130 millibars. This is only about 60% of what was available at sea
level. From this, you might initially assume that you are getting only 60% of your
sea level efficiency from your lungs. This assumption falls flat when you stop to
consider that the total air pressure at 14,000 feet is only 600 millibars. That means
not only is there less oxygen to breathe but the efficiency of the body in deliver-
ing that oxygen to the blood is greatly impaired. The eyes will be among the first
of the body’s users of oxygen to feel the effects as the rods begin to fail due to
oxygen deprivation. The key to preventing this if you climb the mountains to see
the stars is to breathe supplemental oxygen. But what if you’re not going to Mauna
Kea to observe? At what altitude should one consider this step? A lot lower than
you might think. The Federal Aviation Administration’s guidelines for pilots seems
to be a good reference since the eyes are affected so early and night vision in par-
ticular is affected. Pilots are not required to begin using oxygen until they are
higher than 12,500 feet after thirty continuous minutes but because of the detri-
mental effects of hypoxia on night vision the FAA strongly recommends that
oxygen be used at night any time operating above 5,000 feet. If it works for pilots,
it will work for you.
Even while observing at sea level, hypoxia symptoms can become an impedi-
ment to good night vision due to several potential factors. Anything that comes
between an oxygen molecule and the cells of the body can cause hypoxia. Hypoxia
can affect you even though plenty of oxygen is available. If you are in poor car-
diovascular health, your night vision will suffer from effects very similar to those
induced by high altitude. If the heart does not circulate blood adequately, the
oxygen cannot reach the tissues with the speed the body demands resulting in what
is called stagnant hypoxia. Though the cause is different the result is very much
6
3
The atmosphere is about 78% nitrogen, 21% oxygen with the last 1% divided up between carbon
dioxide,water vapor and other noble gasses.Water vapor can,during extremely humid conditions,make
up more than 4% of the atmosphere.
the same.The heart does not pump the blood at an adequate rate to keep the tissues
of the body oxygenated and night vision begins to suffer. A hypoxic reaction can
also be induced by poor hematological health. Anemic hypoxia is caused by the
inability of the red blood cells to absorb and transport oxygen even though oxygen
itself may be plentiful. Sickle cell anemia, a condition that primarily occurs in
African-American males, is a leading cause of this. The rest of us should be aware
that many other forms of anemia exist that are not so racially discriminatory.
Anemia can also be induced by poor diet. You can also induce hypoxic symptoms
yourself by taking certain substances into your own body.Alcohol and many drugs
can reduce the ability of the red blood cells to carry oxygen, a form of hypoxia
called histotoxic hypoxia.
The health of the eye itself is critical as well. Many individuals suffer from some
form of ocular pathology. The most common include myopia (near-sightedness),
presbyopia (far-sightedness) and astigmatism. Myopia often occurs at a fairly
young age (I began wearing glasses at age 9). It is caused by a misshaped cornea,
which causes light from distant objects to come to focus prior to reaching the
retina. The result is badly distorted images of distant objects. The problem is easily
corrected by using corrective lenses such as glasses or contact lenses which induce
a focusing error in the light path that is exactly the opposite of that created by the
flawed cornea.The result is a properly focused image.Presbyopia commonly affects
older individuals. As the eyes age, the cornea begins to become rigid and less
flexible. This causes the eye to have difficulty focusing on objects that are relatively
close. The cure is the same as for myopia: corrective lenses that eliminate the fault
by introducing an equal and opposite error. Astigmatism is a somewhat more
difficult and complex problem for ophthalmologists to deal with.Astigmatism is a
flaw in the cornea that causes images to appear distorted, even though they are
well focused. A properly focused star appears as a perfect pinpoint of light while
the same star might appear to have a “diffraction spike” radiating from it when
viewed through an astigmatic eye. Correcting the flaw using contact lenses is par-
ticularly difficult and most users with severe astigmatisms must use eyeglasses to
correct them. This is particularly painful at the eyepiece of the telescope and even
more so during astrophotography. The telescope and camera see and focus at
“20/20”4
. In order to properly focus them, you must also see 20/20. Glasses make
seeing through a camera or telescope particularly awkward.Most astronomers who
need eye correction prefer to use contact lenses.
Many people are taking action today to repair eyesight damaged by age or genet-
ics. Surgical fixes for eye problems have been with us for many years. The first such
procedure for correcting bad eyesight was called “radial keratotomy.” This surgi-
cal procedure involved slicing the cornea, pizza style with a scalpel and refiguring
it into the proper shape. Radial keratotomy did work but often resulted in heavy
scarring and if the results were not perfect, it could not be reversed, changed or
performed again. Another technique that enjoyed some popularity in the early
1990s was “orthokeratology.” Orthokeratology involved the use of special hard
The Integrated Observing System. Part I: Your Eyes 7
4
The first number tells how close the viewer must be to an object to focus on it. The second number
refers to the distance that a person with normal vision can focus on the object. The larger the second
number is, the more near-sighted you are.
Human Vision and the Night Sky
contact lenses that functioned in a way not unlike a dental retainer. These lenses
over time reshape the cornea, gradually forcing it toward the proper shape. The
user would regularly change to a new set of lenses that would continue to refine
the correction until it is completed. The corrective process takes about six months.
Once 20/20 vision was restored, the patient would continue to periodically wear
contact lenses to maintain the shape of his corneas. The advantages of this proce-
dure were obvious in that no surgery was necessary and no scarring ever took
place. If it did not work, the effects were completely reversible. The disadvantages
were that if the user stopped using his retainer lenses, the eyes would eventually
return to their original flawed state.
The technique most favored today is called “laser keratotomy.” In laser kerato-
tomy a scalpel is used only to make an initial slot in the cornea. The slot allows the
lens to relax while a precision laser figures the lens to the correct shape. Like in
other forms of keratotomy, the effects are irreversible so if you are unhappy with
the outcome, too bad. Unlike traditional surgery, there is no scarring and recovery
time is quick.Usually the patient is out of the office within an hour and seeing nor-
mally within two or three days without optical aid. Some surgeons are now per-
forming newer forms of the surgery without using any blades at all. There is one
important drawback to laser keratotomy. Current Food and Drug Administration
rules limit the scope of the surgery to the inner 6-millimeter radius from the pupil
center.The problem is if you are one of those people who have a very wide opening
pupil after dark adaptation.If the pupil can open wider than the surgically repaired
area of the cornea, the result can be severely distorted night vision. One common
effect is “haloing” of bright lights. Your vision is normal in the center but as light
travels across the non-repaired outer cornea into the eye, the fringes of lights
become distorted and create halos around the light source. As an amateur
astronomer and a pilot, my night vision is crucial to both my livelihood and my
hobby. Because of this, I have decided for myself to forgo any surgery or other
vision correction until the medical procedure evolves further. Contact lenses do an
adequate job for my near-sightedness, and evolving technology has finally created
a contact lens that corrects my particular astigmatism.
The Restless Atmosphere
Despite the fact that its relatively paltry 94-inch primary mirror is dwarfed by mon-
strous telescopes on Earth that now are more than four times larger, the best
images in astronomy still come from the Hubble Space Telescope. The hulking
monsters on Mauna Kea measure from the 8-meter Subaru telescope to the 10-
meter Keck twins. These incredibly powerful instruments are still only second best
to Hubble.
The reason why is because these Earth-based monsters must deal with an
impediment that Hubble does not.They must peer through Earth’s relentlessly tur-
bulent atmosphere. The layer of gases that surrounds the planet and makes life
possible here is a major obstacle to a clear view of the stars.The atmosphere’s gases
distort and disrupt starlight as it passes through and in fact completely block out
large segments of the spectrum, particularly in the ultraviolet range. The atmos-
8
phere also disrupts the view by continually moving, expanding and contracting in
response to changing weather and heating patterns. The more turbulent the air
becomes, the more difficult it will be to gain a quality view of the sky. The level of
quality of the view is what astronomers call seeing.When there is good seeing, the
air is still and calm. The stars do not appear to twinkle, but burn steady and
unchanging. These are the nights that serious amateurs live for.When the stars do
twinkle, it may inspire classic poetry and children’s songs, but it is the bane of the
astronomer’s existence. All telescopes can do under these conditions is magnify
the twinkle of the stars into a bigger brighter blur.
Astronomical seeing is almost entirely a function of atmospheric stability. In
meteorology, stability refers to the tendency of a sample of air to rise when it is
lifted.Air that wants to rise is considered to be unstable.Air can be induced to rise
by heating it from below, by flowing up a mountain,or by a colder,heavier air mass
burrowing underneath. A simple measure taken by meteorologists accurately
determines the stability of the air. Adiabatic lapse rate is the measure of how fast
the air temperature falls with increasing altitude. The faster the air cools, the more
unstable it is. These values are then compared against those of the International
Standard Atmosphere (ISA)5
. If the temperature is cooling faster than ISA calls for
with increasing altitude, the air is considered to be unstable. The rising air cur-
rents climb into the higher altitudes,cool off,then sink back.This churning motion
in the atmosphere, combined with the changing density of moving air masses, dis-
torts the light of the stars passing through it resulting in blurred planets and twin-
kling stars. If the lapse rate is less than that suggested by ISA, then there will be
only minimum motion in the air.Better yet is if the air grows warmer with increas-
ing altitude, causing warm light air to sit atop cold heavy air. These conditions lead
to great stability in the atmosphere. Heavy on bottom and light on top means
everything wants to stay put. These are the nights that astronomers live for. Get
that scope out, but do it fast because if adequate moisture is available, this type of
weather condition will eventually give rise to fog.
The sky gives valuable visual clues during the day that tip you as to what kind
of conditions to expect after sunset. Rising air releases moisture as it cools to the
dew point and makes clouds. If the clouds lie low and flat with no vertical devel-
opment (stratiform), that means the air in which they are created is stable. When
the sun sets and fair weather clouds dissipate, the seeing will be good. If the clouds
are puffy and billow high into the sky (cumuliform), then the air that built them
is rising and the air mass is unstable. This will resort in distorted seeing and
reduced optical performance. What is deceptive is that the rapidly circulating air
gives rise to a sky that will have extraordinary clarity at night, fooling one into
thinking that it is going to be a great night for observing. In fact, the nights with
the best seeing just might be those nights where there is just the tiniest bit of haze
in the air. Lack of motion in the atmosphere allows the haze to hang around.
Overall there is not much you can do about the condition of the atmosphere except
to wait it out. If you keep looking at your target long enough, there will inevitably
The Integrated Observing System. Part I: Your Eyes 9
5
ISA is defined as a sea level temperature of 15°C and a pressure of 29.92″Hg. Temperature declines
by 2°C and pressure by 1.06″Hg initially per 1,000′ of altitude gain. Temperature levels off and reverses
trend at 36,000′. Pressure continues to decline by approximately 3.2% per 1,000′.
Human Vision and the Night Sky
come that split second where all is calm and the image is perfect. In that magical
instant, subtle details of the planets leap into view, faint stellar companions wink
at you and spiral arms and nebular wisps suddenly appear. Then the air churns
again and they all vanish again in the instability. It is easy to get frustrated after
waiting for a long time to see those Jovian cloud bands, but the wait will be worth
it. That magical instant where all is calm is what the serious amateur astronomer
waits all night for.
Observing Projects I – Putting the
Eyes to Work
Observing Project 1A – Pressing the
Dawes Limit
Some of the most enjoyable sights in astronomy are those you can see without a
telescope. There are many objects and phenomena in the sky that are both beau-
tiful to see and test the ability of the observer to push his or her eyes to their limits.
In this next section, we’ll take a look at some of these and find out just how good
you are.
An oncoming car has two headlights. If the car were to back away from you,
those headlights would appear to move closer together with increasing distance.
Eventually the lights would become so close together that it would become
impossible for you to separate them from each other and they would merge into a
single point of light. The minimum angular distance between two light sources
at which you can still distinguish two lights is called the Dawes limit. The
ancient American Indians used to test the visual acuity of their children by
having them look at a star and see if they could tell if there was only one or maybe
more.
A favorite target used for this test is the star at the bend in the handle of the Big
Dipper. The star is named Mizar and at first glance appears to be a rather ordinary
star, shining bluish-white at magnitude +2.2. If your eyes are good, you may detect
that Mizar is not alone, but has a companion nearby. Shining about 12 arc minutes6
to Mizar’s northwest is a fainter star that is nearly lost in Mizar’s glow. The star is
called Alcor and shines at magnitude +4.0.Splitting Mizar and Alcor is a very tough
challenge, especially if your sky is light polluted, which may make seeing Alcor
difficult under any circumstances. Though these two stars appear to be a pair, in
fact Alcor lies more than three light years farther in the background than Mizar
does. Mizar is about 78 light years distant while Alcor is just over 81 light years
distant. The two stars only appear to be close together, but in fact this system is
not a double star at all. Each one is independent. Mizar in actuality is a double star
by itself. Its partner is easily visible in any telescope shining about 14 arc seconds
to Mizar’s southwest at magnitude 3.9. If your eyes are sharp enough to split Mizar
10
6
One arc minute equals 1/60th of one degree.A degree is divided into 60 minutes. Each minute in turn
is divided into 60 seconds, just as it is on a clock.
and Alcor,you’re ready to try and take on more difficult challenges.Twelve minutes
is tough under any circumstances.Can you split a pair of stars right near the Dawes
limit? If you can manage Mizar and Alcor, then move southward to Libra and try
to split Zubenelgenubi. The brightest point of light in the constellation Libra glim-
mers at magnitude 2.7 and is also a pair of stars. Zubenelgenubi is much tougher
to split than is the Mizar and Alcor pair. The stars are much closer together, only
about 230 arc seconds apart, not far above the Dawes limit for the unaided eye.
The secondary star is also much fainter than is Alcor, shining at only magnitude
+5.1. The brighter component shines so much brighter that it can drown out the
fainter star in its glare. Unless your sky is fairly dark, spotting the companion will
be very difficult. Splitting close double stars near the limit of the resolution of your
observing instrument requires time and patience. It does not matter whether you
are using the human eye or the mighty Keck reflectors, when you are working at
the limits of your equipment, you need to wait for just that right moment when
the eye is relaxed and the air is still for just that one precious second.
Observing Project 1B – Deep Sky Visual
Acuity (Stellar Objects)
Riding high in the winter sky is the beautiful open star cluster called the Pleiades,
listed in the Messier catalog as M45. The cluster, also known as the “seven sisters,”
is so named for the seven fairly bright stars that can be discerned within the hazy
patch of light. The cluster itself shines with an overall brightness of about magni-
tude +1.5. These are relatively newborn stars, just recently born from the stellar
womb (though the gas that surrounds them is not part of the cloud from which
the stars formed). The stars are surrounded by a bluish glow that consists of inter-
stellar dust and gas interacting with the stars. The stars and gas glow together to
form one of the deep sky’s most beautiful jewels and by far the brightest object in
Charles Messier’s legendary catalog. It also makes yet another ideal testing ground
for your night visual acuity. How many of the seven sisters can you actually see?
The brightest member of the cluster is Alcyone, a young blue-white star shining at
The Integrated Observing System. Part I: Your Eyes 11
Figure 1.2. M45 at
the upper right of the
totally eclipsed Moon.
Twelve members are
visible. 35mm SLR
piggybacked on a
Celestron Super C8
Plus.
Human Vision and the Night Sky
magnitude +2.8. Atlas is the star farthest to the east shining at magnitude +3.6.
Working to the west,Merope is magnitude +4.1,Maia shines at magnitude +3.8 and
Electra is magnitude +3.6. These five are the only ones that I have been able to see
from my northern New Jersey home. There are four other stars, Taygeta at magni-
tude +4.3, Pleione at magnitude +5.0, Celaento at magnitude +5.5 and Asterope at
magnitude +5.8 that are visible to the unaided eye in dark conditions, but I have
never been able to detect them without binoculars. Through binoculars, the
Pleiades will number more than a dozen stars.A telescope will reveal yet even more
within the hazy bluish white patch of light. How many can you find with the
unaided eye? If you can find more than four members, then your eyesight is most
keen and your sky fairly transparent. If you can bag seven, then you are seeing to
magnitude 5.5 and your sky is extremely dark. If you can see Asterope, then you
should consider having astronomy club meetings where you live, for your eyes and
sky are good for seeing clear down to the naked-eye limit.
Observing Project 1C – The Light
Pollution Census
A great test of the darkness of your sky that we alluded to earlier in this chapter
is to do a census of the Great Square of Pegasus.How many stars can you see within
the Square? If you can count only two, you are seeing to only magnitude +4.4.
Picking up four stars takes you to magnitude +5.0. There are a total of eight stars
brighter than magnitude +5.5 and if you can count as many as 16, you are seeing
to magnitude +6.0. If you have extremely good night vision and a very dark sky,
you might be able to see to magnitude +6.5 in which case you may count as many
as 35 stars within the square.The Great Square makes a great test because it is most
prominent in the sky during late autumn and winter. During this time of year, the
atmosphere is normally very stable because the ground cools very rapidly at night
and chills the air close to the ground. This has the effect of greatly diminishing the
12
Figure 1.3. Great
Square of Pegasus mag
6.5. Graphic created
by author with Redshift
4.
temperature lapse rate and lends great stability to the lower atmosphere. With
stable conditions prevailing on many nights, use the Great Square of Pegasus to
judge the darkness of your autumn sky and the sharpness of your eyes.Count care-
fully, be discriminating and above all, be honest with yourself. Remember you are
doing a serious scientific project and you must take great care not to let your desire
to prove how clear your sky is interfere with an honest and objective result. How
many stars can you see in the square?
Observing Project 1D – Deep Sky Visual
Acuity (Non-Stellar Objects)
Stars are fairly easy to make out because all of their luminosity is concentrated into
a nearly immeasurable point of light. Try to imagine how much more difficult it
would be to see if the total light were to be spread out over several square degrees.
Such is the case with deep sky objects such as nebulas, star clusters and galaxies.
That is what we will test with this next drill.How many objects in Charles Messier’s
famous catalog can you find with the unaided eye? Messier was a comet hunter in
eighteenth century France. To aid his fellow comet hunters and him, Messier set
out to catalog all the objects in the sky, which could easily be mistaken for comets.
By the time he was finished,he had logged and listed over one-hundred of the deep
sky’s grandest wonders. In this project, we will attempt to see how many of these
we can find without optical aid. Most are well below the threshold required for
naked-eye visibility, but some can be seen easily from any location. The open star
cluster M45, which we explored earlier, is the brightest single object in the catalog
at total magnitude +1.5. This light is scattered across more than 6 square degrees
of sky, making the overall brightness seem much fainter than the number would
suggest. Magnitude estimates of an object’s brightness in astronomy are measures
of total light. The more the total light is spread out, the lower the overall surface
brightness becomes. To simulate this effect, pour some sugar out on a table and
concentrate the grains as tightly as you can. Now see the difference in apparent
brightness when the sugar grains are spread out over a wide area.There is the same
amount of sugar crystals just as a 1.5 magnitude star produces the same number
of photons as the Pleiades cluster. The light of the star is much more concentrated,
therefore it appears much brighter because it is concentrated into one single point.
Check out the Messier catalog list printed at the back of this book in Appendix
A. How many of the objects brighter than magnitude six can you see? To the south
of M45 in the winter sky is the bright emission nebula (“bright” is both an adjec-
tive and a technical classification of this object) M42. The Great Orion Nebula
hangs from the belt of mighty Orion the hunter. The glowing gas cloud shines at
magnitude +2.5 and cannot be mistaken for any other object in the sky. This show-
piece of the heavens is located nearly on the celestial equator and thus visible to
astronomers all over the world. Over to the northwest, try for the Andromeda
Galaxy (M31). Andromeda shines at only magnitude +4.6 and that light is spread
over a wide area of sky.Andromeda measures about 1.8 degrees long by 29 minutes
wide.This is about the area covered by three full moons.Under moderate light pol-
lution conditions, you might not be able to see it at all without binoculars. Finding
The Integrated Observing System. Part I: Your Eyes 13
Human Vision and the Night Sky
Andromeda is deeply satisfying for many amateurs for it represents the farthest
place you can possibly see with the unaided eye. Remember that averted vision!
Star clusters make inviting targets in the summer sky. Here are three globular
clusters brighter than magnitude 6. In Hercules, try M13 at magnitude +5.8. This
cluster will require a dark sky and a good eye, but it is distinguishable covering a
span of about 17 arc minutes. Through a telescope, M13 is the grandest globular
cluster in the northern sky, but is a great test for the unaided eye. To the south is
the globular cluster M4, near Antares in Scorpio. Though it lists as slightly brighter
than M13 at magnitude +5.6, its light is spread out over a wider area making it
more difficult to see. In addition, M4 never gets very high above the horizon for
northern hemisphere viewers, unlike M13, which sails nearly overhead during
summer nights. Riding a little higher in the sky to the northwest of M4 in the con-
stellation Serpens is the globular cluster M5. Also listed at magnitude +5.6, it is
somewhat more compact than M4 making viewing a little easier. Still both of these
clusters represent challenges even in a dark sky. In the southern hemisphere are
two of the skies grandest jewels, the globular clusters 47 Tucanae and Omega Cen-
tauri.Both of these monster globulars are easily visible to the unaided eye and out-
shine any cluster in the north. Because they are only visible from the southern
hemisphere, Messier could never add them to his catalog.
Open star clusters can be even more difficult because they do not have the bright
cores that characterize globulars. Still there are some that you can hunt down
without any optical aid. Next to M45, the sky’s next brightest open cluster is called
Praesepe in Cancer. Also known as the “Beehive Cluster” it is listed as M44 in the
Messier catalog. The cluster lists at magnitude +3.5, but the light is scattered over
more than a full degree of sky. A tighter grouping lies near the tail of Scorpius
called M6.This open cluster near the Scorpion’s tail is only 21 minutes across,about
the size of many globulars and its total light measures magnitude +4.6. M6 has a
nearby partner called M7. This open cluster lists more than a full magnitude
brighter at +3.3 but it covers more than four times as much sky so the two clus-
ters appear to have a very similar surface brightness.
The Messier catalog offers a treasure trove of deep-sky wonders. How many can
you find on your own? If you can find ten, you’ve got a great sky and keen eyes.
Observing Project 1E – The Sixth Naked-Eye
Planet: Uranus
In the late eighteenth century, William Herschel was scanning the skies from his
observatory looking for comets when he chanced upon a sixth-magnitude star that
his charts did not show. After observing the object for several nights it appeared
to move across the sky in a slow but steady eastward motion. Herschel though he
had discovered a new comet. But further observations yielded even more startling
results.The object was moving in an orbit that was not very comet-like.The object’s
orbit appeared to be circular,like that of a planet and not the highly elongated path
followed by a comet. The object also seemed to exhibit more of a planet-like
appearance, without the fuzzy coma characteristic of comets and it had no tail to
be seen at all. After several weeks of careful research, Herschel stunned the world
14
by announcing the discovery of his new planet. Astronomers around the world
raced to their telescopes to see the new wonder of the solar system. Many modern
names were floated for the new world, including “Herschel” for its discoverer and
“Georgian Star”for Britain’s King George III,but the name that stuck was“Uranus,”
the mythical father of Saturn and grandfather of Jupiter.
Uranus’ discovery was historic, for the solar system had its first ever new
member. The new world measured in at 29,000 miles in diameter, about the size of
three and one-half Earth’s. Uranus for most of its history was considered to be a
gas giant much like Jupiter and Saturn, consisting mainly of gaseous hydrogen and
helium. The Voyager 2 flyby in 1986 changed all that. It showed the planet to be
substantially different from the first two Jovian worlds in that it was made up of
large quantities of ices, thus earning the new moniker “ice giant.” Neptune also
turned out to be more like Uranus after Voyager 2’s 1989 flyby of that planet.
Though Herschel needed a telescope and a lot of good luck to find Uranus, all
you need is that dark sky, good eyes and a star chart to find the seventh planet
from the sun. The planet generally shines at magnitude +5.8, placing it just above
the threshold for naked-eye visibility. Finding it among the other 6,000 points of
light in the sky magnitude six or brighter is an intimidating challenge. Popular
astronomy magazines such as Sky & Telescope or Astronomy will print charts annu-
ally, showing the location and path of Uranus through the evening sky for the year.
To find such a faint nondescript object, work to become intimately familiar with
the sky in that area.That way,anything that appears unusual will immediately jump
out at you. As you carefully scan that area of sky on a nightly basis, you will see
one of the faintest objects in the area move slightly.The motion is normally towards
the east, but as Earth overtakes Uranus in its orbit each year, our point of view
causes the illusion called retrograde motion. The planet appears to stop in its path
and then begin to track backwards towards the west for several months before
resuming normal motion again. In the darkest of skies, the planet may also
betray its true green color, but for most of us it will just appear to be its normal
shade of gray.
The Integrated Observing System. Part I: Your Eyes 15
Figure 1.4. A speck
in the darkness:
Uranus. Celestron
Super C8 Plus and
Meade Pictor 216 XT
at f/10. Photograph by
author.
Human Vision and the Night Sky
Observing Project 1F – The Very Young Moon
Each month as the Moon swings around Earth in its orbit it passes between Earth
and the Sun (most of the time slightly above or below it). As the Moon passes this
position it reemerges into the evening sky as a crescent, which grows fatter each
night, as the Moon appears to move farther away from the Sun in the sky. In this
project we will attempt to determine how soon after new moon can you first detect
the crescent.
There are several factors that improve or degrade your prospects for success in
this project.The most important variable is the angle that the ecliptic makes against
the sky.The ecliptic is the imaginary projection of the plane of Earth’s orbit against
the celestial sphere. All the planets and our Moon orbit in a path around the Sun
that always remains on or close to the ecliptic. Since the Moon never strays far
from this line, the angle the ecliptic makes with the horizon is vital to your observ-
ing prospects.An object can be very close to the Sun and yet be easily visible if the
ecliptic makes a steep angle with the horizon. At other times, the object can be
twice as far from the Sun and yet be nearly invisible if the ecliptic makes a shallow
angle with the Sun. The best time to try and bag a very young moon is during the
months of February, March and April. During these months, the ecliptic makes its
steepest angle with respect to the horizon because Earth’s north pole is tipped so
that it is pointing behind the planet with respect to its orbital path. Solar system
objects close to the Sun appear to stand almost directly above it at sunset. During
August, September and October the reverse situation occurs when Earth’s north
pole leads in our orbit and the ecliptic appears to lie almost flat with respect to the
western horizon at sunset. The reverse of this relationship occurs if you are trying
to locate objects at sunrise. The most favorable months are August, September and
October while the late winter and early spring months present poor viewing geom-
etry at dawn. These relationships are also inverted if you are reading in the south-
ern hemisphere.
Any good astronomy publication will tell you not just the day when new moon
occurs but in fact the precise moment of new moon, usually in Universal Time. If
the moon is new precisely at the time of your local sunset, you will have the oppor-
tunity to view a twenty-four hour old moon at sunset the next night. On nights
where the viewing geometry is favorable, go out and find a spot with a clear view
of the western horizon. Note the spot where the Sun sets and about thirty minutes
later look about one fist-width (an average person’s fist at arm’s length subtends
an angle of about 10 degrees) above the sunset point or slightly to the south. A
twenty-four hour old moon should be fairly easy to spot, showing a hairline cres-
cent hanging in an almost ghostly fashion just above the western horizon. Most
people will not notice the moon until the next night. The extremely thin crescent,
just 7% illuminated and only 11 degrees from the Sun, can be very difficult if any
haze exists and makes for a good observing challenge.
Once you’ve succeeded at this, try an even younger moon. At twenty hours, the
moon is barely 6% illuminated. The youngest crescent that anyone has reportedly
sighted with the unaided eye (that can be verified) was only fourteen hours old.At
that age the Moon is only about 6 degrees east of the Sun and is only 4% illumi-
nated. Such a feat requires a very clear sky, perfect eyesight and viewing technique
and a good shot of good luck. Can you do it? Check your ephemeris for next
month’s new moon and see if you can give it a try.
16
Observing Project 1G – Elusive Mercury
We all learned in grade school that there are five classic planets visible to the
unaided eye.Venus and Jupiter flare brilliantly in the night sky and are unmistak-
able. Saturn also shines brightly and prominently all night long when favorably
placed. Mars is unique with its orange-red glow. All of these planets shine high in
a dark sky when favorably placed and require no effort to find. Poor Mercury is
left to suffer in anonymity, spinning around the Sun at breakneck speed complet-
ing a circuit every eighty-eight days. As it passes between Earth and Sun (inferior
conjunction) it enters the morning sky for several weeks, then passes behind the
Sun (superior conjunction) and enters the evening sky. The period of visibility
when the planet is in the morning or evening sky is referred to as an apparition.
The planet will remain in the morning or evening sky for seven to nine weeks at
a time depending on its distance from the Sun. The planet however will only be
visible for a fraction of the time, for two to three weeks with the unaided eye while
it is farthest from the Sun and reasonably bright.
Observers wishing to sight Mercury must learn to deal with two important con-
tradictions. First is the assumption that Mercury must be easiest to see when it
ranges farthest from the Sun. Mercury orbits the Sun in a path that has a greater
eccentricity (deviation from circular) than any other planet besides Pluto. This
causes the planet at some apparitions to roam much farther from the Sun than at
others. As a result when Mercury reaches its greatest elongation (farthest angular
distance from the Sun for a particular apparition) at the same time it is closest to
the Sun (perihelion), it never strays more than 18 degrees from the Sun. If Mercury
reaches greatest elongation at the time of its aphelion (farthest from the Sun)
it can appear as far as 28 degrees from the Sun. Northern hemisphere observers
are at an unfortunate disadvantage. The problem is that when Mercury reaches
greatest elongation at aphelion, it is always at a time when viewing geometry
is at its most unfavorable. Greatest elongations when viewing geometry is most
favorable occur only with Mercury near perihelion. As a result, when Mercury
wanders farthest from the Sun, the ecliptic lies flat with respect to the horizon
and the planet is buried in the glare of twilight. When Mercury sticks close to the
Sun, the viewing angle is at its best. This is the best time to look for the elusive
innermost planet even though it is much closer to the Sun than it would other-
wise be.
The second contradiction is that it is best to look for Mercury between the time
of greatest elongation and inferior conjunction (in an evening apparition, in a
morning apparition inferior conjunction comes first). This is when the planet is
closest to Earth and therefore should be at its brightest. In fact, nothing could pos-
sibly be farther from the truth. Mercury is a unique object in all the cosmos in that
it is the only celestial body that grows fainter as it draws closer! No other body in
the universe does this. No other body changes brightness through such a range as
Mercury either. Mercury is actually at its brightest (magnitude −2.0, brighter than
Sirius) when it is near superior conjunction, when it is farthest from Earth. As it
draws nearer to Earth, it fades to magnitude zero by greatest elongation. Over the
next two weeks as it nears its closest point to Earth,it completely fades out of sight,
growing as faint as magnitude +4.6 just before inferior conjunction. We’ll discuss
this remarkable aspect of Mercury’s behavior a little later on when we look at it
through the telescope.
The Integrated Observing System. Part I: Your Eyes 17
Human Vision and the Night Sky
Finding the planet is a simple matter of knowing exactly where to look and then
being there at the right time. Trying to find the planet too soon after sunset will
cause frustration because the sky is still too bright. Waiting too long will cause
Mercury to sink too low to the horizon. The best time to look is during the time
period starting about seven to ten days before greatest elongation in the evening
sky or during the same period after greatest elongation in the morning sky. Begin
looking about thirty minutes after sunset.During times of favorable viewing geom-
etry, look just above and a little to the south of the sunset or sunrise point. As the
pink sunset sky fades to deep blue, pinkish Mercury will appear. During this time,
the planet will be shining at brighter than magnitude zero and will stand out nicely.
During an evening apparition the planet will quickly retreat to the horizon and is
lost within the next half-hour. If you are observing in the morning sky, see how
long you can keep Mercury in sight as dawn approaches. The planet is at magni-
tude zero at greatest elongation but about two weeks later, you should be able to
see it as bright as magnitude −1.0. This should be bright enough to allow any
observer to track the planet until sunrise.
When you succeed, you will join a rather exclusive club. Everyone on Earth has
seen the four other bright planets, but not one person in a thousand has con-
sciously looked at Mercury and realized what it is. Now with our eyes well trained
and exercised, let’s begin the work of assembling the equipment needed to com-
plete the integrated observing system.
18
CHAPTER TWO
After spending my childhood and teen years observing under bright city or sub-
urban lights with a small-aperture department store refractor telescope, I entered
my college years with the dream of a larger instrument that would bring the deep
sky into view for me. The two-inch Tasco refractor served its purpose well for
showing the visible planets, Moon, and Sun. Seeing the deep sky beyond the solar
system, the outer planets, faint comets, or the asteroid belt’s largest denizens was
hopelessly beyond my department store telescope’s limited reach. As I began to
search among the various manufacturers, the vast number of choices available
rapidly overwhelmed me. Should I consider another refractor or a reflector? If I
were to choose a reflector, what type should it be? What I decided to do was make
The Integrated
Observing System.
Part II: Your
Equipment
19
Figure 2.1. Celestron
Super C-8 Plus.
Photograph by author.
Human Vision and the Night Sky
a list of qualities that I needed to have in a telescope and then set about finding
the one that would come closest to meeting my unique needs. Here are the items
that made up my list:
(1) Aperture: It had to be big enough to permit viewing deep sky objects and stars
to a reasonably faint magnitude. Getting to magnitude 14 (Pluto) would
require at least eight inches.
(2) Portable: It had to be small enough to permit me to move it up or down stairs,
transport easily by car and light enough to carry over moderate distances.
(3) Optical Quality: I was going to pay what amounted to a lot of money for a
college student so it had to be a serious instrument that would provide the
best, brightest, crispest images possible for my investment.
(4) Versatile: The telescope had to be capable of a full range of operations from
wide-field viewing to providing high-power detail both as a visual and photo-
graphic instrument.
(5) Durability: This was going to be my telescope for many, many years. It would
have to be solidly built and be able to withstand the rigors of decades of use.
(6) Upgradeable: As my needs and skills in amateur astronomy grew through the
years the telescope had to be able to grow with me.
(7) Serviceable: In the unlikely event that there was ever a mechanical problem
with the scope or a part needed to be replaced or if I just needed advice on
how to work something, the manufacturer of the telescope had to be able to
provide it.
When you create this list, make certain that you organize the items in the order
in which they are important to you in case you need to or are willing to compro-
mise. In my case, all seven of these items were absolutely non-negotiable. For
example, without aperture there is absolutely no reason for me to be buying a tele-
scope. I already owned one and wanted to replace it because the one I had was not
big enough. It would have made no sense to replace one small scope with another.
Portability was number two because I had only a limited amount of space in which
to store a telescope and needed to be able to move it as necessary to be able to get
it to the observing site. All my equipment had to fit into a college student’s car
(1981 K-Car, don’t laugh at me). It then had to be hauled from the car to the place
where the telescope would be set up, often a distance of a hundred feet from where
I would park. A huge telescope weighing more than a hundred pounds just would
not get the job done. The quality of the optics was another issue. My plan was to
spend about $2,000 on my new scope. For that money, it had to have the best optics
I could afford. This required that I put in a fair amount of time learning about the
strengths and weaknesses of various optical systems that were available. I also
needed a scope that was versatile. It had to be of the right focal length and size so
that it could make photographic images of the deep sky with reasonable speed yet
also provide crisp images at high power when called for visually. It also had to be
durable, capable of withstanding not only the test of time, but also the rigors of
repeated transportation, bumping and jostling without not only remaining intact,
but without requiring constant readjustment each time I put it in the car. It had to
be upgradeable, meaning capable of accepting add-on accessories such as drive
motors, eyepieces and camera adaptors. As my skill grew and I wanted to probe
20
deeper into the heavens, the telescope had to be able to grow with me and be
capable of using advanced equipment beyond its own equipment package. Finally,
I demanded a telescope that would be easily serviceable in the rare event that
something went wrong with it. I set my sights on a scope with a good warranty
and a company with a good chain of dealers where a telescope could be taken for
repair or at least for shipment back to the factory for maintenance.
Remember that not everything on my list may appear on yours and you may in
turn have needs that I did not. If you’re mounting the scope on a permanent pier,
then its not likely that portability is important to you, especially if that pier is to
be surrounded by a dome.You may desire the capability for full computer control
of your telescope or Global Positioning System capability to eliminate any need for
manual navigation of the heavens. I have always found these tasks among the most
pleasurable in astronomy and I take great pride in finding my way around the sky.
If you would prefer just to hit the GO TO button, there’s nothing wrong with that
if it increases your pleasure in astronomy or at least lowers your frustration level.
I would just prefer to find it myself.Anyway, when I bought my scope in 1986, there
was no such technology available. You may have an absolute price cap to live with
or other restrictions. Make out your own list and set your priorities accordingly.
There are some things you should always remember about buying a telescope.
If you are about to lay out money for a serious telescope, be aware that it is an
investment that will hold good value. Telescopes are not cars. Optical systems do
not degrade in quality from being used so plan to take very good care of it because
its going to be with you for many years. Mine is now nineteen years old, still looks
like its fresh out of the box even though we’ve been all over the universe together.
I expect we will travel the cosmos together for many more years to come. Though
I’m planning to add a second telescope to my collection, it is going to be a smaller
scope for quick low-power viewing of the skies on short notice.Secondly,the scope
is only as good as the quality of its optics and mount.A telescope with poor optics
will produce images that are distorted either in shape, color or both. A telescope
also can have the world’s best optics but if you put it on a shaky mount, an image
magnified 100 times will only show you a vibration magnified 100 times.
By now, you probably realize that I’ve spent some time taking backhanded
swipes at “500×” department store telescopes. They may serve their purpose rea-
sonably well as entry-level instruments, but if you buy one realistically believing
it will produce 500×, forget it. My third key thing to remember is that the primary
function of a telescope is not to magnify. Its primary function is to collect large
amounts of light and bring that light to a clear, sharp focus. Magnification is a sec-
ondary consideration and in fact is not performed by the telescope at all,but rather
by the eyepiece.A telescope’s ability to clearly present magnified images is directly
related to how much light it can collect. If you try to magnify an object 500 times
using a 2-inch telescope (that’s 250× per inch of aperture), all you will wind up
with is a blur magnified 500 times. A telescope of this size cannot magnify with
that much power and bring the image to focus. Even medium-size telescopes of 8
inches aperture (that’s 62.5× per inch) cannot withstand the use of that much
power. In reality, a telescope with good optics should be able to focus an image at
a maximum of 50× per inch of aperture. Any more than that results in a loss of
image brightness, clarity and contrast that grows progressively worse as more
power is used. If you try to push that two-inch department store refractor to more
The Integrated Observing System. Part II: Your Equipment 21
Human Vision and the Night Sky
than 100×, you are going to be sorely disappointed. Never buy a telescope that is
marketed on the basis of its magnifying power. If you look at ads for Celestron or
Meade telescopes, you will never ever see their instruments advertised on the basis
of magnifying power. With an eyepiece of the proper focal length, any telescope
can be made to magnify an object 500 times. Aggravating the situation further is
the possibility that the lenses of that department store telescope may not be made
of the best material available. Top-quality refractors are made with optical quality
glass and top-end scopes may use a lens element made of calcium fluorite. Cheap
scopes may have lenses made of plate glass, Pyrex or even worse, plastic! This will
create imperfect or even badly distorted images even at low powers.
Refractors vs. Reflectors
Now that you have made the decision to step up to a medium to large aperture
telescope from your department store model, you need to consider the various
types of optical designs and decide what best suits your needs. The telescope you
own now is most likely a refractor. This design, also called a dioptric telescope, is
based directly upon the original opera glass telescope designed by Galileo in 1610.
That original telescope used a simple convex lens to gather and focus light and a
concave lens at the opposite end of the tube to bring that light to a crude focus.
The lens at the front of the scope is called the objective. In any telescope the objec-
tive is the lens or mirror element that gathers starlight and directs it to a focus
point. With this simple design, Galileo discovered that Venus exhibited phases like
the Moon and that Jupiter had satellites circling it. These discoveries led Galileo to
realize that the geocentric model of the solar system was incorrect. Earth was not
at the center of the solar system, but the Sun was! Galileo would pay dearly for his
blasphemy. The church would torment him, ruin him, excommunicate him and
finally forced him to recant. He was of course correct. The Sun was at the center of
the solar system and all the planets circled it. It would be nearly 400 years before
the church would come to admit it early in the reign of Pope John Paul II when
Galileo was formally brought back into the Roman Catholic Church.
Science has refined the design of the refractor over the years allowing it to create
sharper images with better focus.For an amateur shopping for a telescope,the chief
advantage of a refractor is that its lenses are rigidly held in place in the telescope
tube making the telescope virtually maintenance free. The lenses never need to be
adjusted and are in fact often cemented in place. The refractor lenses generally are
of long focal length, often producing f ratios7
of f/12 to f/14. These long-focus tele-
scopes provide sharp images with high magnification without using excessively
short focal-length eyepieces. The refractor does have some drawbacks that prevent
it from being used as a design for large-aperture telescopes. By the time the scope
reaches about 4 inches (100mm) in diameter, the objective lens starts to become
too heavy and the tube too long for use in a design that can still be considered
portable.Lenses can be designed that provide a shorter focal length,but that results
22
7
Focal length is the distance from the objective lens to the point at which light rays come to focus. F-
ratio is the focal length divided by the diameter of the objective.
in some loss of image sharpness and they don’t get any lighter. Refractors also are
subject to an error that is an inherent byproduct of the design. As light passes
through the glass lenses, the colors are separated in the same way that a prism
might and not transmitted evenly by the lens elements.This causes an error known
as chromatic aberration.Objects viewed through a refractor will often have a fringe
of false color surrounding them caused by the optical separation of the differing
wavelengths of light through the telescope objective lens. To try to minimize the
effects of this color distortion, the telescopes lenses may be coated with metallic-
based compounds that also improve overall light transmission. For those who
desire perfect color in their images, the closest you can get is a telescope with a
calcium fluorite lens element. Calcium fluorite is not glass, but a mineral that must
be ground and polished in a very time-consuming and expensive procedure. Flu-
orite lenses however are not subject to the chromatic aberrations that plague glass
lens refractors. Refractors do have other limitations as well. The long focal lengths
produce very narrow fields of view that cannot contain entire deep sky objects.
Long focal lengths are also tough for astrophotography work. The longer the focal
ratio of the telescope becomes, the longer exposure times are required for imaging
a given object. Refractors can be very frustrating telescopes for taking pictures.
The limitations and chromatic aberrations of the refractor began to lead early
astronomers to look for other solutions to the problems of building large-aperture
telescopes. By 1681, the noted early physicist Sir Issac Newton invented a telescope
using a large mirror as a light-collecting surface rather than a lens. This type of
telescope is called a “reflector” or catropic telescope. Reflectors use a large concave
spherical mirror (primary mirror or objective mirror) to gather light and bring it
to focus on a small, optically flat mirror near the front of the telescope tube. This
secondary mirror turns the light 90 degrees to an image-forming eyepiece at the
side of the tube. This original type of reflector is called a Newtonian reflector in
honor of its inventor.A later type of reflector,called a Cassegrain telescope,focuses
light through a hole in the center of the primary mirror to an eyepiece in the back
of the telescope. Because light does not actually pass through any of the telescopes
surfaces, they do not actually need to be made out of pure glass. Telescope mirrors
The Integrated Observing System. Part II: Your Equipment 23
Figure 2.2. A short-
focus Newtonian
reflector. Image by
author.
Human Vision and the Night Sky
can be highly polished glass, Pyrex or even in some very early instruments, alu-
minum. Glass or Pyrex is generally used today because it is easiest to polish and
figure to exactly the precise shape needed,then once the mirror is correctly figured,
an aluminum overcoat is applied and polished until ready for use. The glass or
Pyrex only needs to be thick enough to form and maintain the shape of the mirror.
Reflector telescope mirrors are therefore much lighter per inch of aperture than
are refractors. This removed many of the limitations that existed on telescope size.
The world’s largest refractor measures only 40 inches in diameter but reflectors
now exist that are ten times that size.
Like refractors, reflectors also have an inherent flaw. Because a spherical mirror
is used to reflect light to a flat one, some points of the secondary mirror are farther
from the primary mirror’s point of focus than others. Usually the objective is
designed to focus light to the center of the secondary mirror. Portions of the image
that fall on the outer parts of the secondary mirror tend to be distorted slightly.
This error inherent in the reflector design is called spherical aberration. Stars at
the center of the field focus to sharp points but stars near the edge may appear
slightly streaked from the center of the field towards the edge. As telescope sales
began to grow among the amateur public,two different types of fixes became avail-
able. One is to use a primary mirror with a different type of shape called a para-
bolic mirror. This mirror has a much deeper curve than a spherical mirror. A
spherical mirror if continued in shape would eventually form a perfect sphere. A
parabolic mirror has a much sharper curve to it and would close into a much more
oblate form. This shape causes light to reach the secondary mirror in a more
uniform manner creating sharper images. It can also be a very expensive mirror
to produce because its curve is so complex. The second type of correcting mech-
anism that has evolved over the years is called a corrector plate. The corrector plate
is a glass lens introduced at the opening of the telescope. The corrector introduces
an error into the light path that is exactly opposite of that introduced by the
primary mirror.Thus in spite of what your mother told you,in this case two wrongs
do make a right. There are two types of correctors commonly in use. Smaller tele-
scopes may use a Maksutov corrector. This is a thick lens element with a heavy
concave shape. Maksutov correctors are highly efficient and provide super-sharp
images, but like refractor lenses, they become impractical to use once larger than
about four inches in diameter.Schmidt correctors are not quite as effective as Mak-
sutovs but are thin and very light. They are also relatively inexpensive to produce.
Schmidt correctors are preferred for use in any reflector telescope design larger
than four inches. Reflectors do have some other disadvantages. The classic
Newtonian or Cassegrain design has an optical tube that is open to the elements
and therefore must be carefully cared for. Mirror surfaces must be kept meticu-
lously clean on a regular basis. The secondary mirror is in the path of light to the
primary mirror and is held in place by a spider support that also blocks some light
from reaching the primary mirror. This so-called secondary obstruction created by
the mirror and its support can block as much as 15% of the light entering the tele-
scope.The mirrors must be carefully kept in line with each other through a process
called collimation. This is particularly true of the secondary mirror, which must
be in perfect alignment to properly redirect light to the eyepiece. An improperly
collimated reflector can rapidly become a source of great frustration. Telescopes
that employ Schmidt or Maksutov correctors have the advantage of being sealed
at the front end, protecting the telescope mirrors. These telescopes are also less
24
prone to (but not immune from) collimation problems. The secondary mirror
housing of a Schmidt corrector telescope is fixed in the center of the corrector plate
and is easily adjustable with an Allen-head wrench. The Maksutov is even simpler.
The secondary “mirror” is actually an aluminized spot in the center of the correc-
tor and never needs to (and cannot) be adjusted.
A telescope is only as good as the mounting it sits on. Mounts come in two basic
types. The simpler type is called the alt-azimuth mounting. The mount rotates
up–down and left–right allowing the telescope to be adjusted in both altitude and
azimuth.To follow an object across the sky,one must follow the object in both axes.
My4.5-inchBushnellsitsinaverysimpletypeof alt-azimuthmount,whichissimply
a bowl in which the bulbous base of the telescope sits and rotates.At the other end
of the complexity scale, most GO TO scopes are alt-azimuth mounted with a com-
puter issuing corrections as they track across the sky. Equatorial mounted scopes
also move left–right and up–down,but the left–right axis can be pointed directly at
the north pole, allowing the telescope to track an object with only a single motion.
A drive motor that turns the scope at the same rate as Earth rotates in the opposite
direction will enable that scope to keep an object centered in the field so long as the
scope is both properly aligned and perfectly level.The most important thing though
about a mounting is that is must always be perfectly rigid and not move.If the mount
vibrates, no matter how well the scope performs at high power, all you will see is a
highly magnified vibration if the mount is not stable.
Reflectors and refractors have other characteristics that cannot fairly be
described as either strengths or weaknesses, but will play an important role in
determining what type of telescope you will eventually settle on. Refractors tend
to have fairly high f-ratios compared with reflectors. A typical refractor will have
an f-ratio of anywhere from f/12 to as high as f/15. These telescopes will produce
crisp images and high magnification with long focal-length eyepieces. But because
the f-ratios are so large, they will be difficult to use for long-exposure astropho-
tography.Exposures for deep sky objects will be impractically long.Reflectors,par-
ticularly Newtonian types, have very short f-ratios that mean that high powers are
not easily usable. Newtonian reflectors will have f-ratios around f/6. They will
produce very wide field images that are bright. Reflectors are also very good for
long-exposure astrophotography, often requiring less than half the time for an
exposure that a refractor of the same size. Refractors will always have the eyepiece
at the rear end of the optical tube. With the use of a right-angle prism, the refrac-
tor user will always be able to find a comfortable observing position. Newtonian
reflectors have the eyepiece near the other end of the telescope on the side of the
tube. This can cause an observer to torque his body into many unusual positions
while trying to see through his telescope.In the largest Dobsonian designs,a ladder
may become necessary when viewing objects near the zenith.
The Decision
After many months of careful consideration, the telescope I finally settled on was
the 1986 model Celestron Super C8 Plus. This telescope is a Cassegrain design
reflector with a Schmidt corrector. This combination Schmidt–Cassegrain design
is the most popular in use today among amateurs purchasing medium to large size
The Integrated Observing System. Part II: Your Equipment 25
Human Vision and the Night Sky
telescopes. Let us revisit my original list of important qualities and see how the
Celestron meets my needs.
(1) Aperture: At 8 inches in diameter, the Celestron could reach objects as faint
as magnitude +13.8,the brightness of Pluto.The telescope came with optional coat-
ings to improve light transmission to boost the limit to magnitude +14.0
(2) Portability: The Schmidt–Cassegrain design uses a convex secondary mirror
and an f/10 objective. This design allows an 80-inch focal-length telescope to be
accommodated by a tube that is only 17 inches long. The entire telescope assem-
bly, the fork-arm mount and clock drive base weighs only twenty-three pounds.
(3) Optical Quality: At that time, there was no mass producer of consumer tele-
scopes that had a better reputation for quality than Celestron. Remember that as
I write this, this was nineteen years ago. Though Celestron certainly has not
slipped, its competition has certainly gotten better.
(4) Versatility: At f/10 and 8 inches of aperture, the Schmidt–Cassegrain has
enough focal length to provide crisp images visually, but it is fast enough to yield
reasonably short photographic exposure times while reaching a theoretical pho-
tographic limit of magnitude +16.
(5) Durability: The Schmidt–Cassegrain optical design is nearly as rigid and
maintenance free as any refractor,though some collimation is occasionally needed.
The fork mount and drive base are made of cast iron and will last forever.
(6) Upgradeable: The Celestron product line comes with a wide range of visual
and photographic accessories for use in any application. The scope comes with a
star diagonal mirror and two eyepieces (a 26-mm Plossl and a 7-mm Orthoscopic)
providing 77× and 286×. This got me off to a good start and I have been able to
add many accessories since purchasing the scope, including some that could not
have been imagined in 1986.
(7) Serviceable: The telescope is covered by Celestron’s limited warranty. If
anything breaks, it gets fixed for free (assuming that I did not take a hammer to
it).
Other telescope purchasers as I said may have other criteria that are important
to them while others may not be interested in some of the things that I want. One
observer may want aperture in a telescope and nothing else. He may have no inter-
est in astrophotography or any other complex applications or may already have a
smaller telescope that can do that. This observer may want a moderate cost second
scope solely for the purpose of pulling out the faintest objects out of the sky he
possibly can for the lowest cost.This observer might be interested in a type of New-
tonian reflector called a“Dobsonian.” These scopes come mounted on the simplest
type of mount, often on wheels for ease of movement. They are built for one thing
only, size. Dobsonian buyers can get scopes as large as 16 inches or more for the
same price as a Celestron Schmidt–Cassegrain half the size. There are also users
who want a small telescope that can be whipped out with only a few minutes notice.
Such telescopes as Bushnell’s Voyager and Edmund Scientifics Astroscan cost
around $200 and provide a 5-inch Schmidt–Newtonian reflector that sits in your
lap or on a special cradle.Whatever your needs are, there is a telescope to suit your
purpose. Make sure you put in the research and thought needed to ensure you get
the scope you need, not the one the salesman says you need. List what you need
26
for a telescope to do and get one that does it. Don’t get a Dobsonian if a computer
controlled GO TO telescope is what you really need. The only result of that will be
that you will own a telescope that can detect sixteenth magnitude galaxies, but is
completely useless to you if you don’t know how to navigate. The modern GO TO
scope is wonderful if you are lost, particularly if they have a GPS receiver. All you
have to do is turn it on and the GPS will automatically update your position and
time so that the telescope can now point with arc second accuracy to any point in
the sky without any other input from the user other that being told what the target
is. Both Celestron and Meade sell their largest scopes with this technology, but
you will pay over $5,000 for it. If you know your way around the sky, a 20-inch
Dobsonian will do a better job optically and cost you only about 40% of the price.
To use the analogy of the golfer again as we did in the first pages of this book, if
you don’t have the right equipment to do the job, all you will experience is frus-
tration.A golfer who uses clubs that are even 2 inches too long for him will be com-
pletely unable to perform with them. The clubs must be perfect your game and
your body. So must your optical equipment for the job you will ask it to do.
Accessories
My Celestron Super C8 Plus came equipped with several accessories out of the box
(it was actually shipped in three boxes). These included an 8 × 50 polar axis finder
scope with illuminated reticule,a star-diagonal prism,a 26-mm Plossl eyepiece and
a 7-mm Orthoscopic eyepiece. This initial collection of equipment was adequate
to allow me to begin exploring the heavens with my new telescope.As the next few
months went my, I began to discover the need to expand my equipment inventory.
With a focal length of 2,000mm, the 26-mm eyepiece yielded 77× while the 7-mm
produced 286×. The low-power eyepiece gave good wide field views across an area
of about 45 arc minutes.The higher power eyepiece was so powerful that even with
the Celestron’s superior optics, getting a sharp steady view was a very rare event.
I needed eyepieces that would allow me to use more intermediate magnifications
for nights when the seeing was not as good as I would otherwise desire. After that
came the desire to record on film, the sights that my eyes beheld. That led to my
expanding into camera mounts and eventually into amateur CCD imaging. Lets
now take a look at things that you will be eventually adding to your inventory.
(1) Eyepieces
(2) Barlow lenses and focal reducers
(3) Solar filter
(4) 35-mm SLR camera
(5) CCD camera
(6) Camera and CCD mounts and accessories
(7) Color filters
(8) Spectroscope
(9) Carrying case
The Integrated Observing System. Part II: Your Equipment 27
Human Vision and the Night Sky
(10) Laptop computer
(11) Portable DC power supply
(12) Paper or software star charts
This is a list of equipment needed to bring your telescope up to a solid level of
versatility both for planetary observing and deep sky work as well as visual astron-
omy and photography. Let’s take a look now at what each different type of acces-
sory does for us.
Eyepieces
The eyepiece is the lens assembly at the focal point of the telescope that forms and
magnifies the image. Most telescopes, even department store types, come with at
least one for initial use. Sadly today many of the major manufacturers deliver their
telescopes with just that one eyepiece. Today’s Celestar 8 and Nexstar 8 telescopes,
the current editions of the legendary Celestron C8, come with only a single 25-mm
Plossl eyepiece (though Celestron does offer a nice observing kit that adds five
more eyepieces and a filter set for under $100). When you purchase eyepieces,
remember to get the proper size for your telescope. Eyepieces are sold in three
industry-standard sizes (0.965 inch, 1.25 inch, and 2 inches) encompassing several
different designs. The major things that distinguish eyepieces from one another
are eye relief and field of view. Eye relief is the maximum distance from the tele-
scope that you can see the entire field of view. The farther away you can keep your
eyes,the more comfortable you will be.Field of view is the angular measure of how
far you can see from the left edge to the right edge of the field.
If you own an economy or department store type telescope it likely came with
an eyepiece of the Huygens or Ramsden optical design.These are two-element eye-
pieces designed to be low cost and produce satisfactory images to the undemand-
ing eye. Eye relief is minimally adequate and the field of view is usually less than
28
Figure 2.3. Plossl
eyepieces. Photograph
by author.
30 degrees. The perception that I always had with these eyepieces is that I was
looking through a pinhole.If my head wandered slightly,my eye would wander out
of the field and if my eye were to tear at the eyepiece, I would lose sight of the
target. These eyepieces are almost universally sized at 0.965 inch and while they
serve department store telescopes adequately, they are not suited for use in high-
performance instruments.
Telescopes intended for high-quality astronomical work are equipped with 1.25-
inch eyepieces. The cast iron cell that seals the end of a Celestron or Meade tele-
scope has an opening in it with a universal thread to allow attachment of 2-inch
accessories. This opening is usually fitted with an optional adapter called a visual
back that stops that opening down to 1.25 inches and has a thumbscrew to secure
accessories with a non-threaded drawtube. This arrangement allows the telescope
to accept 1.25-inch or two-inch accessories. The preferred size is 1.25 inch since
there are a much wider variety of accessories at more modest cost and they are
much lighter. Using 2-inch accessories usually requires that the telescope be care-
fully counterbalanced. For these telescopes, the lowest cost eyepiece one should
consider is the Kellner design.These eyepieces generally cost less than $50 per unit
and provide a field of view of about 40 degrees. Kellners provide bright images and
good eye relief as long as you do not use too much power. At higher powers, eye
relief becomes uncomfortably short. The Kellner eyepiece uses three lenses in its
design. Light first strikes a convex element that then focuses light on a second
convex lens. That lens is directly mated to a concave third element.
If you need to add more magnification flexibility to your telescope at a modest
cost, orthoscopic eyepieces might be the way to go. Orthoscopic eyepieces utilize
four elements in their design.Light first contacts a three-stage lens stack of convex,
concave and convex lenses. These focus light onto a concave lens at the viewing
end. Eye relief is better than in cheaper designs and, combined with their field of
view, the Orthoscopic eyepiece was for many years considered the best all-around
telescope eyepiece. It has over the years lost its top-of-the-line stature to more
modern designs. Orthoscopics may also suffer from field curvature near the edges
of the field of view. This may cause star images to appear slightly streaked rather
than perfect pinpoints near the edge of the field of view. I added two Orthoscopic
eyepieces to my equipment box after buying the Celestron, an 18-mm (111×) and
a 12.5-mm (160×). These additions allowed me more magnification in conditions
where my 7-mm would be useless.
For those with a little more money to spend after the big purchase, consider
adding more Plossl eyepieces to your collection. This design has replaced the
Orthoscopic as the most popular among discriminating observers. The Plossl also
utilizes four optical elements. The first and second elements are mated and are
concave and convex. This stack sends light to a second stack that is convex and
concave bringing the image to focus. The design has the advantage of providing
an image that is uniformly sharp from center to edge. Each one can cost some-
where between $60 and $100 depending upon size and manufacturer. Plossl
designs feature excellent eye relief since the exit end of the eyepiece is consider-
able wider than less costly designs.The field of view is about 50 degrees on a typical
model. Unlike with the Kellner design, the Plossl provides excellent views at both
high and low powers. Since the Plossl design is usually the featured eyepiece in
most manufacturers product lines,you may have choices of equipment with special
The Integrated Observing System. Part II: Your Equipment 29
Human Vision and the Night Sky
overcoatings to cut glare and improve light transmission. Eyepieces such as
Celestron’s Ultima line provide improved image quality and sharpness at a con-
siderably increased cost. Celestron now offers Plossls as part of a discount equip-
ment kit. This allowed me to add 32-mm, 20-mm, 15-mm, 9-mm, 6-mm and 4-mm
eyepieces to my collection (along with a Barlow and a filter set) for minimal cost
of less than $100.You can now buy six of them for what a single Plossl cost twenty
years ago.
Two other highly popular high-end eyepieces are the Erfle and Nagler designs.
These are super-wide field eyepieces that more resemble looking through a window
than a telescope. This is accomplished using what is usually a six-element array
providing a field of view as great as 70 degrees. With such extreme width in the
field of view, these eyepieces are generally best used for low-power views. Some
loss of image sharpness may be experienced when using these eyepieces with very
short focal lengths.
For those desiring the most field of view and maximum eye relief for maximum
comfort, consider adding 2-inch accessories for your telescope. A special visual
back allows 2-inch accessories to be added easily. Newtonian users might have to
install a new focuser. Some elements might be directly attached to the rear cell of
the telescope. Two-inch accessories are much larger and therefore more expensive
to purchase.A single eyepiece can run to well over $200.They are also much heavier
than 1.25-inch equipment and require counterbalancing. This in turn will cost
more money.
Barlow Lenses and Focal Reducers
Adding a Barlow lens and a focal reducer to your equipment box will effectively
triple the number of eyepieces at your disposal. These two accessories are remark-
ably simple and fairly low cost. They have the effect of also changing the charac-
ter of your telescope.A focal reducer effectively shortens the f-ratio of the telescope
30
Figure 2.4. Barlow
lens. Photograph by
author.
creating a lower magnification and wide field of view. The Barlow lens does exactly
the opposite. It will double or even triple the magnification provided by a typical
eyepiece.
The Barlow lens utilizes a single element concave lens that has the effect of dou-
bling the magnification of the eyepiece–telescope combination.Adding one Barlow
effectively doubles the number of eyepieces at your disposal. Barlows are usually
inexpensive to add to a telescope collection making it a great addition for any
scope. They are however a bit on the long side and that means there will be a dra-
matic change in focus from where the focuser of the telescope was originally set.
Barlows also are available in a triple magnification design. Some manufacturers
also offer a short Barlow lens that will not affect focus position as severely as more
traditional designs.
Another variant on the Barlow theme is the zoom lens that introduces a movable
negative element into the light path. By rotating a knob, the magnification of the
telescope can be varied over a wide range allowing the user to work at different
magnifications without changing eyepieces. Once you start handling expensive
oculars with numb hands in freezing cold, you will quickly come to appreciate the
value of a zoom eyepiece. In nearly all cases the Barlow lens or zoom lens slips into
the drawtube of your focuser or visual back.
The focal reducer is a positive lens that does the opposite of the typical Barlow.
Instead of doubling the magnification, the focal reducer shortens the focal length
of the telescope and reduces the magnification and creates a wider field of view. In
addition to the wide field of view, low f-ratios mean brighter photography and
shorter exposure times, both issues of great importance to astrophotographers.
The telecompressor offered by Celestron reduces the f-ratio of my
Schmidt–Cassegrain from f/10 to f/6.3. That means that my 26-mm Plossl’s
magnification is reduced from 77× to 48× while the field of view increases from
less than three-quarters of a degree to better than 1.2 degrees. The telecompressor
has disadvantages as well. Its large lens size makes it unsuitable for a draw tube
insertion. Mine attaches directly to the Celestron’s rear cell, then the visual back
screws onto the back of the telecompressor. The telecompressor also requires a lot
of back focus. Some observers may run out of focus travel before the telecom-
pressor–eyepiece stack can come to a sharp focus.Observers who wish to turn their
telescopes into real wide field instruments may opt for ultra-low f-ratio reducers
such as the model designed by Optec. This reducer takes an f/10 telescope down
to f/3.3. That would, using the eyepiece discussed previously with my Celestron,
reduce magnification from 77× to 26× and take that three-quarter degree field of
view up to over 2.1 degrees. The Optec reducer does introduce severe field curva-
ture and Optec does not advise using their product for visual observing. It is
strictly a photographic accessory.
Users of Barlows and telecompressor also must remember one other thing. Any
time you introduce a piece of glass into the light path, not all the light that enters
that lens will come out the other side.Introducing any additional lens into the light
path will reduce the brightness of the image at final focus. Given a choice of using
a 20-mm ocular or a 40-mm with a Barlow to produce 100×, I would prefer to use
the 20mm. Telecompressor users should also be aware that if they are doing
astrophotography or CCD imaging that using a shorter f-ratio also means
shortening the range of critical focus, the precise range in which the focuser must
The Integrated Observing System. Part II: Your Equipment 31
Human Vision and the Night Sky
be placed to produce maximum image sharpness on film or the CCD chip. This
range, measured in microns, can be cut in half by a telecompressor. These two
accessories can add great flexibility to your equipment box but just as you would
not use a screwdriver on a nail, make sure you use the right tool for the right job.
A Barlow costs around about $40. Telecompressors are more expensive, usually
around $140.
Solar Filter
Viewing and photographing the Sun can be a very rewarding endeavor, but it is
one that requires a great deal of caution. The surface brightness of the Sun at
Earth’s distance is equal to an eye-blowing 1.5 million candlepower per square
inch. That much light will very quickly destroy the retina of the eye if you even
glimpse at it for any length of time. Imagine that light amplified many times by
the size of a telescope objective. To safely view the Sun, you must have a properly
designed solar filter. There are two ways in which this type of filter can be added
to the telescope.You can use either an aperture filter, which fits over the front end
to the telescope, eliminating more than 99% of the Sun’s surface brightness and
total light, or an eyepiece filter. This is a filter that screws into the open end of the
ocular barrel. The only type of filter that you should consider using is the aperture
filter. The reason why is because this filter is not required to absorb sunlight that
has been amplified by the telescope. An eyepiece filter must absorb the sunlight
amplified many times by the telescope objective.This can cause the filter to become
extremely hot and under that kind of heat the glass element may crack or shatter
while you’re looking through it leading to disaster.
Aperture filters come in different types.The simplest type is a full-aperture filter
that filters light passing through the full width of the objective. Most filters utilize
a neutral density glass that renders the Sun in its natural yellow color. Because the
Sun is the brightest object in the sky, a large aperture is not necessary to produce
32
Figure 2.5. Mylar
solar filter. Photograph
by author.
a bright, crisp image. Celestron offers a 3-inch off-axis filter that fits over the 8-
inch objective of the C8. This reduces the total amount of light reaching the eye-
piece providing a more comfortable view.A disadvantage of this is that it will limit
the amount of magnification you can use. Another type of filter that many people
use now is a Mylar filter. This type of filter uses two sheets of Mylar each of which
is aluminized on a single side. The two Mylar sheets are laid over each other with
the aluminum on the inside, protecting it from scratches. These types of filters
produce sharp images of the Sun at a fraction of the cost of their glass counter-
parts. If you’re considering a Mylar filter, don’t be turned off by your first look at
one. The aluminized Mylar looks like lightly crumpled aluminum foil leaving one
to wonder how this could ever transmit a sharp image. Believe me, it does. Mylar
filters do have one disadvantage. The aluminized Mylar strongly absorbs the red
end of the spectrum rendering images of the Sun that are nearly powder blue in
color. When I work with solar images, I always convert them to grayscale anyway
so this does not bother me all that much. The Sun has been burning with the same
color for all of human history and that value is very precisely known. The exact
color that you see in the scope has no scientific importance at all, but if the aes-
thetic value of a yellow Sun is important to you then you should avoid a Mylar
filter. Solar filters run in price from about $80 and up in today’s market.
35-mm SLR Camera
Capturing pictures of what you see in your telescope is one of the most rewarding
and at the same time challenging tasks you can undertake in astronomy. In order
to accomplish this you need a 35-mm SLR camera with a removable lens. A ring
then is attached to the camera that will allow the camera to be mated to an adapter
that directly threads onto the rear cell of the telescope in place of the visual back.
The telescope then becomes the camera lens. This type of camera is the only type
of camera that allows you to view directly through the light path rather than
The Integrated Observing System. Part II: Your Equipment 33
Figure 2.6. 35-mm
camera and lenses.
Photograph by author.
Human Vision and the Night Sky
through a parallel finder. This will allow you to directly sight and focus the target.
Prior to reaching the film, the light is deflected by two 45-degree mirrors to the
viewfinder.When the shutter is tripped, the first mirror is retracted out of the way
either electrically or mechanically. This allows the light to reach the film when the
shutter is opened. When the exposure is completed, the shutter closes and the
mirror extends to its normal position.
Another important benefit of this type of camera is that it allows you to select
various exposure time lengths.A typical setup will allow automatic exposure times
from as fast as 1/500 of a second to one full second. Of even greater importance is
the bulb (B) setting. This allows the shutter to be manually held open for as long
as the user desires. This is critical since most deep sky photographs are taken at
the full focal length of the telescope (in my case, that’s f/10). Taking an exposure
of a ninth-magnitude nebula might take as long as an hour.
When buying a camera for astrophotography, buy as much quality as you can
afford. If you buy a good camera, you will only have to do it once. Manual cameras
are relatively inexpensive and have the advantage of not needing batteries that can
die on you in extreme cold. Electric cameras operate much more smoothly and
precisely. The quality of the lens of your camera is important since you will not
always use it to image through your telescope.You may wish to mount the camera
on top of the telescope “piggyback” style. This allows a clock-driven telescope to
serve as mount for beautiful wide-field panoramic shots. Also consider a camera
that offers an array of telephoto lenses. This allows modest magnifications to be
used while retaining a wide field view. The only other type of accessory that is an
absolute must is a cable release for the shutter. This allows the shutter to be opened
without you touching the camera and thus creating vibrations. This can either be
a manual type of release with a spring or an air-loaded type. The air-release is
smoother,but also more expensive.If you choose to settle for a spring cable release
for your camera, make sure you use the camera’s delay timer if you are not using
the “B” setting. This will allow any vibrations created by the spring to damp out
before the shutter trips. New cameras can cost $500 and up with just a single lens.
When camera shopping,a trip to an Internet auction site is a great idea to get good-
quality equipment at a cheap price. I recently bought a used Minolta and three
lenses for under $100 in mint condition.
CCD Camera
The charge-coupled device (CCD) camera has been a part of astronomy for
decades but until recently has been an exclusive province of professionals. The
cameras were large, power-hungry and incredibly expensive. During the mid-
1990s, advances in electronics allowed CCD chips to be produced commercially on
a large scale. This advance has made possible the digital imaging revolution that
so many of us take advantage of today. Your camcorder, the camera in your cell
phone and your digital camera all use CCD technology. The CCD chip is a tiny
silicon wafer covered with an array of light-sensitive detectors called “pixels”
(techno-speak for“picture elements”).The pixels collect photons and register their
brightness for assembly into a completed image.
34
One of the great advantages of the CCD chip is that it is far more light-sensitive
than is film.An image that would take an hour to make on film can be recorded in
just a few minutes or even seconds on a CCD. A CCD camera for astronomy is
something of a different beast than those used for conventional photography. The
CCD chip, like photographic film, does a much better job recording light when
exposed to high levels of light for a brief period of time.Astrophotography involves
exactly the opposite, exposing the chip or film to a very minute level of light for
very long periods of time. Fortunately the speed at which the chip collects light
improves dramatically as you reduce temperature. An astronomical CCD camera
is equipped with a cooling system that chills the chip to a temperature well below
zero degrees Celsius. The heat generated by the camera can register in the CCD
pixels creating what is called “dark current,” or false light. Cooling the chip to sub-
freezing temperatures reduces the amount of dark current.
Another feature that increases light sensitivity is sacrificing color. Unless you
have observatory class aperture, there is very little to be gained by using color
sensors so most CCD cameras record light in shades of gray ranging between the
extremes of white and black. In an 8-bit camera, CCD pixels measure shades of
gray and report that data to a computer using a scale of 0 to 255. The “zero” value
represents pure black while “255” represents pure white.Anything in between cor-
responds to a shade of gray. Moving up the cost scale, cameras are available with
16-bit capability registering light on a scale of zero to 65,536. These cameras will
produce images that are far smoother than the 8-bit camera with no large unnat-
ural transitions between pixels. The image quality of the 16-bit camera is every bit
as good as those taken on photographic emulsions. Eight-bit imagers tend to be
somewhat grainy but if saving money is an issue, they are satisfactory because the
human eye can only discern about forty shades of gray anyway.
Like with the 35-mm camera,buy as much quality as you can afford.That assures
that you will only have to do it once. My first camera was the Meade Pictor 216XT.
This is a 16-bit camera with a CCD pixel array measuring 335 elements by 256 ele-
ments. It produces images that are super-smooth and when properly focused,
The Integrated Observing System. Part II: Your Equipment 35
Figure 2.7. Meade
Deep Sky Imager CCD
Camera. Photograph
by author.
Human Vision and the Night Sky
nearly indistinguishable from a photographic print. It also is adaptable to color
photography by installing a tricolor filter wheel. In this technique, separate expo-
sures are obtained through red, green and blue filters, then stacked one on top of
the other.This produces an image in what is called“RGB”color.I have not yet opted
to do this because the filter wheel assembly is as costly as the camera itself. The
Pictor 216 XT was also, at the time I purchased it, the only 16-bit imager available
for under $1,000. Several smaller manufacturers are now also under that level with
16-bit capability and now even with color detectors. I have not had the opportu-
nity to try out any of these cameras, but I was happy enough with my Meade that
I eventually purchased their new Deep Sky Imager for color work.By the way,since
all cameras use either the universal T-thread or standardized 1.25-inch draw tubes,
you can mix and match telescopes and cameras. Just because you own a Meade
telescope, you are not beholden to the Pictor line of CCD imagers. You can use a
Santa Barbara Instruments Group camera and it will work just fine.My Meade CCD
gets along just fine with my Celestron telescope since the interfaces are of uniform
size. I cannot take advantage of some of the features in the Meade camera that are
specifically designed for use with Meade’s LX200 line of telescopes such as auto-
focus. Today I am using Meade’s Deep Sky Imager, which allows deep sky images
to be taken in color. It has a larger chip (wider field) than the Pictor 216 XT and
costs less than half what the Pictor did in 1998.
CCD cameras have disadvantages as well. Each image must be carefully cali-
brated.This involves subtracting what is called a“dark field”and a“flat field.”These
techniques correct for any heat on the CCD that can generate false light and for
any field curvature induced by the telescope. Taking one picture therefore involves
actually taking three.You must first take a dark frame (usually done with the tele-
scopes cover on) then a flat field frame (done with a white card over the telescope
objective) prior to taking the actual picture. The two calibration frames are then
deducted from the actual image to produce proper views. Removing this unwanted
clutter is referred to as maximizing the “signal to noise ratio.” Remember that
signal is good and noise is bad. Compounding the prospective photographer’s task
is that the size of the chip is extremely small, only a few millimeters across. This
means that at f/10, the field of view of the chip of the Pictor 216XT with my Cele-
stron is a miniscule 5.5′ × 4.1′. Using a telecompressor gets the field up to 8.7′ ×
6.5′. Remember that CCD imaging is an extremely difficult and demanding oper-
ation,so consider adding this to your equipment box only when your skills warrant
it. Otherwise, you will spend a great deal of money only to get frustrated. Get good
with camera and film then step up to a CCD imager. In today’s market, CCD
imagers start at about $150 for what is basically a web camera and can go up over
$10,000.
Camera and CCD Mounts
and Accessories
To get the most out of your camera equipment, it is necessary to have the proper
supporting equipment. The devices used for 35-mm photography and for CCD
imaging are very different from each other so we’ll discuss them separately. In
36
photography, 35-mm cameras cannot be directly connected to a telescope so
adapter equipment will be necessary in order to make the mechanical connection.
The minimum that you will need is a T-ring and a T-adapter. The T-ring is a metal
ring with two threads. One screws into your camera and provides the interface for
the T-adapter which screws into the other end. At the far end of the T-adapter is a
universal thread ring that will mate to the rear cell of a Schmidt–Cassegrain tele-
scope in place of its visual back.These two devices allow the camera to be mounted
at the prime focus of the telescope and allow for photography at the telescopes
normal f-ratio (for me, f/10). Photography using this type of setup is therefore
called prime focus imaging. This type of setup allows nice, short-exposure images
of the entire Moon or Sun,reasonable length images of star clusters or other bright
objects in the deep sky and the shortest possible exposure time for any other type
of object,unless a telecompressor is used.For imaging the planets or small objects,
the magnification is generally inadequate to show any detail. For small targets, a
different technique must be employed. We can gain extra magnification by intro-
ducing an eyepiece into the light path. This will require moving the camera several
inches farther away from the telescope using an empty metal tube called a “tele-
extender.”After inserting an eyepiece directly into the visual back of the telescope,
the tele-extender then screws over the outside of the visual back. The other end of
the tele-extender screws directly into the T-ring on the camera. This has the effect
of dramatically increasing the focal ratio of the telescope, sometimes into triple
digits! Tele-extension photography can be extremely challenging because with so
much power,it can be difficult to focus the telescope and like with the CCD imager,
field of view is agonizingly small.This can make it difficult to even find your target,
never mind focus on it and shoot. If you get good at it though, the results are well
worth it.
Long-exposure astrophotography requires that the telescope be carefully guided
throughout all the time the shutter is opened. If the target is allowed to drift, the
result will be a badly streaked image. Modern clock drives are very good at track-
ing objects,but no motor drive is perfect so you will always need to correct in right
ascension. With an extremely accurate polar alignment and a perfectly level tele-
scope, you can eliminate the need to correct in declination. Still, very few of us are
that good or that lucky so some minor declination correction will almost always
be required as well. To make these corrections, you will first need a control device.
This is a simple four-button (up, down, left, right) hand-held box that connects via
a telephone-style jack to your drive base. It controls the right ascension correction
by speeding up or slowing down the motor in response to your commands. For
declination corrections, commands are sent to an external motor that inputs the
north–south correction. The motor, normally purchased separately, connects to a
power port on the telescope drive base. Using these motors draws a lot of power
from your telescope battery, so be prepared to plug into either a larger DC battery
or some source of AC power with a DC inverter. Most telescopes come with equip-
ment to allow you to do the latter while DC/DC adapters (to plug into your car’s
cigarette lighter) are readily available.
Now that you have the means to make corrections, you need to be able to see
what you are doing. With the camera shutter open, there is no means to look
through the telescope to see the target. There are two ways around this problem.
The old fashioned way is to mount a guide telescope on top of the main telescope.
The Integrated Observing System. Part II: Your Equipment 37
Human Vision and the Night Sky
This is usually a 2–3 inch refractor with a high-power eyepiece. The guide scope
is mounted precisely in line with the main telescope so that by keeping the target
object centered in the guide scope, you also keep it centered in the main scope. The
advantage of this apparatus is that you can use the target itself to guide the tele-
scope. This is a huge advantage if you are imaging a moving object, such as a close-
by comet. The problem with the guide telescope is that if you are photographing
a faint deep-sky object in your main telescope, it may prove too faint to see in the
guide scope.
Most owners of Schmidt–Cassegrain telescopes prefer to use an off-axis guider
for controlling the telescope. The off-axis guider connects directly to the rear cell
of the telescope. Most of the light passes directly through the guider body to the
camera. A small amount of light is redirected by a prism to an eyepiece at a 90-
degree angle to the light path. This allows the observer to see a small amount of
the field of view and pick a target to guide on. The advantage of the off-axis guider
is that you can take advantage of the full light gathering power of your telescope
to find a guide star. The problem with this system is that you cannot see the actual
object you are trying to photograph. The prism does not extend that far into the
light path. You must aim and focus the camera carefully, then hope that the off-
axis guider is able to view a star onto which you can focus, center and guide the
telescope.
A CCD camera adds to the aim, guide and focus difficulties because you cannot
view through it at all. Attaining a proper focus is a difficult process of trial and
error. This is very frustrating because image quality is very dependent upon a very
precise focus. The range of focus position is literally only a few hundred microns
wide.To help aim and focus,many amateurs now use a device called a“flip mirror.”
The flip mirror uses a fixed mirror that directs light to an eyepiece that allows the
viewer to see exactly what the camera will see. When the target is centered in the
eyepiece, the mirror is then retracted out of the way allowing the light to go to
the camera.Once the camera is focused once,you can bring your eyepiece to focus.
Then all you will need to do is center and focus in the flip mirror, and you will
have a point and shoot CCD setup. The flip mirror can also be used for 35-mm
photography provided it is large enough to allow the entire field of view to reach
the camera. If the field of view is smaller than the camera frame (due to the
obstruction of the flip mirror) then you will see the circular edge of the field of
view on the frame, a phenomenon called vignetting. I use the larger of two flip
mirror models offered by Meade. Some more modern CCD cameras will allow you
to view real time video. This makes aiming and focusing easier, but it only works
with the brightest of objects.
When you buy any photographic accessory, make absolutely certain that it is of
sound construction so as to avoid any mechanical flexing caused by the weight of
the camera. If the camera or CCD is allowed to bend the mount by even a few mil-
limeters, then the light path will no longer fall into the center of the camera’s field
of view. This was a key selling point in selecting the Meade flip mirror. Other
devices that I tried caused the camera to flex slightly off the telescope’s optical cen-
terline. T-rings and adapters and tele-extenders are less than $40 each but the flip
mirror and illuminated reticule eyepiece can set you back close to $400 if you go
for larger models.
38
Color Filters
When you view through your telescope,you are viewing the full range of the visible
light spectrum. There are times however when seeing all the light is not necessar-
ily the best thing. Certain features stand out when certain wavelengths of light are
eliminated. Viewing Mars through a blue filter brings out details in the planet’s
atmosphere and clouds. This occurs because most of the planet’s dominant red
color cannot pass through the filter. A yellow filter will emphasize the presence of
dust in the atmosphere. Mars’s surface is best in a red or orange filter. An orange
filter can enhance subtle differences in the atmospheres of Jupiter or Saturn. A
neutral density filter reduces the brilliant glare of the Moon or Venus by simply
reducing the surface brightness and total light. When less than about 17 arc
seconds in diameter or close to the horizon,the disk of Venus can be nearly impos-
sible to detect because it is lost in its own glare.
Filters come in two types for Schmidt–Cassegrain telescopes. Eyepiece filters
screw directly into the eyepiece barrel. Make certain that when you buy eyepieces
that they have threaded barrels; some cheaper units may not be threaded. These
are simple filters that are easy to use. Eyepiece filters are also useful for tele-
extension photography since an eyepiece is always involved. For prime focus
photography, you will need a drop-in filter. These filters are inserted into the
telescope’s visual back before it is connected to the scope. The drop-in filter will
also work for visual applications.
A set of six filters can typically be purchased for a modest price from astron-
omy equipment retailers for as little as $75. If you intend to do both visual and
photographic observations, the drop-in set is probably best for you since the filter
can be “dropped in” to a visual back, T-adapter or off-axis guider.A typical set will
include red,blue,green,orange,yellow and a neutral density filter.If your telescope
is a refractor or Newtonian reflector, you can only use eyepiece filters.
The Integrated Observing System. Part II: Your Equipment 39
Figure 2.8. Color
filter set. Photograph by
author.
Random documents with unrelated
content Scribd suggests to you:
que nos iriamos en breve, acordó de irse á concertar con otros
Principales para matarnos en tierra á todos, y por la mar tenian
prestos canaluchos armados y llenos de mucha gente, para barluar
en el Navio y tomarlo, y este fué su intento. Y ansi Viernes á la
noche que se contaron dos de Marzo, venia por tierra mucha gente y
por la mar con los canaluchos con proposito de cortarnos el amarra
de fuera, y los de tierra alar por el prois, para que el Navio diese á la
costa y fuesen señores de nosotros, y ansi nosotros Rezelandonos
de que de tierra no nos viniese algun daño por estar muy cerca,
acordamos echar unos perros que teniamos, en tierra, para que en
ella hiciesen vela, y nosotros en el Navio, y haciase tan buena que
los que velavan en el Navio á la grita de los perros en tierra que
arremetian bravamente con los Indios, me llamaron diciendome les
parescia haver gente en tierra, por la braveza que los perros tenian,
y ansi me lebanté y miré ácia tierra, y conocí que havia gente, y
luego miré á la mar y ví tres canaluchos grandes, y ansí nos
apercevimos todos con nuestras armas; y como ellos sintieron que
nosotros estavamos despiertos bolvieronse con los canaluchos detrás
de una punta; y allí echaron toda la gente y armas en tierra, por ser
en parte que entendian que desde el Navio no los podiamos ver, y
ansi se estuvieron hasta la mañana; y ansi en amanesciendo
vinieron los dos á bordo muy toldados y empabesados con
muchachos al remo, y dos ó tres Indios amarrados como que venian
á benderlos y á rescatar, como que nosotros no les entendiamos su
bellaqueria, y dentro de la una dellas venia el Viban con un Principal
á quien él tenia respeto, y como nos vió armados y con los
arcabuzes en las manos temió, y alzó las manos como otras veces
solia hacer, y luego nosotros fuimos fronteros del Navio con nuestro
Batel, y el Viban no nos habló, antes se fué luego á llamar los Indios
segun entendimos, y no paresciendonos bien fuimonos á nuestro
bordo, y acordamos de nos hacer á la vela; por que no era cosa de
esperar mas, viendo la gente de la Isla tan alborotada, y que se nos
atrevian; y ansi comenzó á acudir alguna gente, aunque los
Principales devian de ser idos á llamar y juntar los mas que
pudiesen; y ansi vino la noche, y otro dia Domingo de mañana que
se contaron quatro de Marzo salimos deste Puerto y de Mindanao,
aunque no dexaramos de estar allí otros quinze ó veinte dias
esperando el Armada, sino fuera por temor de ver la gente tan
escandalizada, aunque haviamos estado en ella treinta y tres dias, y
ansi dexamos en ella muchas cruzes, y una botija con cartas al pié
de una cruz, por que si el Armada alli viniese, supiese lo que nos
havia sucedido, y la derrota que llevabamos en su busca; y hecho
esto partimos de este Puerto, Domingo por la mañana, y ansi como
fuimos á fuera cazamos á popa la vuelta del Sudueste, y fuimos otro
dia á ver la Isla de Saragan, y vimos que no estaba allí el Armada, y
no pudiendo surgir en ella atravesamos á la Isla de Mindanao por ser
Isla grande, que terná de tierra como ciento y cinquenta leguas, y
por que en ella hay muchos puertos; y ansi llegamos este dia á dar
fondo en un Puerto, y estando para querer dar fondo vino un
canalucho á nuestro bordo, y los Indios que venian dentro hablavan
muchos vocablos españoles, y nos preguntaron si veniamos de
Malaca ó ivamos á los Malucos: nosotros les respondimos que no,
que eramos venidos de hacia Levante: espantabanse mucho de
como no los entendiamos, y en esto conocieron que eramos venidos
de lexas tierras y ansí no osaron llegar á bordo, y en todo lo que
hablavan nombravan Capitan y Señores, y zaraguelles, y otras cosas,
y ansi nos paresció que havian llegado por allí Portugueses muchas
veces, y ansi nos señalaron haver visto allí tres Navios, los quales en
su lengua llaman Mito, y entiendo debian de ser de las Armadas
pasadas, que han venido en estas Islas, y ansi no surgimos, antes
nos hizimos á la vela, y fuimos vaxando toda la Isla, viendo muchos
Puertos y muy buenos, y siendo tan abante como media Isla vimos
una Bahia grande que estaba diez leguas por la tierra adentro, y ansi
fuimos al cabo desta Bahia á dar fondo, y allí estuvimos dos dias sin
ver poblacion ninguna ni señal de haber portado por alli Navio
ninguno; y ansi fuimos en tierra, por ver si veiamos algunas cruzes
del tiempo pasado, por parescernos ser Puerto principal de aquesta
Isla, y por hacer nuestra aguada; y como no vimos muestra ninguna
ni señal, hizimos nuestra agua, por no haver defensa de Indios, y
estando haciendo el agua me aparté por el monte, donde vi tanto
rastro de benados, que era, maravilla; é ansi tomamos el Piloto y yo
dos perros que traiamos, y salimos con ellos á un raso donde
descubrieron un benado y le mataron; vimos cantidad de gallinas
montesas por toda la Isla, donde anduvimos, y muchos puercos, y
ansi nos bolvimos á nuestro Navio, con proposito de nos hacer á la
vela y seguir nuestro camino en busca de la Armada, y venida la
noche saltó el viento á la tierra y echamos mano á nuestro cable
para levarle, y no pudimos por estar empachada el ancla en una
piedra que por mucha fuerza que hizimos al cabestrante no pudimos
levarla, y ansi nos detuvimos dos dias que por mucho que hizimos
no la pudimos levar, y visto que perdida estava el ancla eramos
nosotros perdidos, por que un Rezon que traiamos se nos havia
quedado en Mindanao quando se nos quebró el cable: visto esto,
estando en esta confusion rogamos á Nuestra Señora todos los que
en el Navio ivamos, que ella lo guiase como fuese mas servida, y
ansi fué servida de darnos nuestra ancla sin daño en ella, ni en
cable: largamos esta noche una vela y fuimos saliendo del Puerto:
calmonos el viento esta noche, y metionos el aguage, en una
ensenada enfrente de unos fuegos que tenian unos pescadores, y
por el propio fuego vimos que estavamos cerca de tierra: entonces
el Piloto mandó á los Marineros que entrasen en el Batel, y que
tomasen un remolque para sacar el Navio fuera, é yendo ansi
remolcandole, vió el Piloto blanquear por proa, y preguntó á los del
Batel si era baxo, y uno dellos con el remo fué á sondar y halló que
habia medio remo de agua; y visto esto hicieron ciaboga con el Batel
al Navio, y ansi salimos aunque con arto travajo; á pique de este
arracife havia veinte brazas y por toda la Bahia habia veinte y á
treinta; y ansi fuimos por la costa abaxo viendo muchos Puertos y
Pueblos, y en muchos llegamos á surgir por ver si podiamos ver
algunas señales de la Armada, ó de Navio que por allí huviese ido, y
como no hallamos señales pasamos de largo, é yendo de luengo de
costa vino una alva de mañana una vela á tierra de nos muy grande,
y que ninguno que en aquellas Islas huviesemos visto, y ansi
amuramos para ir en demanda dél, y como estuvimos cerca vimos
que era un Canalucho grande ó Junco: llegamos á él para ablalles, y
ellos pusieronse en arma, y entonces por señas les diximos, que no
les queriamos ninguna cosa: ellos no curaron desto, antes como nos
vieron cerca se pusieron apercevidos, y nos comenzaron á tirar con
las armas que traian, que son baras tostadas, y lanzas con muy
buenos yerros, y flechas, y ellos con sus escupiles de algodon como
los de la Nueva España, con sus tablachinas y alfanjes en las manos:
visto esto se les tiró con un berso, el qual dió dentro é hizo daño en
él que lo medio desaparejó, y ansi el del timon se descuidó y el
Navio dió una guiñada, de manera que nos barluamos, y visto esto y
que tan mal desde él nos tratavan, se les tiró con otro berso, y ansi
entraron dentro seis hombres, y ellos se echaron al agua: todos
serian como unos cinquenta Indios: todo lo que hallaron estos
hombres que entraron en él, fué gran cantidad de arroz, y mantas
de palma y de algodon, y de frisoles y cocos, y pesos y medidas de
oro, y otras cosas de su comida: mandoseles tomar un poco de
arroz, por la necesidad de bastimentos que traiamos, y tomaronsele
algunos pesos de palma y algodon, que todo ello valia arto poco:
largamosles su Junco llamandoles viniesen por él, entendiendo
segun la derrota que estos llevaban ivan á rescatar á otra Isla.
Ansi pasamos de largo por la derrota que llevabamos, y otro dia
en la noche yendo amurados la vuelta de tierra, por meternos al
abrigo della por el mucho viento que hacia, pareciendole al Piloto ser
aquel cavo de la Isla, se fué á proa del Navio por que havia visto
blanquear la mar, parenciendole ser un baxo, pidió la sonda, y antes
que se la traxesen varó el Navio en un arrecife de tal manera que
pensamos perder allí todos las vidas, y quiso Nuestra Señora, que
dando el Navio viró la proa á la mar, dando golpes de manera que
nos echó el timon fuera, é ansi salimos sin rescivir daño ninguno el
Navio, y luego en saliendo fuera del baxo cayó el timon en su lugar,
y fuimos corriendo con nuestra derrota, viendo todos los Puertos y
Ensenadas, como no víamos á que parar, pasamos de largo hasta
que llegamos al cabo desta Isla de Mindanao, y en el cabo de la
tierra tiene muchas Islas apartadas á tres y á quatro leguas y mas;
ansi nos entramos por entre el cavo desta Isla, y las Islas de fuera, y
allí surgimos por que es todo aplacelado y buen fondo, que hay diez,
y doze brazas, y hay muy grandes corrientes, de tal manera, que si
el cable no es nuevo rebentara con la fuerza del agua; ansi de
creciente, como de menguante, crece y mengua mucho: todo el
pescado que hay entre estas Islas, viene á desobar á estas
corrientes, y que estando nosotros un dia surtos esperando la marea
para desembocar de entre estas Islas, vimos venir muchos
canaluchos atravesados con la corriente, los quales venian cargados
de Indios Pescadores, y llegando á nuestro bordo vimos que traian
los canaluchos llenos de pescado y preguntamosles por señas ¿si lo
querian vender? respondieron, que sí, y ansi les rescatamos mucha
cantidad dello: lebamonos de aquí y desembocamos de fuera destas
Islas, y fuimos á dar fondo en tierra de la Isla de Mindanao, y
salieron á nosotros muchos canaluchos cargados de cera y canela,
rescatasmosles parte dello para comer, y alguna cera, para que si
algo se ofreciera de calafateria breasemos con ella. Hay por aqui
tanta cantidad de canela, que si un Navio llevase rescate en dos dias
puede cargar.
Despues que nos vinimos al cavo desta Isla que haviamos corrido
toda la parte del Sur, y no haviamos hallado señas del Armada, y
pareciendome que no era bien correr al Sur en demanda de otras
muchas Islas que hay, lo uno por no llevar mas de un ancla, y lo otro
con temor no diesemos con Portugueses, de que nos vendria mas
daño, y tambien por no saber lugar cierto donde esperar el Armada,
ó Isla cierta donde el Armada havia de venir, ni por instrucción me lo
dieron no sabiendo que nos hacer, me dixo el Piloto ¿si traia alguna
instruccion ó savia del General, ó de otra alguna persona, en
demanda de que Isla venia el Armada? y el Piloto me mostró en la
carta las Islas Filipinas: yo le dixe: que no savia ninguna ni tal me
havian dicho, ni quando del Puerto partimos no savia adonde
ivamos; y ansi acordamos que era mejor dar fin á toda la Isla, y
boxandola, de allí atravesar á las Islas de Magallanes, que son las
primeras que se pueden tomar viniendo de la Nueva España, y por
haber ya allí estado el Armada de nuestro Emperador, y tener
entendido venir allí el Armada, acordamos de ir en demanda desta
Isla, y ansi fuimos costeando la Isla de Mindanao, y por la parte del
Norte barloventeando, y con arto travajo fuimos á dar fondo, el cual
tenía un Pueblo grande, y luego como dimos fondo vinieron á
nuestro bordo ciertos canaluchos cargados de cera y gallinas y
puercos, y cantidad de canela: no le rescatamos nada desto por que
no teniamos con que: pusimosle por nombre el Cavo de la Canela,
por que havia mucha cantidad: está este cavo en siete grados y
medio, y ansi fuimos por la derrota que llevabamos, y habiendo
caminado por esta vanda como treinta y cinco leguas, fuimos á dar
fondo en un Puerto, en el qual vimos un Pueblo en un alto, grande,
y por encima unas palmas de cocos, y ansi como nos vieron que
dimos fondo, tocaron una bozina ó corneta, que fué llamar á recoger
los canaluchos, y gente que estava fuera del pueblo, y en viendola
tocar venian muchos canaluchos derechos al Pueblo, y ansi se
recogieron todos que no quedó ninguno por la mar. Este dia vinieron
á nuestro bordo dos canaluchos, y de fuera nos hablaron, y como
vieron que no los entendiamos, dieron vuelta á su Pueblo, y aquella
noche nos hizimos á la vela pareciendonos ver la gente ruin, y ansi
como fuimos fuera en la mar, cargó tanto la brisa que de fuerza nos
hizo arribar á este mismo Puerto, aunque una legua abaxo por estar
más apartado del Pueblo; y ansi llegamos á dar fondo a una punta
que parescia Isla respecto de un rio que la atravesava, y echamos el
Batel fuera para tomar agua y leña, de que teniamos necesidad, y
ansi se principiaron á tomar el dia siguiente, y estando tomando el
agua, dixo el Maestre que queria quedarse en tierra labando su
ropa, y con el un Mozo y un muchacho para labar la ropa de todos, é
yo acordé de me quedar en tierra, por no ir ni venir tantas veces en
el Batel, é por dar orden en tierra que se hinchasen las vasijas; y
haviendo echado dos ó tres caminos en el Batel, y al camino
postrero estaban ya todos en la orilla de la mar, salieron del monte
un golpe de Indios con sus lanzas y tablachinas con tanta furia
arremetiendo á los nuestros hiriendolos, y ellos como no tenian
armas acogieronse al Batel, y del Batel con los remos botando fuera,
y defendiendose, bolvieron á bordo: huvo hombre dellos que truxo
nueve heridas, algunas de á palmo, el qual herido fué el Maestre,
que por escapar la ropa que havia labado llevó las heridas y quedose
sin ropa, y á todos los demas nos dexaron con la ropa que teniamos
en el cuerpo.
Quisimonos hacer á la vela este dia, y no pudimos por el tiempo
ser ruin, y de ahi dos dias abonanzó el tiempo, y nos hizimos á la
vela por nuestro camino; y estando de este Puerto quatro ó cinco
leguas, cargonos mucho la brisa, y tambien por ser este el cabo de
toda la Isla, atravesamos á las Islas de Magallanes, que son tres
Islas principales, la una es costa de cabo de Matanzas, y la otra es
donde murió Magallanes, y la otra Bahia de Macadaos, y ansi fuimos
en demanda dellas, que estan todas tres del Este U-este, y á la vista
de la Isla de Mindanao, que estarán della como quinze leguas;
boxamoslas por la parte del Norte y entrando por la primera dellas
que es costa del cabo de Matanzas empezamos á hallar tierra de
poco fondo, el qual fondo hay destas Islas á los Malucos, y por
encima de este placel hay tantas Islas, que nos paresció entrar en el
Archipielago, y bien lo podemos decir por que hay muchas mas, por
que andando entre ellas no sabiamos por donde haviamos de salir, y
todas estas Islas son pobladas de mucha gente y son Islas pequeñas
de á diez leguas, y de á seis, y de á quatro, y todas las demas de á
dos, y de una legua, viven en alguna de estas Islas, principalmente
en la de Mindanao, y algunas de estas otras pequeñas sobre arboles,
y ansi tienen las casas como picazas en los mas altos arboles, que
tendran á diez y á doze brazas de alto: paresceme que todas estas
Islas pequeñas estan sugetas á la Isla donde mataron á Magallanes,
por que haviendo quatro ó seis dias que andavamos por entre estos
baxos é Islas, fuimos á dar fondo á una Isla pequeña que estaba
pegada á la en que mataron á Magallanes, vimos de noche hacer
tres fuegos, y paresciendonos que era señal por que los que traian
los fuegos andavan por la playa, y pararonse enfrente de una Isleta
pequeña que estaba á la mar de nosotros, y en levandonos por la
mañana vimos venir atravesando once canaluchos cargados de
gente, los quales venian desta Isleta pequeña huyéndola, y
desamparando la Isla por la seña que la noche de antes les havian
fecho: y ansi pasamos por barlovento de estos canaluchos, que si los
quisieramos embestir bien pudieramos, antes no quisimos arribar
sobre ellos por no metelles temor: ansi se fueron á la Isla donde se
les hizo la señal. La Isla donde estos salieron, tenrá un tiro de
ballesta, y sin arboleda, cercala toda un arracife, de tal manera, que
con pasar dos leguas della fuimos por dos brazos y tres, quatro ó
cinco horas, corriendo con buen tiempo, dexando la Isla de Cabo de
Matanzas, y entrando por la de donde mataron á Magallanes. Entre
esta Isla y muchas Islas que estan de la parte del Norte, que son
Islas muy pequeñas, vimos las Islas pequeñas de fuera tan cerca de
la Isla donde mataron á Magallanes, que me paresció no haver parte
por donde salir, por ver tantas Isletas por la proa, y visto esto se fué
el Piloto á la Gavia, y dende allí vió que devian (sic) estas Islas á la
de donde mataron á Magallanes, y fuimos corriendo con la sonda en
la mano por quatro y tres brazas, por que aunque rodeamos treinta
leguas ni quarenta no hallaramos mas agua de aquestas tres brazas,
por lo qual antes y despues vimos, que los naturales que en estas
Islas se crian, tengo entendido que si caminan diez leguas por entre
estas Islas se perderan, por que en cada diez leguas hay cien
Isletas, y todas pobladas de gente y especeria; y ansi yendo por las
tres brazas vi por la proa á una mancha prieta, y fué el Piloto á la
proa y conoció que era baxo y mandó que fuese á orza de golpe, y
con las velas encima dimos fondo á una ancla, y quando cayó el
ancla dexó el cepo encima del agua; y visto el Piloto que estavamos
encima del placel, mandó tomar las velas muy de presto, y acabadas
de tomar empezó el Navio á dar culadas en el baxo, y viendo esto el
Piloto mandó echar el trinquete arriba para que con él y la Mesana
saliese fuera el Navio, y ansi como levantamos el ancla tomava el
Navio ruin buelta, y todas las veces lo hacia ansi, por respecto de la
mucha corriente que aquí andava en este placel, y no sabiendo el
Piloto que hacer, acordó que con la verga de la cevadera botasen
dos hombres el Navio para que tomase la buena buelta, y ansi salió
el Navio sin daño ninguno, y fuimos corriendo de luengo destas Islas
siempre por mucho placel, aunque en algunas partes se podia dar
fondo por ser limpio.
Yendo dexando estas Islas donde mataron á Magallanes
pareciome que quedaban todas estas Isletas, y otro dia de mañana
emprincipiamos á costear la costa de la Isla del Cavo de Macadaos, y
vimos por la parte del Norte dellas tantas Islas como las de atras,
que si temor tuvimos de las pasadas mucho mas en ver estas por el
mucho arrecife que tenian, y por las grandes corrientes que havia,
que nos ponian cada dia en tanto travajo y la noche en mucho mas,
que ya no havia hombre en el Navio que se pudiese tener con dar
fondo y tomar velas, y de velarnos de los Enemigos, y velar el cable,
por que si perdiamos el ancla no nos quedava otra, que este era el
mayor travajo que en el Navio se sentia. Dexada esta Isla de
Macadaos vimos otras muchas Islas sin baxos ni placel ninguno, sino
de mucho fondo, y en esto conosció el Piloto ser las postreras Islas:
yendo corriendo entre ellas vimos muchos Pueblos cerca de la mar, y
Islas de muy buen parecer, no pudimos dar fondo en ninguna dellas,
y ansi pasamos de largo; y una tarde que fué Jueves Santo en la
tarde yendo prolongando una Isla grande, que al U-este dellas havia
otras Islas grandes y altas, y al Leste no parescia ninguna, y ansi
entendimos que era el cabo de todas las Islas, y el agua corria por
fuera reciamente, quisimos desembocar por vernos ya fuera de tanto
travajo, vió el Piloto reventar un arrecife por la proa, mando arrivar
por dar esta noche fondo en la Isla, y esperar á la mañana, y
estando cerca desta Isla se hizo muchas Islas, y en medio no havia
fondo, y el agua corria tan recio que nos metió por una angostura
que apenas cavia el Navio, y el sol puesto y la noche escura, y los
Indios de la una banda y de la otra tocando cornetas y bozinas, que
sonaban dos leguas y mas, y el Navio por esta angostura dando
muchas bueltas por causa de la mucha corriente y poco viento, que
no havia ninguno: fué tanta la corriente que en un quarto de hora
anduvimos quatro ó cinco leguas[10] yendo por este estrecho, con
arto travajo y temor de que no nos acosase el agua ó algun baxo
donde nos perdiesemos, que segun lo que viamos aquella noche no
podia ser menos: andando en este travajo vimos atravesar un
canalucho cargado de gente á dar aviso á la otra vanda del estrecho,
el qual llevaba la sonda en la mano: dixo, fondo, y ansi con vela y
todo dimos fondo á una ancla, y tomamos presto nuestras velas, y
quando el Navio vino á hacer por el amarra echava fuego el
abita[11], ansi largamos el cable hasta la punta, y ansi estuvimos el
primer quarto en vela que menguava el agua, y de media noche
abaxo principió á venir la creciente, venia con tan gran peso de agua
que parescia que se abria la tierra, y en esto conosció el Piloto que
era macareo, y ansi se fué á popa y se puso cabe al del timon
mandandole governar toda la noche; yo quedé á proa
encomendando la via, porque á tomar el Navio atravesado la
corriente tampoco aprovecharan diez cables como uno, y luego en
amanesciendo el agua fué pleamar, y mandó el Piloto á un Marinero
subir á la Gavia, para que mirase por la parte de la mar si rebentaba
algun arrecife, y dixo, que no havia ninguno, sino las Islas que nos
tenian cercados; y queriendonos levar vimos venir cinco canaluchos
toldados y empabesados que parescian Galeras; y en cada uno
venian cien hombres: llegaronsenos por popa y comenzaron á alzar
las manos en señal de paz, y nosotros hizimos lo mismo, y
llamandoles que se llegasen á bordo, deciannos por señas que
fuesemos á su Puerto; y tan claro lo decian como uno de nosotros,
por que preguntaban por el Capitan y Piloto, nombravan Navio y
Batel. Ya que estavan cerca de bordo meneó un Marinero un berso
de los que estaban para en defensa nuestra: viendo esto ellos
hizieron ciaboga con los canaluchos, de manera, que no osaron
llegar á bordo: paresceme que estos contratan con Portugueses, de
Maluco, por que estan muy cerca destas Isletas; y de alli nos hizimos
á la vela la buelta de la mar, aunque con mucho travajo por doblar la
Isla que teniamos mas cercana, huvieramos de dar á la costa por
falta de viento, y ansi anduvimos aqui dos dias barloventeando,
aunque por la parte del U-este no havia Isla ninguna, y esta noche
nos quadró bien el viento y fuimos por el tenor deste, y pensando
que haviamos doblado todas las Islas amanescimos con Islas de
Cavo, y tanto en tierra que de una buelta ni de otra la podiamos
doblar, y ansi nos dexamos ir de aquella buelta pareciendole al Piloto
que era lo mejor, y el viento cada vez nos abonanzava, y la mar
mucha que nos arronçaba en tierra, y hechose la sonda abaxo
muchas veces no se halló fondo ninguno de que nos pesó arto, por
que alli no havia remedio si no era con dar fondo, y como vi que no
lo havia acordé que sacasen remos y remasen todos, y ansi
travajaron todos este dia todo lo que se pudo trabajar, y andando
con este travajo nos proveyó Nuestra Señora con un poco de viento
con que doblamos esta Isla con el costado de luengo de un arrecife
que della salia; y vistonos fuera desta Isla que no havia otra
ninguna, y no saviendo que camino llevasemos, por que
bolviendonos á meter en estas Islas era perdernos, hablé al Piloto y
le dixe: que ya veia en la parte que estavamos, que era fuera de
todas las Islas: el me dixo, que lo que á mi me paresciese y mas en
servicio de S. M. fuese, se hiciese: yo le dixe, que mirase bien lo que
deviamos hacer en esta navegacion, y que procurase tomar derrota
y camino que fuese en servicio de Dios y de S. M. y del salvamiento
de todos; y ansi estando pensando lo que haria, tomando la carta en
las manos tanteandolo muy bien, y visto los inconvenientes desta
navegacion me dixo, que lo mejor dello era dar buelta á la Nueva
España, pues venia el verano y metidos en el altura por la parte del
Norte nos quadrarian los tiempos y harian nuestra navegacion, y que
ansi era mejor que no ir en poder de Isleños, ó de Portugueses,
como las demas Armadas han hecho que á esta tierra han venido; é
yo entendiendo esto, le dixe, que mi parescer era aquel, que mas
queria morir en la mar en servicio de S. M., que no perescer entre
esta gente, y que pues el intento de S. M. era descubrir esta buelta,
y nosotros no podiamos topar el Armada, que mi determinacion era
acavar este viaje ó morir, y ansi hablé á Pedro de Rivero y le dixe,
que él y el Piloto baxasen á ver los bastimentos y que viesen el
agua, y pan que teniamos, y hallaron ocho pipas de agua y veinte
quintales de mazamorra[12] por que en aquello se havia convertido
el vizcocho, y haba y garvanzo; y ansi bolvieron y me dixeron lo que
havia, y que á las pipas del agua les faltava á quatro y á cinco
arrobas de agua, y luego hize proveer un hombre que tuviese cuenta
con ello, y todas las veces que se dava racion abaxava uno de
nosotros á vello, pues nos iva la vida: sabido por alguno de los que
en el Navio venian la determinacion mia, andavan medio amotinados
por verse cerca de los Malucos, que habria como veinte leguas, y
decian que en ellos havia Portugueses, y que á la Nueva España
havia dos mil leguas, y que era imposible descubrirse por el ruin
recaudo que llevabamos de bastimentos, y de todo lo demas que
havian oido de las demas Armadas; y ansi quisieran ir mas á los
Malucos que no venir acá; pero no era parte ninguna cosa, por que
mi determinacion era lo que tengo dicho, y dexallo en las manos de
Dios y de su bendita Madre, en el nombre de quien dexamos esta
Isla de Cabos para dar principio en esta nueva Navegacion.
LA VUELTA.
Y luego el dia siguiente que fué dia de Pasqua de Resureccion
que se contaron veinte y dos dias de Abril de este presente año de
mil e quinientos y sesenta y cinco años, nos hizimos á la vela en
demanda de la Nueva España, y ansi como partimos fuimos
navegando al Norte por ser la brisa escasa, y el otro dia del Nor-
nordeste, y quando nos fuimos apartando de la tierra ansi nos iva el
viento alargando: pasados quatro dias ivamos corriendo á Leste y
Les-Nordeste para meternos en el altura é ir en demanda del Pago
mejor, que es una Isla grande que está treinta grados, y de la parte
del Sur tiene tres ó quatro Islas pequeñas, y de la banda del Norte
tiene la tierra firme de la China muy cerca, segun la carta lo
demostrava, y segun las señas que vimos de palos y aves de la tierra
y corrientes las quales nos favorecieron mucho: haciendose el Piloto
cerca desta Isla nos dieron unos aguazeros con mucho viento
Susueste, con el qual pasamos entre esta Isla del Pago mayor y las
demas que quedavan al Sur, sin ver ninguna dellas, y paresciendole
al Piloto que havia pasado por ellas, mandó governar al Nordeste,
por que hasta allí venimos al Este por dar en estas Islas y ansi
fuimos por el Nornosdeste corriendo hasta meternos en altura de
quarenta grados, y llegados que fuimos á treinta y uno descubrimos
un peñol del tamaño de una casa pequeña, y tan alto que dudo
haver en el mundo torre mas alta, ni á un tanto é sin baxo, ni
arrecife ni otra cosa cabe él, sino sola la mar; havitan en este Peñol
unos Alcatrazes mayores que Abestruzes; y ansi fuimos corriendo
por el Nordeste, y antes de llegar á los quarenta grados nos seguian
unas Pardelas negras dando muchos gritos de dia y de noche; y tan
espantosos que ponian grima á quien las oia, por ser aves que
jamás Marineros las havian visto gritar: yendo corriendo hasta los
quarenta grados por este rumbo nos cargó mucha brisa con la qual
estuvimos ocho dias mar en través: corren las aguas á la vanda del
Norte, por que haviendonos puesto mar en traves en quarenta
grados que no tomamos el altura dentro de ocho dias nos hallamos
en quarenta y tres grados por la causa de las corrientes con arto
travajo, y estando ansi vimos venir nadando á bordo un perrillo de la
mar con sus pies, y manos, y colas y orejas naturalmente, un
raposo; y despues vimos otros, y uno se vino á bordo y nos
comenzó á ladrar, cosa de que todos nos admiramos, por que
entiendo que no hay ninguno que los haya visto: tambien vimos por
este golfo pejes puercos del tamaño de una baca. Estando en esta
altura fué tanto el frio que pasamos, que en ninguna parte creo lo
hace mas en Ivierno, aunque nosotros veniamos en medio del
Verano que fué por Junio y Julio; paresceme que en tiempo de
Ivierno pasaran trabajo los que por alli navegaren; pero con venir
aforrados lo pasaron todo: hay grandes serrazones, tanto, que en
treinta dias no vimos sol ni estrella, y ansi venia el Piloto corriendo á
tiento y por espiriencia; aqui vi á onze de Junio dia de San Bernavé
que es el mayor dia de todo el año conforme á la altura que
estavamos, nebada toda la cubierta, y duró hasta medio dia, y
debaxo de cubierta teniamos una bota de aceyte, y se heló de tal
manera que sino fué puesta al fuego no queria salir, y aun ansi salia
á pedazos como manteca.
Hallandose el Piloto abante del Pago mayor quinientas leguas,
vimos muchos palos y aves, las quales creo son de la tierra firme de
la China, la qual biene á fenescerse muy cerca de la Nueva España,
por las señales que vimos en las dos tercias partes del camino, y
ansi viniendo por los quarenta grados, entendiose estar cerca de la
China, de la costa de la Nueva España hasta quinientas y treinta
leguas, poco mas ó menos, conforme á el punto que el Piloto traia
por la carta: un dia tomó el Sol por que este fué claro, y el primero
que vimos al cavo de un mes: hallamonos en quarenta y tres grados,
y aunque quisiera enmendar el punto que en la carta traia para
ponella en los quarenta y tres grados, no havia en la carta mas mar,
y ansi mandó correr al Este por no subir mas altura, y por llevar
tiempos hechos, y ansi iva el Navio por los quarenta y tres grados, y
el punto de la carta por los quarenta por la falta dicha; y ansi
vinimos corriendo con arto travajo, por no haver pedazo de vela con
que poder remendar las velas, y ansi cortabamos las bonetas para
remendarlas, los papaigos; y despues que no habia bonetas
cortabamos de los propios papaigos para remendar las demas, y el
hilo con que se cosia era hilera, dimos tras los cordeles de pescar y
otros mecates delgados; y demas deste travajo criose tanta cantidad
de ratones que á palos andavamos tras dellos, y como havia poca
agua y ellos no tenian de que beber, arrataban las pipas de manera
que se nos fueron las dos dellas en dos horas, que nos pusieron en
tanto travajo, que no pudo ser mayor, segun la parte que estavamos
que era trescientas leguas de la costa de Nueva España, y con solas
tres pipas, y destas le faltava á cada una quatro ó cinco arrobas, y el
viento brisa que nos duró veinte dias, y en todos veinte no truximos
mas vela de los papaigos y mar mucha: comenzonos á dar en treinta
y ocho grados y dexonos en veinte y siete; pero el camino que
haziamos era al Sueste, por que el viento era Nordeste, y ansi
acordamos hacer vela á los ratones de dia y de noche con lumbre
encendida devaxo de cubierta, y quatro hombres de cada guardia, y
ansi mataban cada noche veinte y treinta ratones. Dexado que nos
huvo la dicha brisa se halló el Piloto cien leguas de la Nueva España,
y el viento en el Norte, que decia ser los envates de la tierra, y ansi
mandó governar al Este, y á la quarta del Nordeste, por cierta
diferencia que el decia haver en el ahuja, y ansi en el dia que se hizo
con la tierra que fué Martes en la noche á diez y seis de Julio,
mandó se hiciese buena guardia, y luego otro dia al quarto del Alva
se levantó y me llamó diciendo viniese á ver la tierra de la Nueva
España, y en viendola dimos muchas gracias á Nuestro Señor Jesu-
Christo por las mercedes que nos havia hecho. Venido el medio dia,
que estavamos cerca de la tierra tomó el Piloto el Sol en veinte y
siete grados y tres quartos, la qual tierra era una punta de una
ensenada grande, donde cae Isla de Corones, y ansi mandó cazar á
popa con el viento Norueste la buelta del Sueste, por que ansi se
corre esta costa: yendola corriendo este dia, á media noche nos dió
un poco de viento Sueste por la proa, el qual fué causa que no
diesemos en un baxo que teniamos por la proa, y venido el dia nos
hallamos pegados á él: dimos gracias á Nuestra Señora por las
mercedes que nos habia hecho en darnos aquel viento contrario, y
ansi pasamos de largo corriendo la costa con bonanzas y Suestes los
quales nos hacian surgir por la costa, y pasados tres ó quatro dias
de Suestes nos bolvieron los vientos al Poniente, vinimos corriendo
la costa hasta el Sabado que se contaron veinte y ocho de Julio:
estando tanto abante como la punta de la California, é yendola
atravesando esta noche cargó tanto tiempo del U-est Norueste que
con ir con los dos papaigos baxos en popavia corriendo, y viendo el
Piloto que cargava tanto el tiempo y la mar, acordó de mandar tomar
la vela mayor para correr con el trinquete solo, y ansi estandola
tomando nos dió un golpe de viento y mar y agua del cielo, que no
saviamos si ivamos por tierra, si por mar, y con la gran fuerza del
viento se les destomó la vela á los que la tomaban, que no se pudo
tomar por mucho que se hizo, y ansi descalabró á dos ó tres, y á dos
echó por la cubierta, y á la fin se hubo de encapillar el un penol con
la vela en el estay mayor, y el otro penol por el agua, é yendo con
este travajo nos dió un golpe de mar por la vanda de estribor que
entró todo el Navio y dió en la vitacora, y echó á la ahuja y á todo lo
demas, y á la lumbre que dentro estava, por la cubierta, y al del
timon lo mismo, y ansi nos quedamos sin lumbre y el Navio
atravesado, y medio sozobrado metido debaxo de la mar; y viendo
esto el Piloto mandó que quartelasen el trinquete para que arribase
el Navio, y ansi dió muchas voces y la gente estava turbada, que no
havia quien acudiese ni acertase con cabo ninguno por la grande
escuridad que hacia, y tambien por estar toda la gente enferma de
la grande hambre y sed que han pasado y pasaban, y aunque
huvieran que comer no podian por que á todos se les andaban los
dientes, y les creció mucha carne de la boca, tanto, que les tapaban
las encias, y en tocando en qualquier cosa se les caian los dientes; y
ansi plugo á Nuestra Señora que arribó el Navio, y la vela mayor se
hizo pedazos, y la cebadera, y bonetas que dentro estavan se las
llevó la mar; y ansi yendo corriendo con solo el trinquete que ya no
teniamos otra vela y á llevarnosla el viento quedabamos perdidos,
prometimos á Nuestra Señora de llevarle este papaigo á su casa de
Guadalupe en Mexico, por que no havia en el Navio mas que este, y
este era hecho de una boneta del papaigo mayor, el qual hizimos por
la mar, por que el papaigo que traiamos del trinquete nos le llevó un
viento que nos dió por quarenta grados en demanda de la costa de
la Nueva España, el qual viento nos dió del Sur, que son los tiempos
que en este golfo ventan recios, el qual viento nos hizo ir un dia y
una noche al Norte, por la fuerza y mar del tiempo, y al fin nos ubo
de desaparejar, y nos llevó el trinquete, y el que hizimos para
remedio fué el que nos traxo á la Nueva España, y por respecto
deste trinquete no sozobramos al atravesar de la California como
dicho tengo, y ansi rogamos á Nuestra Señora nos le guardase, y
ansi ella nos le guardó, á quien prometimos todos de se lo llevar á
cuestas todos á su santa casa de Guadalupe de Mexico, y ansi en
esta travesia fuimos corriendo con este tiempo hasta la mañana que
nos dexó, de tal manera, que nosotros y el Navio no estavamos para
ver, y ansi remediamos el papaigo mayor con cierto Ruan que traia
Pedro de Rivero, amigo mio, á cuya intercesion bino este Navio, y
luego acavó de remediarnos lo mejor que pudimos, saltó el viento en
el U-este con mucha furia, y fuimos corriendo con el amurados hasta
el Martes que fué postrero del dicho mes, y vimos al otro dia la tierra
de la otra vanda de la California, y tomó el Piloto el altura en veinte
y cinco grados y medio, y dixo, que havia distancia de donde
estavamos al Puerto ciento y quarenta leguas, y el otro dia que fué
primero de Agosto nos comenzaron los Ponientes bonanzas, y á las
noches aguazeros sin viento ninguno, y á las mañanas ventava el
Sudueste un poco, y vistonos con pocas velas, y que en el Navio no
havia dos varas de lienzo, acordó el Piloto que las frazadas que
teniamos para dormir se hiziesen bonetas para aprovecharnos de la
virazon de medio dia, y con el ayuda de Nuestro Señor y con la
buena industria llegamos al Puerto de la Navidad á nueve de Agosto
de mil é quinientos é sesenta y cinco años=Don Alonso de
Arellano=Lope Martin, Piloto.
Decreto.—En la Ciudad de Mexico á veinte y dos dias del mes de
Noviembre de mil é quinientos é sesenta y cinco años: Los Señores
Presidente é Oydores de la Audiencia Real de esta Nueva España,
haviendo visto esta relacion de Don Alonso de Arellano, Capitan del
Patax nombrado Sant Lucas que fué con la Flota del General Miguel
Lopez de Legaspi, al descubrimiento de las Islas del Poniente,
dixeron: Que mandavan y mandaron que el dicho Don Alonso de
Arellano, y Lope Martin, Piloto del dicho Patax, y los demas
Marineros y Soldados que entienden la Navegacion y cosas de la
mar, declaren con juramento, en forma de derecho, esta dicha
relacion, y todo lo en ella contenido, es cierta y verdadera, y lo
firmen de sus nombres para que se embie á Su Magestad; y ansi lo
pronunciaron y mandaron. Paso antemi=Bartholomé de Vilches.
Declaracion.—En la Ciudad de Mexico á veinte y dos dias del mes
de Noviembre de mil é quinientos é sesenta y cinco años: En
cumplimiento de lo proveydo y mandado por los Señores Presidente
é Oydores de esta Real Audiencia, por el auto de esta otra parte
contenido; estando presentes Don Alonso de Arellano, Capitan del
dicho Patax Sant Lucas, é Lope Martin, Piloto, é Juan Yañez,
Contramaestre, é Juan de Bayona, Marinero, que fueron é vinieron
en él á las dichas Islas del Poniente, yo Alonso de Segura, Escribano
de S. M. é de la dicha real Audiencia, les lei de berbo ad berbun esta
relacion presentada por el dicho Don Alonso de Arellano como en
ella se contiene, y haviendola oido y entendido, tomé é reciví dellos,
y de cada uno dellos juramento en forma devida de derecho por
Dios é por Santa Maria, é por una señal de la cruz tal como esta ✠.
Só cargo del qual les pregunté, si lo contenido en la dicha relacion
de lo sucedido en el dicho viage es verdad como en ella se contiene
é declara, é lo que cerca dello pasa, los quales haviendo absuelto el
dicho juramento dixeron: Que lo contenido en la dicha relacion, que
por mi el dicho Escribano les ha sido leyda, es lo que pasó en el
discurso de su viaje é navegacion que hicieron con el dicho Patax
San Lucas desde el dia que se hicieron á la vela en compañia de la
dicha Armada, de que fué por General Miguel Lopez de Legaspi, del
Puerto de la Navidad, hasta que tornaron á bolver á él, só cargo del
juramento que tienen fecho, y el dicho Piloto dixo: Que demás de lo
en la dicha relacion contenido, el particularmente declara, que las
derrotas y señas de tierra é alturas, es la verdad como en la dicha
relacion se declara, por lo haver ordenado y escrito en esta relacion
por lo que vió y entendió en la dicha Navegacion como tal Piloto; lo
qual dixeron ser la verdad só cargo del juramento que fecho tienen;
y el dicho Capitan Don Alonso de Arellano, é Lope Martin, Piloto, lo
firmaron de sus nombres, é los demas dixeron que no sabian.=Don
Alonso de Arellano=Lope Martin, Piloto=Pasó antemi=Alonso de
Segura, Escribano de S. M.
El qual dicho treslado fué corregido é concertado con la relacion
original de donde fué sacado por mi Bartholomé de Vilches,
Secretario de la Governacion de esta Nueva España, en cuyo poder
queda é testigos de yuso escritos, é de pedimento del dicho Don
Alonso de Arellano, é por mandado de los Señores Presidente é
Oydores de la Real Audiencia que en ella reside, dile por testimonio
firmado é signado de mi nombre é signo, en esta Ciudad de Mexico
á 27 dias del mes de Noviembre de 1565 años, siendo presentes por
testigos, Alonso de Segura, é Juan Perez de Echavarri, Escribanos de
S. M., é Bernardino Alvarez, estantes en esta dicha Ciudad.=En
testimonio de verdad=Bartholome de Vilches. (Orig. A. de I.)
38.
Testimonios de toma de posesion de algunas Islas.
(Año 1565.—9 de Enero á 8 de Mayo.)—Comprenden las de Barbudos en 9 de
Enero.—Ladrones en 26 de Enero.—Cibabao; en 15 de Febrero el Poder del
General al Alferez, y en 20 de Febrero la toma de posesion por aquél.—Bahia de
San Pedro comarcana á la isla de Tandaya en 23 de Febrero.—Bahia de Maletic
en la isla de Abuyo en 8 de Marzo.—Isla Camiguinin en 14 de Marzo.—Isla de
Bohol en 15 de Abril.—Isla de Çubu en 8 de Mayo.—(A. de I.: Escrituras y
rrecaudos tocantes al descubrimiento de las Islas del ponyente)[13].
ISLA DE LOS BARBUDOS (9 Enero).
En la nao capitana a nueve dias del mes de henero de mill e
quinientos y sesenta y cinco años el muy yllustre señor miguel lopez
de legazpi governador y capitan general por su Mag.d
de la gente y
armada que va en su Real servicio al descubrimiento de las yslas del
poniente estando a vista de la ysla de los barbudos por ante mi
hernando Riquel scrivano mayor de governacion de las dichas yslas y
de la dicha armada, su señoria dixo que por quanto oy dicho dia se a
visto esta ysla y en ella casas e rancherias e yndios en canoas que
se an huido de la playa y conviene que en nombre de su Mag.d
se
tome posesion della y de las demas que se descubrieren y su señoria
por su persona no la puede al presente tomar porque la flota esta en
la mar a la vela y no a podido surgir, por ende que en nombre de su
Mag.d
como mejor en derecho lugar aya, daba y dio su poder
cumplido a felipe de sauzedo su nieto para que tome y aprehenda la
posesion de la dicha ysla por de la Mag.d
Real del Rey don phelipe
nuestro señor y en su Real nombre como la persona de su señoria la
podia y devia Tomar y quan Amplio y cumplido poder se requiere
para tomar la dicha posesion otro tal y ese mismo le dio y otorgo al
dicho felipe de sauzedo con sus yncidencias e dependencias,
Anexidades y conexidades en forma de derecho con todas las
clausulas que se suelen e acostumbran en semejante caso que ovo
por expresas aunque aqui no se declaren ni especifiquen y en
firmeza dello lo firmo de su nombre siendo Testigos el padre fray
andres de Urdaneta religioso de la orden de san Agustin y el capitan
joan de la Ysla y el capitan joan maldonado miguel lopez paso ante
mi hernando Riquel scrivano mayor.
En cumplimiento de lo suso dicho su señoria del señor general
envio a la dicha ysla un batel y dentro al dicho felipe de sauzedo y a
mi el dicho scrivano y al padre fray andres de Urdaneta con soldados
de guarda a los quales mando que no hiziesen daño ni mal
tratamiento alguno a los yndios y naturales de la dicha ysla ni les
tomasen bastimentos ni otras cossas de sus haziendas y antes les
dio quentas y otros rescates que diesen a los dichos naturales en
señal de paz y amistad y amor, y las naos aguardaron al dicho batel
dando vueltas de un bordo e otro, hernando Riquel scrivano mayor.
E luego yncontinente en este dicho dia mes y año suso dicho el
dicho felipe de saucedo por virtud del poder quel muy yllustre señor
miguel lopez de legazpi governador y capitan general le dio para
tomar en nombre de su Mag.d
la posesion de la dicha ysla de los
Barbudos que esta en altura de diez grados estando de pies en ella
por ante mi el dicho scrivano Tomo la dicha posesion de la dicha ysla
rreal y autual vel casi en forma de derecho cortando Ramas y
Arrancando yervas y haziendo otras çerimonias de posesion y fue a
las casas de los naturales de la dicha ysla para en nombre de su
Mag.d
atraellos asi de paz y no se hallo ninguna persona en ellas
hasta que se truxo un yndio biejo con su muger e hijos a los quales
se les hizo todo buen tratamiento y se les dio quentas cuchillos y
otras cosas en señal de amistad y a la usanza de su tierra y ellos lo
rescebieron con mucha alegria y contentamiento y baylaron a uso de
su tierra mostrando mucho placer y la dicha posesion se tomo en
paz sin contradicion de persona alguna de como ansi passo todo lo
suso dicho y de como se tomo la dicha posesion en nombre de su
Mag.d
por el dicho phelipe de saucedo como persona que tenia
poder del dicho señor governador, el dicho phelipe de saucedo me lo
pidio por testimonio.
E yo Hernando Riquel Scrivano mayor de la governacion de las
Yslas del poniente por su Mag.d
doy fee de lo suso dicho como
persona que se hallo personalmente a todo lo suso dicho con mucha
cantidad de soldados que se hallaron Presentes por testigos, y para
que conste dello lo firme de mi nombre con firma e rubrica
acostumbrada ques atal en testimonio de Verdad hernando Riquel
scrivano mayor de governacion.—Corregido con el original—
Hernando Riquel Scrivano de governacion.
ISLA DE LOS LADRONES (26 Enero).
En veinte y seis dias del mes de henero de mill y quinientos y
sesenta y cinco años estando en una ysla de los Ladrones, que los
naturales della dieron por señas a entender llamarse Guan, el muy
ylustre señor Miguel lopez de legazpi, governador y capitan general
por su Mag.d
de la gente y armada que va en su Real servicio al
descubrimiento de las yslas del poniente Aviendo desembarcado en
la caleta donde hizo su aguada por ante mi hernando Riquel scrivano
mayor de la dicha Armada y de la governacion de las dichas yslas
del poniente dixo que en nombre de la mag.d
Real del Rey don
phelipe nuestro señor y como su governador y capitan general,
tomava e tomo e aprehendia e aprehendio la tenencia e posesion
Real e auttual vel casi desta dicha ysla e de las demas a ella
subjetas comarcanas y en señal de verdadera posesion hecho mano
a su espada y corto Ramas de arboles y arranco yervas e tiro piedras
y hizo hazer cruçes en los arboles specialmente en unas palmas de
cocos questan junto a la marina y hizo dezir y celebrar misas a los
Religiosos de la orden del señor san Agustin que van en la dicha
flota, e se paseo de una parte a otra e hizo otros auttos y çerimonias
de posesion corporal formal y autual como en tal caso se requiere
suele y acostumbra hazer la qual dicha posesion paso quieta y
pacificamente en presencia de muchas personas sin contradicion de
persona alguna y de como ansi paso todo lo suso dicho pidio a mi el
dicho scrivano se lo diese por testimonio en manera que haga fee en
cumplimiento de lo qual yo el dicho hernando Riquel scrivano suso
dicho doy dello fee porque me halle presente a todo lo suso dicho
juntamente con su señoria del dicho señor governador, siendo
testigos el muy Reverendo padre fray andres de Urdaneta prior y el
maestre de campo Mateo del sanz y el Contador andres cauchela y
el factor andres de Mirandaola y el alferez general andres de ybarra
y geronimo de monçon y otras muchas personas, y para que conste
dello fiz aqui mi firma y Rubrica acostumbrada ques atal en
testimonio de verdad hernando Riquel scrivano Mayor.—Corregida
con el original—Hernando Riquel scrivano de governacion—una
rubrica.
ISLA CIBABAO (20 Febrero)[14]
.
En veinte dias del mes de hebrero de mill y quinientos y sesenta
y cinco años estando en una ysla que los naturales della dieron por
señal a entender llamarse çibabao el muy yllustre señor miguel lopez
de legazpi governador y capitan general por su Mag.d
de la gente y
armada del descubrimiento de las yslas del poniente, por ante mi
hernando Riquel scrivano de governacion de las dichas yslas del
poniente, aviendo su señoria del dicho señor governador saltado en
tierra y estando de pies en una ysla pequeña pegada con la qual
estaban otras yslas que della procedian dixo que en nombre de su
Mag.d
Real del Rey don phelipe nuestro señor y como su governador
y capitan general tomava e tomo e aprehendia e aprehendio la
tenencia e posesion Real e auttual vel casi desta dicha Isla e de las
demas a ella subjetas y comarcanas y en señal de verdadera
posesion hecho mano a su espada y corto Ramos de arboles, y hizo
otros auttos de verdadera posesion corporal autual formal como en
tal casso se requiere suele y acostumbra hazer la qual dicha
possesion passo quieta y pacificamente sin contradicion de persona
alguna y de como ansi passo todo lo suso dicho pidio a mi el dicho
scrivano se lo diese todo por testimonio en manera que haga fee en
cumplimiento de lo qual yo el dicho hernando Riquel scrivano suso
dicho doy dello fee porque me halle presente a todo lo suso dicho
juntamente con su señoria del dicho señor governador, siendo
Testigos el muy Reverendo padre fray andres de Urdaneta prior de la
orden del señor san Agustin y el alferez general andres de ybarra e
pedro brizeño de herrera e joan pacheco gentiles hombres de su
señoria e otros muchos soldados y para que conste dello fiz aqui mi
firma e Rubrica acostumbrada ques a tal en testimonio de verdad
hernando Riquel scrivano de governacion.—Corregido con la original
—Hernando Riquel scrivano de governacion.
BAYA DE SANCT PEDRO (23 Febrero).
En la Baya de sanct pedro comarcano a la ysla de Tandaya A
veinte y tres de hebrero de mill e quinientos y sesenta y cinco años
el muy illustre señor miguel lopez de legazpi governador y capitan
general por su Mag.d
de la gente y armada del descubrimiento de las
yslas del poniente por ante mi hernando Riquel scrivano de
governacion de las yslas del poniente dixo que en nombre de su
Mag.d
Real del Rey don phelipe nuestro señor tomava e tomo la
posesion y tenencia Real y corporal autual vel casi de esta dicha ysla
y baya e de las demas a ella subjetas y comarcanas y en señal de
verdadera posesion estando su señoria de pies en la dicha baya e
aviendo hecho dezir y celebrar el oficio devino A los religiosos de la
dicha armada hecho mano a su espada e corto Ramos de Arboles y
Arranco yervas e hizo otros auttos y diligencias que en tal casso se
requiere suelen y acostumbran hazer en señal de verdadera
posesion, lo qual todo paso quieta y pacificamente sin contradicion
de persona alguna siendo presentes el muy Reverendo padre fray
andres de Urdaneta y pedro de herrera y joan pacheco maldonado y
hernan lopez e otros muchos soldados E de como ansi passo todo lo
suso dicho su señoria del dicho señor governador pidio a mi el dicho
scrivano se lo diese todo por Testimonio e yo el dicho hernando
Riquel scrivano suso dicho presente fuy a lo que dicho es e doy fee
dello y para que conste ser ansi fiz aqui mi firma y Rubrica
acostumbrada que es atal en testimonio de verdad Hernando Riquel
scrivano de governacion corregido con la original Hernando Riquel
scrivano de governacion.
BAYA DE MALETIC (8 Marzo).
En la Baya de maletic ques en la ysla de Abuyo a ocho dias del
mes de Março de mill y quinientos y sesenta y cinco años el muy
yllustre señor miguel lopez de Legazpi governador y capitan general
por su Mag.d
de la gente y armada del descubrimiento de las yslas
del poniente por ante mi hernando Riquel scrivano de governacion
dixo que daba e dio su poder cumplido segun que de derecho en tal
casso se requiere a felipe de saucedo su nieto para tomar la
posesion desta ysla e de las a ella comarcanas en nombre de su
Mag.d
atento que su señoria esta ocupado e no la puede
personalmente tomar y para que conste dello lo firmo de su nombre
ante mi el dicho scrivano siendo testigo el tesorero guido de
lebaçares y joan pacheco maldonado e joan lopez Miguel llopez paso
ante mi hernando Riquel scrivano de governacion.
E despues de lo susodicho en este dicho dia mes y año susodicho
el dicho felipe de sauzedo fue a tierra en Un batel y estando en el
pueblo que dizen de malette (sic) por ante mi el dicho escrivano y de
los testigos yuso scriptos dixo que por virtud del poder que tiene de
su señoria tomava e tomo posesion Real y autual desta ysla y de
todas las demas a ella comarcanas en nombre de la mag.d
Real del
Rey don Phelipe nuestro señor y en señal de verdadera posesion
hecho mano a su espada y corto Ramos de arboles y hizo otros
auttos y çerimonias en señal de verdadera posesion segun que en tal
casso se suelen y acostumbran hazer, lo qual paso quieta y
pacificamente sin contradicion de persona alguna, y de como ansi
paso. Todo lo suso dicho pidio á mi el dicho scrivano se le diese por
fee y testimonio yo. el dicho hernando Riquel scrivano suso dicho
doy fee de lo que dicho es porque ante mi passo y fuy a ello
presente siendo presentes por testigos graviel de Ribera alguacil
mayor e pablo hernandez e pedro escudero de la portilla e gonçalo
martin e otros muchos y en fee dello fiz aqui mi firma e Rubrica
acostumbrada que es atal en testimonio de verdad hernando Riquel
escrivano de governacion-corregido con la original, hernando Riquel
scrivano de governacion.
ISLA DE CAMIGUININ (14 Marzo).
En la nao capitana a catorce dias del mes de março de mill y
quinientos y sesenta y cinco años estando surta el armada en la ysla
de Camiguinin el muy yllustre señor miguel lopez de legazpi
governador y capitan general por su Mag.d
de la gente y armada que
va al descubrimiento de las yslas del poniente, por ante mi hernando
Riquel scrivano de governacion de las dichas yslas del poniente su
señoria dixo que atento que conviene tomarse posesion de las
tierras que se descubrieren en nombre de la Mag.d
Real del Rey don
felipe nuestro señor y su señoria no tiene todas vezes aparejo
conviniente para saltar en tierra a tomar posesion dellas por quedar
en guarda del armada Real, por ende que dava e dio su poder
cumplido qual de derecho en tal casso se requiere para tomar
posesion en nombre de su Mag.d
de las tierras que se descubrieren a
felipe de sauzedo su nieto al qual como dicho es daba e dio poder
special para lo susodicho con sus anexidades e conexidades
yncidencias y dependencias e con libre e general administracion lo
relevo en forma de derecho y lo firmo de su nombre siendo testigos
el muy Reverendo padre fray andres de Urdaneta prior y el padre
fray andres de aguirre y amador de a Riaran, miguel lopez, paso
ante mi hernando Riquel scrivano de governacion.
En la Ysla de camiguinin de las yslas del poniente a catorze dias
del mes de março de mill y quinientos e sesenta y cinco años el muy
magnifico señor felipe de saucedo por ante mi hernando Riquel
scrivano de governacion de las yslas del poniente por su Mag.d
dixo
quel por virtud del poder que tiene del muy ylustre señor miguel
lopez de legazpi governador y capitan general de las dichas yslas del
poniente, tomava e tomo posesion Real autual vel casi en nombre de
la Mag.d
Real del Rey don phelipe nuestro señor desta dicha ysla de
camiguinin e de las demas a ella subjetas y comarcanas y en señal
de verdadera posesion hecho mano a su espada y corto ciertas
Ramas de arboles y Arranco e tiro piedras e hizo otros autos e
diligencias en señal de verdadera posesion. Lo qual paso quieta y
pacificamente sin contradicion de persona alguna e de como ansi
passo todo lo suso dicho pidio a mi el dicho scrivano se le diese por
testimonio todo siendo testigos el capitan martin de goyti y san joan
soldado y francisco de coztar y bartolome Rodriguez soldados y otros
muchos e yo el dicho hernando Riquel scrivano suso dicho doy fee
de lo que dicho es porque me halle presente a todo ello y para que
conste ser ansi fiz aqui mi Rubrica y firma atal en testimonio de
verdad hernando Riquel scrivano de governacion.—Corregida con la
original.—hernando Riquel scrivano de governacion.
ISLA DE BOHOL (15 Abril).
En la ysla de Bohol de las yslas del Poniente de su Mag.d
A
quinze dias del mes de abrill de mill y quinientos y sesenta y cinco
años, el muy ilustre señor miguel lopez de legazpi governador y
capitan general por su Mag.d
de la gente y armada del
descubrimiento de las yslas del poniente por ante mi hernando
Riquel scrivano de governacion de las dichas yslas del poniente por
su Mag.d
aviendo su señoria del dicho señor governador saltado en
tierra y hecho dezir y celebrar missas a los religiosos della orden del
señor san agustin y hecha amistad con un principal desta dicha ysla
llamado xicatuna y estando de pies en la dicha ysla dixo que en
nombre de su Mag.d
Real tomaba e tomo e aprehendia e aprehendio
la tenencia e posesion Real autual vel casi de esta dicha ysla y de las
demas a ella subjetas y comarcanas y en señal de verdadera
posesion hecho mano a su espada y corto ramas de arboles y
arranco yervas y tiro piedras e fizo otros Auttos y cerimonias segun
que en tal casso se suelen y acostumbran hazer, lo qual todo passo
quieta y pacificamente sin contradicion de Persona alguna siendo
presentes por testigos el muy Reverendo padre fray andres de
Urdaneta prior e pedro de herrera e hernan lopez e joan de pedraça
y otras muchas personas y de como Ansi passo todo lo suso dicho su
señoria del dicho señor governador pidio a mi el dicho scrivano se lo
diese todo por testimonio e yo el dicho hernando Riquel scrivano
suso dicho presente fuy a lo que dicho es, e doy fee dello E para que
conste ser ansi fiz aqui mi firma y Rubrica acostumbrada que es atal
en testimonio de verdad fernando Riquel scrivano de governacion.—
Corregido con la original—fernando Riquel scrivano de governacion.
ISLA ÇUBU (Posesion y trazado del fuerte) (8
Mayo).
En la ysla de Çubu de las felipinas del poniente de su Mag.d
A
ocho dias del mes de mayo de mill y quinientos y sesenta y cinco
años el muy yllustro señor miguel lopez de legaspi governador y
capitan general por su Mag.d
de la gente y armada del
descubrimiento de las yslas del poniente por ante mi hernando
Riquel escrivano de governacion estando el dicho señor governador
de pies en el pueblo llamado çubu que los naturales del lo
desmampararon donde estaba alojada la gente del armada el qual
dicho pueblo es junto a la marina y puerto donde los navios estan
surtos en una punta que la tierra haze a la mar, dixo que en nombre
de su Mag.d
Real tomava e tomo e aprehendia y aprehendio la
tenencia Posesion Propiedad e señorio de la dicha ysla e de todas las
demas a ella subjetas y comarcanas y en señal de verdadera
posesion aviendo hecho dezir en ella misa y celebrado el culto divino
y señalado yglesia se anduvo paseando de una parte á otra e hizo
otros auttos y çerimonias de verdadera posesion todo lo qual hizo en
haz y en paz de los que presentes estavan sin contradicion de
persona alguna y de como ansi passo todo lo suso dicho pidio á mi
el dicho scrivano se lo diese por testimonio, e de como en nombre
de su Magd
. quedava por posehedor de la dicha ysla e tomada la
dicha posesion con paresçer del maestre de campo y de otras
personas que se hallaron presentes señalo e traço el fuerte que se
ha de hazer en la dicha punta en triangulo con tres cavalleros que a
de tener que miren y defiendan a la mar y a la tierra e luego el dicho
señor governador tomo una açada en la mano y començo a cabar el
lugar y sitio del primer cavallero hazia la punta de la mar y en el se
puso por señal un madero alto y en el secundo cavallero començo a
cabar el maestre de campo e se puso otro madero y en el terçero
cavallero començaron a cabar los capitanes martin de goiti e joan de
la ysla, en que ansi mismo se puso otro madero e hecho esto el
dicho señor governador mando que ante todas cossas se haga una
cassa de tierra dentro del sitio del dicho fuerte donde se metan y
pongan las municiones rescates y bastimentos del armada y acabada
esta se entienda en hazer el fuerte, lo qual cometio y encargo al
maestre de campo, y para que conste desto que dicho es el dicho
señor governador lo firmo de su nombre testigos los dichos
capitanes e otros muchos soldados, miguel lopez passo ante mi e
doy fee de todo lo suso dicho porque me halle presente a todo ello.
Hernando Riquel scrivano de governacion—corregida con la original.
—Una rubrica.
Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com

More Related Content

PDF
Quirky Sides Of Scientists True Tales Of Ingenuity And Error From Physics And...
PDF
Astronomy Astrophysics is Easy.pdf
PDF
Status And Prospects Of Astronomy In Germany 20032016 Memorandum Denkschrift ...
PDF
58277main space.based.astronomy
PDF
space.based.astronomy
PDF
Space.based.astronomy (created by NASA) || Australian Islamc Library
PDF
Sustainable Geography Roger Brunetauth Pierre Dumolardeds
Quirky Sides Of Scientists True Tales Of Ingenuity And Error From Physics And...
Astronomy Astrophysics is Easy.pdf
Status And Prospects Of Astronomy In Germany 20032016 Memorandum Denkschrift ...
58277main space.based.astronomy
space.based.astronomy
Space.based.astronomy (created by NASA) || Australian Islamc Library
Sustainable Geography Roger Brunetauth Pierre Dumolardeds

Similar to Human Vision And The Night Sky Hot To Improve Your Observing Skills 3rd Edition Michael Borgia (20)

PDF
Scientific Thought In Context 1st Edition K Lee Lerner
PDF
Scientific Thought In Context Vol123 1st Edition Brenda Wilmoth Lerner K Lee ...
PDF
The dynamics of natural satellites of the planets Nikolaĭ Vladimirovich Emelʹ...
PDF
New Views Of The Solar System Comptons By Britannica Encyclopaedia Britannica
PDF
After The Beginning A Cosmic Journey Through Space And Time (2)
PDF
Dawn Of Small Worlds Dwarf Planets Asteroids Comets 1st Edition Michael Molte...
PDF
Current Trends In Astrobiology Hardcover C Sivaram Kenath Arun
PDF
The Dynamics of Natural Satellites of the Planets Nikolay Emelyanov
PDF
Alex_Tripsas_Thesis_v2
PDF
NASA PUNCH Polarimeter to Unify the Corona and Heliosphere. A constellation ...
PDF
The dynamics of natural satellites of the planets Nikolaĭ Vladimirovich Emelʹ...
PDF
Investigation of the Tidal Migration of 'Hot' Jupiters
PDF
Practical Astronomy With Your Calculator Or Spreadsheet 4th Edition 4th Editi...
PDF
Dsl teacher manual-bw
PDF
The Sun A Guide To Stellar Physics 1st Edition Engvold Oddbj Skumanich
PDF
Research Methods For Massage And Holistic Therapies Glenn M Hymel
PDF
Planets, stars and stellar systems3
PDF
Master_thesis_Philippe_de_Meulenaer
PDF
Advances In Atomic Molecular And Optical Physics 54 1st Edition Pr Berman
PDF
Patrick Moores Data Book Of Astronomy 2nd Edition Patrick Moore
Scientific Thought In Context 1st Edition K Lee Lerner
Scientific Thought In Context Vol123 1st Edition Brenda Wilmoth Lerner K Lee ...
The dynamics of natural satellites of the planets Nikolaĭ Vladimirovich Emelʹ...
New Views Of The Solar System Comptons By Britannica Encyclopaedia Britannica
After The Beginning A Cosmic Journey Through Space And Time (2)
Dawn Of Small Worlds Dwarf Planets Asteroids Comets 1st Edition Michael Molte...
Current Trends In Astrobiology Hardcover C Sivaram Kenath Arun
The Dynamics of Natural Satellites of the Planets Nikolay Emelyanov
Alex_Tripsas_Thesis_v2
NASA PUNCH Polarimeter to Unify the Corona and Heliosphere. A constellation ...
The dynamics of natural satellites of the planets Nikolaĭ Vladimirovich Emelʹ...
Investigation of the Tidal Migration of 'Hot' Jupiters
Practical Astronomy With Your Calculator Or Spreadsheet 4th Edition 4th Editi...
Dsl teacher manual-bw
The Sun A Guide To Stellar Physics 1st Edition Engvold Oddbj Skumanich
Research Methods For Massage And Holistic Therapies Glenn M Hymel
Planets, stars and stellar systems3
Master_thesis_Philippe_de_Meulenaer
Advances In Atomic Molecular And Optical Physics 54 1st Edition Pr Berman
Patrick Moores Data Book Of Astronomy 2nd Edition Patrick Moore
Ad

Recently uploaded (20)

PDF
Horaris_Grups_25-26_Definitiu_15_07_25.pdf
PPTX
Neurological complocations of systemic disease
PDF
Hospital Case Study .architecture design
PDF
Farming Based Livelihood Systems English Notes
PPT
Acidosis in Dairy Herds: Causes, Signs, Management, Prevention and Treatment
PDF
Everyday Spelling and Grammar by Kathi Wyldeck
PPTX
IT infrastructure and emerging technologies
PDF
0520_Scheme_of_Work_(for_examination_from_2021).pdf
PPTX
4. Diagnosis and treatment planning in RPD.pptx
PDF
Health aspects of bilberry: A review on its general benefits
PDF
Diabetes Mellitus , types , clinical picture, investigation and managment
PPTX
Why I Am A Baptist, History of the Baptist, The Baptist Distinctives, 1st Bap...
PPTX
Diploma pharmaceutics notes..helps diploma students
PDF
The TKT Course. Modules 1, 2, 3.for self study
PDF
Solved Past paper of Pediatric Health Nursing PHN BS Nursing 5th Semester
PDF
Compact First Student's Book Cambridge Official
PPTX
Macbeth play - analysis .pptx english lit
PPTX
ACFE CERTIFICATION TRAINING ON LAW.pptx
PDF
Nurlina - Urban Planner Portfolio (english ver)
PPTX
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
Horaris_Grups_25-26_Definitiu_15_07_25.pdf
Neurological complocations of systemic disease
Hospital Case Study .architecture design
Farming Based Livelihood Systems English Notes
Acidosis in Dairy Herds: Causes, Signs, Management, Prevention and Treatment
Everyday Spelling and Grammar by Kathi Wyldeck
IT infrastructure and emerging technologies
0520_Scheme_of_Work_(for_examination_from_2021).pdf
4. Diagnosis and treatment planning in RPD.pptx
Health aspects of bilberry: A review on its general benefits
Diabetes Mellitus , types , clinical picture, investigation and managment
Why I Am A Baptist, History of the Baptist, The Baptist Distinctives, 1st Bap...
Diploma pharmaceutics notes..helps diploma students
The TKT Course. Modules 1, 2, 3.for self study
Solved Past paper of Pediatric Health Nursing PHN BS Nursing 5th Semester
Compact First Student's Book Cambridge Official
Macbeth play - analysis .pptx english lit
ACFE CERTIFICATION TRAINING ON LAW.pptx
Nurlina - Urban Planner Portfolio (english ver)
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
Ad

Human Vision And The Night Sky Hot To Improve Your Observing Skills 3rd Edition Michael Borgia

  • 1. Human Vision And The Night Sky Hot To Improve Your Observing Skills 3rd Edition Michael Borgia download https://ebookbell.com/product/human-vision-and-the-night-sky-hot- to-improve-your-observing-skills-3rd-edition-michael- borgia-56376388 Explore and download more ebooks at ebookbell.com
  • 2. Here are some recommended products that we believe you will be interested in. You can click the link to download. Human Vision And The Night Sky How To Improve Your Observing Skills Patrick Moores Practical Astronomy Series 1st Edition Michael Borgia https://ebookbell.com/product/human-vision-and-the-night-sky-how-to- improve-your-observing-skills-patrick-moores-practical-astronomy- series-1st-edition-michael-borgia-1311272 Happiness Flourishing And The Good Life A Transformative Vision For Human Wellbeing Garrett Thomson https://ebookbell.com/product/happiness-flourishing-and-the-good-life- a-transformative-vision-for-human-wellbeing-garrett-thomson-33120942 Exposure Science In The 21st Century A Vision And A Strategy 1st Edition National Research Council Division On Earth And Life Studies Board On Environmental Studies And Toxicology Committee On Human And Environmental Exposure Science In The 21st Century https://ebookbell.com/product/exposure-science-in-the-21st-century-a- vision-and-a-strategy-1st-edition-national-research-council-division- on-earth-and-life-studies-board-on-environmental-studies-and- toxicology-committee-on-human-and-environmental-exposure-science-in- the-21st-century-51396972 Between Human And Divine The Catholic Vision In Contemporary Literature 1st Edition Mary Reichardt https://ebookbell.com/product/between-human-and-divine-the-catholic- vision-in-contemporary-literature-1st-edition-mary-reichardt-51382440
  • 3. Xray Vision The Evolution Of Medical Imaging And Its Human Significance Richard B Gunderman https://ebookbell.com/product/xray-vision-the-evolution-of-medical- imaging-and-its-human-significance-richard-b-gunderman-4983822 Vision A Computational Investigation Into The Human Representation And Processing Of Visual Information David Marr https://ebookbell.com/product/vision-a-computational-investigation- into-the-human-representation-and-processing-of-visual-information- david-marr-2446888 Sacred Fire A Vision For A Deeper Human And Christian Maturity Ronald Rolheiser https://ebookbell.com/product/sacred-fire-a-vision-for-a-deeper-human- and-christian-maturity-ronald-rolheiser-46313574 Its A Sprawl World After All The Human Cost Of Unplanned Growth And Visions Of A Better Future Douglas E Morris https://ebookbell.com/product/its-a-sprawl-world-after-all-the-human- cost-of-unplanned-growth-and-visions-of-a-better-future-douglas-e- morris-1634880 Visions Of The Human In Science Fiction And Cyberpunk 1st Edition Marcus Leaning Birgit Pretzsch https://ebookbell.com/product/visions-of-the-human-in-science-fiction- and-cyberpunk-1st-edition-marcus-leaning-birgit-pretzsch-51688460
  • 6. Patrick Moore’s Practical Astronomy Series
  • 7. Other Titles in this Series Telescopes and Techniques (2nd Edn.) Chris Kitchin The Art and Science of CCD Astronomy David Ratledge (Ed.) The Observer’s Year (Second Edition) Patrick Moore Seeing Stars Chris Kitchin and Robert W. Forrest Photo-guide to the Constellations Chris Kitchin The Sun in Eclipse Michael Maunder and Patrick Moore Software and Data for Practical Astronomers David Ratledge Amateur Telescope Making Stephen F. Tonkin (Ed.) Observing Meteors, Comets, Supernovae and other Transient Phenomena Neil Bone Astronomical Equipment for Amateurs Martin Mobberley Transit: When Planets Cross the Sun Michael Maunder and Patrick Moore Practical Astrophotography Jeffrey R. Charles Observing the Moon Peter T. Wlasuk Deep-Sky Observing Steven R. Coe AstroFAQs Stephen Tonkin The Deep-Sky Observer’s Year Grant Privett and Paul Parsons Field Guide to the Deep Sky Objects Mike Inglis Choosing and Using a Schmidt-Cassegrain Telescope Rod Mollise Astronomy with Small Telescopes Stephen F. Tonkin (Ed.) Solar Observing Techniques Chris Kitchin How to Photograph the Moon and Planets with Your Digital Camera Tony Buick Pattern Asterisms: A New Way to Chart the Stars John Chiravalle Observing the Planets Peter T. Wlasuk Light Pollution Bob Mizon Using the Meade ETX Mike Weasner Practical Amateur Spectroscopy Stephen F. Tonkin (Ed.) More Small Astronomical Observatories Patrick Moore (Ed.) Observer’s Guide to Stellar Evolution Mike Inglis How to Observe the Sun Safely Lee Macdonald The Practical Astronomer’s Deep-Sky Companion Jess K. Gilmour Observing Comets Nick James and Gerald North Observing Variable Stars Gerry A. Good Visual Astronomy in the Suburbs Antony Cooke Astronomy of the Milky Way: The Observer’s Guide to the Northern and Southern Milky Way (2 volumes) Mike Inglis The NexStar User’s Guide Michael W. Swanson Observing Binary and Double Stars Bob Argyle (Ed.) Navigating the Night Sky Guilherme de Almeida The New Amateur Astronomer Martin Mobberley Care of Astronomical Telescopes and Accessories M. Barlow Pepin Astronomy with a Home Computer Neale Monks Visual Astronomy Under Dark Skies Antony Cooke Lunar and Planetary Webcam User’s Guide Martin Mobberley The Urban Astronomer’s Guide Rod Mollise Digital Astrophotography David Rutledge CCD Astrophotography: High-Quality Imaging from the Suburbs
  • 8. Human Vision and the Night Sky Hot to Improve Your Observing Skills Michael P. Borgia
  • 9. Library of Congress Control Number: 2005938491 ISBN-10: 0-387-30776-1 Printed on acid-free paper. ISBN-13: 978-0387-30776-3 © 2006 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec- tion with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names,trademarks,service marks,and similar terms,even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to pro- prietary rights. Printed in the United States of America. (EB/BP) 9 8 7 6 5 4 3 2 1 springer.com
  • 10. “Daddy, I wanna get a ladder and touch the Moon” Robert Michael Borgia Age 3
  • 11. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 The Integrated Observing System. Part I: Your Eyes . . . . . . . . . . . . . . . 1 2 The Integrated Observing System. Part II: Your Equipment . . . . . . . . . 19 3 Putting the Integrated Observing System Together . . . . . . . . . . . . . . . 51 4 First Night Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Mysteries of the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6 Secrets of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7 Mercury, Venus, and the Inner Solar System . . . . . . . . . . . . . . . . . . . . . 119 8 The Enigmas of Mars, the Red Planet . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9 Comets and Asteroids, the Cosmic Leftovers of Creation . . . . . . . . . . . 159 10 Jupiter and Saturn, Kings of Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11 The Outer Worlds; Uranus, Neptune, Pluto, and Beyond . . . . . . . . . . . . 195 12 Twinkle, Twinkle Little Star (Now Knock It Off!) . . . . . . . . . . . . . . . . . 207 13 Faint, Fuzzy Things. Part I: Phenomena Galactica . . . . . . . . . . . . . . . . 227 14 Faint, Fuzzy Things. Part II: The Island Universes . . . . . . . . . . . . . . . . 249 Contents vii
  • 12. Contents Appendix A Object Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Appendix B Scales and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Appendix C Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 viii
  • 13. For years, the images have blazed through your imagination. They are the magnificent full-color photographs returned by the Hubble Space Telescope and its sister Great Observatories1 of the grand depths of the cosmos. From the “pillars of creation,” considered to be Hubble’s signature image, to the incomprehensible depths of the Hubble Deep Fields to the intricate details imaged in the surface and cloud tops of Mars or Jupiter, the power of the Hubble Telescope to turn on the public to science is unparalled in the history of modern culture. They also have spurred new telescope sales to unimagined highs. And after years of watching the heavens through the eyes of NASA, you’ve decided it’s time to see it for yourself. You make the trip to the department store and pick up that shiny new “500×” tele- scope, set it up and soon you’re in business. Unfortunately, the high initial expectations usually give way to disappointment. Instead of seeing the magnificent swirling clouds of gas in the Orion Nebula, you see a pale green-gray cloud with a couple of nondescript stars lurking nearby. The swirling red, yellow and brown storms of Jupiter are nowhere to be seen; only varying shades of gray in the planet’s cloud bands, assuming you can see bands at all! And Mars? After waiting all night for the red planet to rise up over the morning horizon, you are greeted by nothing more than a featureless reddish-orange dot. After a few weeks of this, the telescope suddenly is no longer making the nightly trip outside. Soon the scope only gets outside one night a week and not long after that, it becomes a place to hang laundry. It need not be that way for the sky you long to see is out there.You just need to learn how to see it. If you are that person, Introduction 1 NASA’s “Great Observatories” include the Hubble Space Telescope (launched 1990), the Compton Gamma Ray Observatory (launched 1991, de-orbited 2001), the Chandra X-Ray Observatory (launched 1999) and the Spitzer Space Telescope (launched late 2003). ix
  • 14. Introduction then this book is for you. If you own a larger telescope and feel you have run out of challenges, then you’ve got the right book too. One thing that many people who do not study the sky don’t understand is that astronomy is the one and only science where ordinary people with an ordinary education can make the discoveries that electrify the public and even alter the course of modern science. Amateurs dis- covered the great comets Hale–Bopp, Hyakutake, West and Ikeya–Seki. Amateurs today are even helping to discover new planets around distant suns. Indeed, with the attention of most professional astronomers focused on non-visible wave- lengths, most major discoveries made in visible-light astronomy today are made by amateur astronomers just like us. The opportunities for discovery,learning and wonder are absolutely endless,but it also takes an enormous amount of work. If you’re willing to do it, then please read on. I wrote this book to share with you what I have had to learn through hard trial and (a lot of) error. I hope to share with you so as to limit your frustration, increase learning and most of all expand your joy in this amazing hobby and lim- itless science. We’ll begin in the pages ahead by discussing the critical elements of the integrated observing system. This system has three critical components all of which must work correctly and in harmony for you to have success. These are the observer’s eyes, his equipment, and lastly his brain. A perfect scope and flawless vision are useless without the knowledge of how to use it and of what it is you are looking for, what to expect when observing and why that particular object is of such interest. A well-trained mind and a perfect scope are of little use if the eyes are in poor health or are adversely affected by factors external to the eyes or exter- nal to the body. Perfect eyes and a well-trained mind will not perceive very much if the telescope cannot produce a sharp image because it is poorly maintained or its optics or mounting are of poor quality. Our first three chapters are about preparing and training the eyes, acquiring the right equipment for your particu- lar needs including some frank advice about how to shop for that first serious tele- scope, then we will talk about training the mind, the need to gain knowledge and then putting it all together to make observing fun, enriching, and satisfying. Once you have all the tools in place, we’ll go out in the field for a test run and put our eyes, brain and telescope to work. We’ll walk through a typical first night in the field by planning and executing an observing session where time can be an issue, both in terms of being ready for a precise moment and making use of time of limited quantity. The first night out can be the most wonderful night of your life as an amateur astronomer, or the night that turns you off the hobby completely. We’ll talk about how to make it the former rather than the latter by teaching you to manage your time, your equipment, yourself and perhaps most importantly, your expectations. Now that you’ve put it all together,in the next ten chapters,we will take the grand tour of the universe, starting close in with the Moon then making our way further and further out into space. In each chapter, we will do three things. First we’ll talk in depth about each object as a physical entity. We’ll then talk some about the history of that object from the point of view of the human experience, how did we come to know what we know and why is it important to us? Knowledge is what in turn makes us curious; it is as much a part of being human as breathing. A small primer to arouse curiosity makes us seek more knowledge. That in turn makes us more curious. The desire to gain knowledge is therefore self-perpetuating so long x
  • 15. as we can continue to satisfy our curiosity.As long as we can satisfy that urge, then the hobby will remain satisfying and self-fulfilling. Finally we will help manage expectations. You will never see in the telescope what the amazing pictures returned by the Hubble or Keck telescopes can. For this reason, all the images pro- duced in this book are my own. I am a very amateur astrophotographer and I’m still working after many years on mastering the art of image processing (unsharp mask, anyone?). The pictures are far from perfect in many cases because most of what you see in a telescope is far from perfect, not to mention the photographer. The motion of Earth’s atmosphere distorts the planets and the nebulae and galax- ies are washed out by light pollution.Astrophotography is an enormous challenge, as my own images prove over and over. The pictures more accurately represent what you might see in an actual telescope. Finally we will challenge you. Each chapter ends with a series of projects that will show you how to do so much more than simply gaze through a scope.You will challenge and train your eyes, learn how to pick the right equipment for what you want to do, how to organize yourself and how to gain knowledge. You will track sunspots, locate the Apollo landing sites, study the geography of Mars, wonder at the remarkable resonance of Jupiter’s moons,and discover why Mercury andVenus behave so differently from each other.We’ll learn the techniques that amateurs just like you and me use to hunt the sky for comets or rouge asteroids. We’ll go into deep space and discover how astronomers learned to measure grand distances in the universe, watch stars brighten and fade both predictably and unpredictably. We’ll take the grand view and the up-close view of nebulae, galaxies and clusters and learn from where each type came and what makes each object important to us. Then we will discuss Messier’s famous catalog and learn how to earn amateur astronomy’s ultimate right of passage,finding every object on that list in one single night. Ready? Then let’s go stargazing! Introduction xi
  • 16. CHAPTER ONE One of the most terrible misconceptions about astronomy that those who are first getting into the hobby have is that it’s an easy source of instant gratification. Set the scope up, look through it and be amazed. Astronomy, like many hobbies just does not work out that way. Your ability to be successful and have enjoyment in astronomy is based entirely on your willingness to work at the art-form of observ- ing and the quality of your equipment. If you’ve ever played golf (I have and I use the word loosely), you will understand this. It takes many years of practice, con- sistent effort and a willingness to study the game to make a good golfer. A good player also needs the proper equipment. He needs clubs that are the right length for both his body and arms. The clubs must be of the proper flexibility for your game’s strengths and weaknesses. Stiff shafts deliver more accurate shots while flexible shafts deliver greater distance. You just do not walk on a golf course and expect to play“all-square”with Tiger Woods.A good golfer is a complete integrated system, the perfect marriage of clubs, player, practice and ability. Just the same, you should not expect to step up to a department store telescope and be able to instantly see all the grandeur that the heavens have to offer on the first night. You need to have the right equipment and you need to have the willingness to learn how to use it and care for it. Your eyes, your brain and your telescope are all part of an integrated observing system. Visual astronomy is an art-form as much as it is a science. Success is based on equal parts of quality equipment, carefully honed skills and good fortune.Astronomy, like any challenging hobby, is very hard work. About twenty years ago,I had reached that critical mass point in amateur astron- omy. My “500×” Tasco department store telescope had basically become a coat hangar in my bedroom. Its 50mm (2 inch) objective lens adequately showed the disk of Jupiter, the rings of Saturn and the phases of the Moon and Venus. But under the moderately light polluted skies of northwestern New Jersey, even the sky’s brightest deep sky wonders were virtually invisible to me. Anything fainter The Integrated Observing System. Part I: Your Eyes 1
  • 17. Human Vision and the Night Sky than the naked eye threshold was invisible. Though I was twenty years old and working my way through college,I saved carefully and purchased a Celestron Super C8 Plus in May 1986. I was able to turn it into the night sky in time to catch the retreating Comet 1P/Halley, just before it disappeared into the cosmic deep for another seventy-six years.This proved to be my first great disappointment.Though it appeared larger and brighter in the new telescope, it still appeared dull and featureless. I was puzzled at reading the descriptions of the comet written by the leading amateur astronomical observers of the time who were using equipment much the same as I was, many in the same general area of the country. They described it as dynamic with many differing features in both the coma and tail that I just could not begin to make out. Why was this? It was because I did not know how to see. The Apollo-era geologist Farouk El Baz once said, “Anyone can look, but few really see.” “Seeing” is the great skill that makes an astronomer successful at the eyepiece. Learning how to see requires a great deal of patience and practice. It also requires some understanding of how the most important piece of astronomical equipment you own works, your own eyes! The human eye is an amazing evolu- tion in biological optics. It is one of the few sight organs belonging to any species that is capable of imaging both faint light and in color. Cats, for example, have extremely keen night vision, but are completely color-blind. What is sometimes difficult to understand about the human eye is that the eye cannot image color and faint light at the same time. First, lets take a closer look at the eye and the way it is built.We will then discuss several important observing considerations and tech- niques that affect the way the eye works and the way the brain perceives. These factors include dark adaptation, the use of averted vision, light pollution, the con- dition of both the physical organism (you) and the condition of the atmosphere. The Eyes in the Dark The operating principles of the eye are rather simple. A clear organic lens (the cornea) focuses light entering the eye.This lens refracts light onto the retina,a pro- jection surface at the back of the eye. The amount of light that reaches the retina 2 Figure 1.1. Anatomy of the human eye.
  • 18. is controlled by an involuntary muscle array called an “iris.” The iris opens and closes the pupil, the center opening of the eye. The pupil dilates between a diam- eter of anywhere between 1 and 8 millimeters. The wider the pupil can open, the more light can enter.An involuntary reflex centered in the rearmost portion of the brain controls the opening of the pupil. As ambient light levels decline, the brain opens the pupil wider to allow more light to enter. This process of dark adapta- tion requires time and care. If you step out of your home straight to the eyepiece of a telescope aimed at a faint galaxy near the limit of the telescope’s reach, I promise that you will not see it, even if the object is directly in the center of your field of view. The most important step to take in preparing yourself to view the sky is to allow you a proper opportunity to adapt to the dark. Your pupil will dilate to near-maximum aperture (opening) within a few seconds. It will still require a con- siderable amount of time for the eye to complete electrochemical changes that will occur in the retina. Successfully completing this requires removing yourself from any bright light source for a minimum of thirty minutes before any serious observ- ing can begin. Take extra care to avoid any exposure to light ranging from white to the higher energy end of the spectrum (toward blue). Avoiding all extraneous light is better yet.Over the first fifteen minutes,your eyes will gain nearly two mag- nitudes in sensitivity. By thirty minutes, your eyes are nearly fully dark-adapted. Although the eyes will grow slightly more sensitive over the next ninety minutes, the huge majority of your dark-adaptation is completed within that first half-hour. If you must use a light, always make sure that it is red. The eye is least sensitive to the lower energy, longer wavelengths of red light. This is not to suggest that any light is a good thing at all, but if you must use one, keep it red. You can purchase a quality red lens flashlight through many astronomy warehouses or pilot supply shops (pilots must also take care to dark adapt before flying at night).Any exposure to white light will spoil your dark-adaptation almost instantly. You will then have to start over again. Once your night vision is fully adapted, you are ready to make maximum use of your eyes. Take a look at the changes in the night sky. Now that you can see stars that are only one-sixth as bright as when you started, the sky looks a lot more crowded than it did just thirty minutes ago. How many stars can you actually see? There are some 6,000 stars in the sky that are brighter than the naked-eye limit of magnitude 6.0. The most sharp-eyed observer might be able to see to magnitude 6.5 if there is no light pollution present.A good test of both the acuity of your dark vision and the transparency of your sky is to count the stars within the Great Square of Pegasus.This asterism is visible during late summer,fall and early winter in the northern hemisphere nearly directly overhead. Later in this chapter we’ll give you the details of a simple naked-eye observing project to use this area of sky as a test-bed to check the darkness of your sky and sharpness of your night vision and preparation. If you are disappointed with your results, try this little trick. Look slightly away from the observing target. Move the center of your gaze off to the east or west of the Great Square.Keep your attention centered on the contents of the Great Square. How many more stars leap into view now? The reason why is because of the con- struction of the retina. Your retina is composed of two different types of photor- eceptive cells. The type of cell that dominates the center of the retina are called “cones.” These cells are not very common among other species. They have the The Integrated Observing System. Part I: Your Eyes 3
  • 19. Human Vision and the Night Sky unique ability to perceive color. The signals transmitted by the cone cells are then transmitted via the optic nerve and assembled into a complete image in the brain. These cells do have one important weakness however. They require a substantial amount of light energy to stimulate the photochemical reaction within them. The faint light generated by stars and other deep-sky phenomena usually are not up to the job of firing the cones. As a result of this, turning to look at a faint object in the corner of your vision will often cause it to disappear altogether. To see faint objects, one must use a different type of photoreceptor. The cells that make up the outer 80% of the retina are different both in shape and character from the cones. These cells, called“rods,”are designed to detect very faint levels of light. They cannot however see in color. The rod cells see only in gray; the average viewer can detect approximately forty different shades.To see the faintest objects in the sky, it is critical to use the rods effectively. When striving to detect the faintest objects by looking straight at them, you are focusing that object on the cones of the retina. If there is not enough light to stimulate the cones, you will never detect the object.By directing your gaze slightly off to the side,you allow the light of the object to fall on the rods where you are far more likely to detect the object. This technique is called averted vision and is a crucial skill to be mas- tered. It is, unfortunately, counterintuitive. That is to say, it is a technique that goes against everything that seems natural for you to do.Averted vision requires a great deal of practice.An experienced observer, hunting down a faint galaxy, never looks at anything straight on. Light Pollution A composite photograph of Earth’s surface at night taken from space shows the alarming spread of surface lighting at night. The east coast of the United States is clearly recognizable in any wide-angle picture of the planet at night. The problem is that most of this light goes to waste. Instead of shining down on the ground to illuminate our streets at night, they instead scatter huge amounts of light into the night sky.This is what astronomers call“light pollution.”Light pollution is no good for anybody. It wastes uncountable billions of dollars per year in electricity, scat- ters unwanted light in the eyes of drivers and ruins the natural beauty of the night sky. In urban inner cities, so much light from unshielded high-pressure sodium streetlights is scattered into the sky that only the brightest stars and planets can be seen. I remember one particularly horrid night in New York where despite a clear sky and unrestricted visibility, I found the limiting visual magnitude to be just slightly better than +2.0. I could barely make out Polaris to the north, but Zubenelgenubi (the brightest star in Libra, magnitude +2.8) could not be seen at all. The sky that night in Flushing Meadow resembled the view one might have from inside a milk bottle. It did not help on that late August night that the U.S. Open tennis tournament was being played to my south while the bright lights of Shea Stadium flared not far to the north. The city skyline loomed brilliantly to the west and the lights of suburban Long Island soared the view to the east. That is the horror of light pollution at its very worst. Unless you’re content with views of the planets and their brightest moons, a view from the city will surely spoil 4
  • 20. anyone’s enthusiasm for astronomy.In urban areas,this background sky glow from city lights is brighter than the stars trying to shine through it. When this is the case, there’s no way for that object to shine through. In some suburban communities, light pollution is being pushed back. Some communities are replacing high-pressure sodium lights with low-pressure sodium. These lights shine at wavelengths that are not quite as damaging as are high- pressure lights. Many of these lights are also shielded so that the light they emit is directed at the ground where it is needed, not into eyes of drivers or into the evening sky. This can yield as much as two full magnitudes of improvement in the transparency of the sky. Many communities have passed laws mandating the use of lights that restrict sky glow, and recently the Massachusetts state legislature passed a law mandating such measures for the entire state.2 The best solution however for dealing with light pollution is to get away from it altogether. In many areas, driving about an hour away from bright city lights will do wonders to clear the view. Stars down to near the naked-eye threshold creep into view and the sky turns a deep clear black except for one milky colored band that refuses to vanish. It may take a city-based observer exposed to his first dark sky a moment or two to realize what that glow is. When he does however, it becomes obvious why our galaxy is named the “Milky Way.” If you are serious about astronomy, do whatever it takes to find a good dark-sky site.No matter how good your eyes,your technique and your equipment it will not do you a lick of good if the glory of the sky is hidden behind streetlight glare. If you do not belong to one, now is the time to find a good astronomy club. Nearly all clubs have a line on a good dark-sky site where their members go to observe on a regular basis, scheduled or otherwise. For your tele- scope, you may wish to consider a light-pollution rejection filter; but for your eyes, there is no better way to deal with light pollution than to be rid of it. Hypoxia and the Physical Organism As crucial as the condition of the sky is the physical condition of the observer. The observer may have the perfect combination of sky conditions and observing tech- nique yet is unable to see the faintest details of objects or see at all if he is betrayed by his own physical condition. Two key contributors to the physical health and efficiency of the eyes are adequate supplies of vitamin A and the ability to respi- rate and metabolize oxygen. In any modern industrial society, vitamin A deficien- cies are almost unheard of. Taking massive quantities of it will not give anyone super-human vision and can in fact be harmful. Still, a healthy diet is a must for good ocular health. A greater factor that affects many people is the body’s ability to take in (respi- rate),distribute and metabolize oxygen.The inability of the body to deliver oxygen The Integrated Observing System. Part I: Your Eyes 5 2 In an unfortunate “mistake”, the state Senate “lost” the bill and failed to physically deliver it to Gov- ernor Jean Smart for her signature. Since it went missing for more than ten days and the Legislature was no longer in session, the promising legislation was accidentally “pocket vetoed” under the provi- sions of the Massachusetts constitution. That’s politics!
  • 21. Human Vision and the Night Sky to the tissues is called “hypoxia.” Hypoxia can result from many potential factors. The eyes are the most oxygen hungry organs in the body and their efficiency rapidly deteriorates when an adequate supply of oxygen is not available. To make matters worse, the first part of the eye to be affected by hypoxia is the rod cells of the retina, the detectors of low-level light. Several potential factors can be involved in determining how efficiently the body can distribute and metabolize oxygen.The first such variable is the amount of oxygen available in the atmosphere. Hypoxia caused by a lack of oxygen is called“hypoxic hypoxia.”At sea level,the partial pres- sure of oxygen in the atmosphere is approximately 220 millibars. This amount of oxygen is plenty for the body to use but in order to get the oxygen into the blood- stream; it must be forced through the walls of the aveoli. This is done by ambient air pressure, which at sea level is approximately 1,013 millibars (29.92 inches Hg). As you climb higher in the atmosphere,the ratio of oxygen to other gasses remains the same.3 But the pressure of the air falls off dramatically with increasing altitude. This is of interest to us because many astronomers seek to flee the effects of light pollution and weather by climbing the mountains. Today, many of the world’s premier observatories are on extremely high mountaintops ranging 14,000 feet or higher above sea level.At this altitude, the partial pressure of oxygen in the atmos- phere is only 130 millibars. This is only about 60% of what was available at sea level. From this, you might initially assume that you are getting only 60% of your sea level efficiency from your lungs. This assumption falls flat when you stop to consider that the total air pressure at 14,000 feet is only 600 millibars. That means not only is there less oxygen to breathe but the efficiency of the body in deliver- ing that oxygen to the blood is greatly impaired. The eyes will be among the first of the body’s users of oxygen to feel the effects as the rods begin to fail due to oxygen deprivation. The key to preventing this if you climb the mountains to see the stars is to breathe supplemental oxygen. But what if you’re not going to Mauna Kea to observe? At what altitude should one consider this step? A lot lower than you might think. The Federal Aviation Administration’s guidelines for pilots seems to be a good reference since the eyes are affected so early and night vision in par- ticular is affected. Pilots are not required to begin using oxygen until they are higher than 12,500 feet after thirty continuous minutes but because of the detri- mental effects of hypoxia on night vision the FAA strongly recommends that oxygen be used at night any time operating above 5,000 feet. If it works for pilots, it will work for you. Even while observing at sea level, hypoxia symptoms can become an impedi- ment to good night vision due to several potential factors. Anything that comes between an oxygen molecule and the cells of the body can cause hypoxia. Hypoxia can affect you even though plenty of oxygen is available. If you are in poor car- diovascular health, your night vision will suffer from effects very similar to those induced by high altitude. If the heart does not circulate blood adequately, the oxygen cannot reach the tissues with the speed the body demands resulting in what is called stagnant hypoxia. Though the cause is different the result is very much 6 3 The atmosphere is about 78% nitrogen, 21% oxygen with the last 1% divided up between carbon dioxide,water vapor and other noble gasses.Water vapor can,during extremely humid conditions,make up more than 4% of the atmosphere.
  • 22. the same.The heart does not pump the blood at an adequate rate to keep the tissues of the body oxygenated and night vision begins to suffer. A hypoxic reaction can also be induced by poor hematological health. Anemic hypoxia is caused by the inability of the red blood cells to absorb and transport oxygen even though oxygen itself may be plentiful. Sickle cell anemia, a condition that primarily occurs in African-American males, is a leading cause of this. The rest of us should be aware that many other forms of anemia exist that are not so racially discriminatory. Anemia can also be induced by poor diet. You can also induce hypoxic symptoms yourself by taking certain substances into your own body.Alcohol and many drugs can reduce the ability of the red blood cells to carry oxygen, a form of hypoxia called histotoxic hypoxia. The health of the eye itself is critical as well. Many individuals suffer from some form of ocular pathology. The most common include myopia (near-sightedness), presbyopia (far-sightedness) and astigmatism. Myopia often occurs at a fairly young age (I began wearing glasses at age 9). It is caused by a misshaped cornea, which causes light from distant objects to come to focus prior to reaching the retina. The result is badly distorted images of distant objects. The problem is easily corrected by using corrective lenses such as glasses or contact lenses which induce a focusing error in the light path that is exactly the opposite of that created by the flawed cornea.The result is a properly focused image.Presbyopia commonly affects older individuals. As the eyes age, the cornea begins to become rigid and less flexible. This causes the eye to have difficulty focusing on objects that are relatively close. The cure is the same as for myopia: corrective lenses that eliminate the fault by introducing an equal and opposite error. Astigmatism is a somewhat more difficult and complex problem for ophthalmologists to deal with.Astigmatism is a flaw in the cornea that causes images to appear distorted, even though they are well focused. A properly focused star appears as a perfect pinpoint of light while the same star might appear to have a “diffraction spike” radiating from it when viewed through an astigmatic eye. Correcting the flaw using contact lenses is par- ticularly difficult and most users with severe astigmatisms must use eyeglasses to correct them. This is particularly painful at the eyepiece of the telescope and even more so during astrophotography. The telescope and camera see and focus at “20/20”4 . In order to properly focus them, you must also see 20/20. Glasses make seeing through a camera or telescope particularly awkward.Most astronomers who need eye correction prefer to use contact lenses. Many people are taking action today to repair eyesight damaged by age or genet- ics. Surgical fixes for eye problems have been with us for many years. The first such procedure for correcting bad eyesight was called “radial keratotomy.” This surgi- cal procedure involved slicing the cornea, pizza style with a scalpel and refiguring it into the proper shape. Radial keratotomy did work but often resulted in heavy scarring and if the results were not perfect, it could not be reversed, changed or performed again. Another technique that enjoyed some popularity in the early 1990s was “orthokeratology.” Orthokeratology involved the use of special hard The Integrated Observing System. Part I: Your Eyes 7 4 The first number tells how close the viewer must be to an object to focus on it. The second number refers to the distance that a person with normal vision can focus on the object. The larger the second number is, the more near-sighted you are.
  • 23. Human Vision and the Night Sky contact lenses that functioned in a way not unlike a dental retainer. These lenses over time reshape the cornea, gradually forcing it toward the proper shape. The user would regularly change to a new set of lenses that would continue to refine the correction until it is completed. The corrective process takes about six months. Once 20/20 vision was restored, the patient would continue to periodically wear contact lenses to maintain the shape of his corneas. The advantages of this proce- dure were obvious in that no surgery was necessary and no scarring ever took place. If it did not work, the effects were completely reversible. The disadvantages were that if the user stopped using his retainer lenses, the eyes would eventually return to their original flawed state. The technique most favored today is called “laser keratotomy.” In laser kerato- tomy a scalpel is used only to make an initial slot in the cornea. The slot allows the lens to relax while a precision laser figures the lens to the correct shape. Like in other forms of keratotomy, the effects are irreversible so if you are unhappy with the outcome, too bad. Unlike traditional surgery, there is no scarring and recovery time is quick.Usually the patient is out of the office within an hour and seeing nor- mally within two or three days without optical aid. Some surgeons are now per- forming newer forms of the surgery without using any blades at all. There is one important drawback to laser keratotomy. Current Food and Drug Administration rules limit the scope of the surgery to the inner 6-millimeter radius from the pupil center.The problem is if you are one of those people who have a very wide opening pupil after dark adaptation.If the pupil can open wider than the surgically repaired area of the cornea, the result can be severely distorted night vision. One common effect is “haloing” of bright lights. Your vision is normal in the center but as light travels across the non-repaired outer cornea into the eye, the fringes of lights become distorted and create halos around the light source. As an amateur astronomer and a pilot, my night vision is crucial to both my livelihood and my hobby. Because of this, I have decided for myself to forgo any surgery or other vision correction until the medical procedure evolves further. Contact lenses do an adequate job for my near-sightedness, and evolving technology has finally created a contact lens that corrects my particular astigmatism. The Restless Atmosphere Despite the fact that its relatively paltry 94-inch primary mirror is dwarfed by mon- strous telescopes on Earth that now are more than four times larger, the best images in astronomy still come from the Hubble Space Telescope. The hulking monsters on Mauna Kea measure from the 8-meter Subaru telescope to the 10- meter Keck twins. These incredibly powerful instruments are still only second best to Hubble. The reason why is because these Earth-based monsters must deal with an impediment that Hubble does not.They must peer through Earth’s relentlessly tur- bulent atmosphere. The layer of gases that surrounds the planet and makes life possible here is a major obstacle to a clear view of the stars.The atmosphere’s gases distort and disrupt starlight as it passes through and in fact completely block out large segments of the spectrum, particularly in the ultraviolet range. The atmos- 8
  • 24. phere also disrupts the view by continually moving, expanding and contracting in response to changing weather and heating patterns. The more turbulent the air becomes, the more difficult it will be to gain a quality view of the sky. The level of quality of the view is what astronomers call seeing.When there is good seeing, the air is still and calm. The stars do not appear to twinkle, but burn steady and unchanging. These are the nights that serious amateurs live for.When the stars do twinkle, it may inspire classic poetry and children’s songs, but it is the bane of the astronomer’s existence. All telescopes can do under these conditions is magnify the twinkle of the stars into a bigger brighter blur. Astronomical seeing is almost entirely a function of atmospheric stability. In meteorology, stability refers to the tendency of a sample of air to rise when it is lifted.Air that wants to rise is considered to be unstable.Air can be induced to rise by heating it from below, by flowing up a mountain,or by a colder,heavier air mass burrowing underneath. A simple measure taken by meteorologists accurately determines the stability of the air. Adiabatic lapse rate is the measure of how fast the air temperature falls with increasing altitude. The faster the air cools, the more unstable it is. These values are then compared against those of the International Standard Atmosphere (ISA)5 . If the temperature is cooling faster than ISA calls for with increasing altitude, the air is considered to be unstable. The rising air cur- rents climb into the higher altitudes,cool off,then sink back.This churning motion in the atmosphere, combined with the changing density of moving air masses, dis- torts the light of the stars passing through it resulting in blurred planets and twin- kling stars. If the lapse rate is less than that suggested by ISA, then there will be only minimum motion in the air.Better yet is if the air grows warmer with increas- ing altitude, causing warm light air to sit atop cold heavy air. These conditions lead to great stability in the atmosphere. Heavy on bottom and light on top means everything wants to stay put. These are the nights that astronomers live for. Get that scope out, but do it fast because if adequate moisture is available, this type of weather condition will eventually give rise to fog. The sky gives valuable visual clues during the day that tip you as to what kind of conditions to expect after sunset. Rising air releases moisture as it cools to the dew point and makes clouds. If the clouds lie low and flat with no vertical devel- opment (stratiform), that means the air in which they are created is stable. When the sun sets and fair weather clouds dissipate, the seeing will be good. If the clouds are puffy and billow high into the sky (cumuliform), then the air that built them is rising and the air mass is unstable. This will resort in distorted seeing and reduced optical performance. What is deceptive is that the rapidly circulating air gives rise to a sky that will have extraordinary clarity at night, fooling one into thinking that it is going to be a great night for observing. In fact, the nights with the best seeing just might be those nights where there is just the tiniest bit of haze in the air. Lack of motion in the atmosphere allows the haze to hang around. Overall there is not much you can do about the condition of the atmosphere except to wait it out. If you keep looking at your target long enough, there will inevitably The Integrated Observing System. Part I: Your Eyes 9 5 ISA is defined as a sea level temperature of 15°C and a pressure of 29.92″Hg. Temperature declines by 2°C and pressure by 1.06″Hg initially per 1,000′ of altitude gain. Temperature levels off and reverses trend at 36,000′. Pressure continues to decline by approximately 3.2% per 1,000′.
  • 25. Human Vision and the Night Sky come that split second where all is calm and the image is perfect. In that magical instant, subtle details of the planets leap into view, faint stellar companions wink at you and spiral arms and nebular wisps suddenly appear. Then the air churns again and they all vanish again in the instability. It is easy to get frustrated after waiting for a long time to see those Jovian cloud bands, but the wait will be worth it. That magical instant where all is calm is what the serious amateur astronomer waits all night for. Observing Projects I – Putting the Eyes to Work Observing Project 1A – Pressing the Dawes Limit Some of the most enjoyable sights in astronomy are those you can see without a telescope. There are many objects and phenomena in the sky that are both beau- tiful to see and test the ability of the observer to push his or her eyes to their limits. In this next section, we’ll take a look at some of these and find out just how good you are. An oncoming car has two headlights. If the car were to back away from you, those headlights would appear to move closer together with increasing distance. Eventually the lights would become so close together that it would become impossible for you to separate them from each other and they would merge into a single point of light. The minimum angular distance between two light sources at which you can still distinguish two lights is called the Dawes limit. The ancient American Indians used to test the visual acuity of their children by having them look at a star and see if they could tell if there was only one or maybe more. A favorite target used for this test is the star at the bend in the handle of the Big Dipper. The star is named Mizar and at first glance appears to be a rather ordinary star, shining bluish-white at magnitude +2.2. If your eyes are good, you may detect that Mizar is not alone, but has a companion nearby. Shining about 12 arc minutes6 to Mizar’s northwest is a fainter star that is nearly lost in Mizar’s glow. The star is called Alcor and shines at magnitude +4.0.Splitting Mizar and Alcor is a very tough challenge, especially if your sky is light polluted, which may make seeing Alcor difficult under any circumstances. Though these two stars appear to be a pair, in fact Alcor lies more than three light years farther in the background than Mizar does. Mizar is about 78 light years distant while Alcor is just over 81 light years distant. The two stars only appear to be close together, but in fact this system is not a double star at all. Each one is independent. Mizar in actuality is a double star by itself. Its partner is easily visible in any telescope shining about 14 arc seconds to Mizar’s southwest at magnitude 3.9. If your eyes are sharp enough to split Mizar 10 6 One arc minute equals 1/60th of one degree.A degree is divided into 60 minutes. Each minute in turn is divided into 60 seconds, just as it is on a clock.
  • 26. and Alcor,you’re ready to try and take on more difficult challenges.Twelve minutes is tough under any circumstances.Can you split a pair of stars right near the Dawes limit? If you can manage Mizar and Alcor, then move southward to Libra and try to split Zubenelgenubi. The brightest point of light in the constellation Libra glim- mers at magnitude 2.7 and is also a pair of stars. Zubenelgenubi is much tougher to split than is the Mizar and Alcor pair. The stars are much closer together, only about 230 arc seconds apart, not far above the Dawes limit for the unaided eye. The secondary star is also much fainter than is Alcor, shining at only magnitude +5.1. The brighter component shines so much brighter that it can drown out the fainter star in its glare. Unless your sky is fairly dark, spotting the companion will be very difficult. Splitting close double stars near the limit of the resolution of your observing instrument requires time and patience. It does not matter whether you are using the human eye or the mighty Keck reflectors, when you are working at the limits of your equipment, you need to wait for just that right moment when the eye is relaxed and the air is still for just that one precious second. Observing Project 1B – Deep Sky Visual Acuity (Stellar Objects) Riding high in the winter sky is the beautiful open star cluster called the Pleiades, listed in the Messier catalog as M45. The cluster, also known as the “seven sisters,” is so named for the seven fairly bright stars that can be discerned within the hazy patch of light. The cluster itself shines with an overall brightness of about magni- tude +1.5. These are relatively newborn stars, just recently born from the stellar womb (though the gas that surrounds them is not part of the cloud from which the stars formed). The stars are surrounded by a bluish glow that consists of inter- stellar dust and gas interacting with the stars. The stars and gas glow together to form one of the deep sky’s most beautiful jewels and by far the brightest object in Charles Messier’s legendary catalog. It also makes yet another ideal testing ground for your night visual acuity. How many of the seven sisters can you actually see? The brightest member of the cluster is Alcyone, a young blue-white star shining at The Integrated Observing System. Part I: Your Eyes 11 Figure 1.2. M45 at the upper right of the totally eclipsed Moon. Twelve members are visible. 35mm SLR piggybacked on a Celestron Super C8 Plus.
  • 27. Human Vision and the Night Sky magnitude +2.8. Atlas is the star farthest to the east shining at magnitude +3.6. Working to the west,Merope is magnitude +4.1,Maia shines at magnitude +3.8 and Electra is magnitude +3.6. These five are the only ones that I have been able to see from my northern New Jersey home. There are four other stars, Taygeta at magni- tude +4.3, Pleione at magnitude +5.0, Celaento at magnitude +5.5 and Asterope at magnitude +5.8 that are visible to the unaided eye in dark conditions, but I have never been able to detect them without binoculars. Through binoculars, the Pleiades will number more than a dozen stars.A telescope will reveal yet even more within the hazy bluish white patch of light. How many can you find with the unaided eye? If you can find more than four members, then your eyesight is most keen and your sky fairly transparent. If you can bag seven, then you are seeing to magnitude 5.5 and your sky is extremely dark. If you can see Asterope, then you should consider having astronomy club meetings where you live, for your eyes and sky are good for seeing clear down to the naked-eye limit. Observing Project 1C – The Light Pollution Census A great test of the darkness of your sky that we alluded to earlier in this chapter is to do a census of the Great Square of Pegasus.How many stars can you see within the Square? If you can count only two, you are seeing to only magnitude +4.4. Picking up four stars takes you to magnitude +5.0. There are a total of eight stars brighter than magnitude +5.5 and if you can count as many as 16, you are seeing to magnitude +6.0. If you have extremely good night vision and a very dark sky, you might be able to see to magnitude +6.5 in which case you may count as many as 35 stars within the square.The Great Square makes a great test because it is most prominent in the sky during late autumn and winter. During this time of year, the atmosphere is normally very stable because the ground cools very rapidly at night and chills the air close to the ground. This has the effect of greatly diminishing the 12 Figure 1.3. Great Square of Pegasus mag 6.5. Graphic created by author with Redshift 4.
  • 28. temperature lapse rate and lends great stability to the lower atmosphere. With stable conditions prevailing on many nights, use the Great Square of Pegasus to judge the darkness of your autumn sky and the sharpness of your eyes.Count care- fully, be discriminating and above all, be honest with yourself. Remember you are doing a serious scientific project and you must take great care not to let your desire to prove how clear your sky is interfere with an honest and objective result. How many stars can you see in the square? Observing Project 1D – Deep Sky Visual Acuity (Non-Stellar Objects) Stars are fairly easy to make out because all of their luminosity is concentrated into a nearly immeasurable point of light. Try to imagine how much more difficult it would be to see if the total light were to be spread out over several square degrees. Such is the case with deep sky objects such as nebulas, star clusters and galaxies. That is what we will test with this next drill.How many objects in Charles Messier’s famous catalog can you find with the unaided eye? Messier was a comet hunter in eighteenth century France. To aid his fellow comet hunters and him, Messier set out to catalog all the objects in the sky, which could easily be mistaken for comets. By the time he was finished,he had logged and listed over one-hundred of the deep sky’s grandest wonders. In this project, we will attempt to see how many of these we can find without optical aid. Most are well below the threshold required for naked-eye visibility, but some can be seen easily from any location. The open star cluster M45, which we explored earlier, is the brightest single object in the catalog at total magnitude +1.5. This light is scattered across more than 6 square degrees of sky, making the overall brightness seem much fainter than the number would suggest. Magnitude estimates of an object’s brightness in astronomy are measures of total light. The more the total light is spread out, the lower the overall surface brightness becomes. To simulate this effect, pour some sugar out on a table and concentrate the grains as tightly as you can. Now see the difference in apparent brightness when the sugar grains are spread out over a wide area.There is the same amount of sugar crystals just as a 1.5 magnitude star produces the same number of photons as the Pleiades cluster. The light of the star is much more concentrated, therefore it appears much brighter because it is concentrated into one single point. Check out the Messier catalog list printed at the back of this book in Appendix A. How many of the objects brighter than magnitude six can you see? To the south of M45 in the winter sky is the bright emission nebula (“bright” is both an adjec- tive and a technical classification of this object) M42. The Great Orion Nebula hangs from the belt of mighty Orion the hunter. The glowing gas cloud shines at magnitude +2.5 and cannot be mistaken for any other object in the sky. This show- piece of the heavens is located nearly on the celestial equator and thus visible to astronomers all over the world. Over to the northwest, try for the Andromeda Galaxy (M31). Andromeda shines at only magnitude +4.6 and that light is spread over a wide area of sky.Andromeda measures about 1.8 degrees long by 29 minutes wide.This is about the area covered by three full moons.Under moderate light pol- lution conditions, you might not be able to see it at all without binoculars. Finding The Integrated Observing System. Part I: Your Eyes 13
  • 29. Human Vision and the Night Sky Andromeda is deeply satisfying for many amateurs for it represents the farthest place you can possibly see with the unaided eye. Remember that averted vision! Star clusters make inviting targets in the summer sky. Here are three globular clusters brighter than magnitude 6. In Hercules, try M13 at magnitude +5.8. This cluster will require a dark sky and a good eye, but it is distinguishable covering a span of about 17 arc minutes. Through a telescope, M13 is the grandest globular cluster in the northern sky, but is a great test for the unaided eye. To the south is the globular cluster M4, near Antares in Scorpio. Though it lists as slightly brighter than M13 at magnitude +5.6, its light is spread out over a wider area making it more difficult to see. In addition, M4 never gets very high above the horizon for northern hemisphere viewers, unlike M13, which sails nearly overhead during summer nights. Riding a little higher in the sky to the northwest of M4 in the con- stellation Serpens is the globular cluster M5. Also listed at magnitude +5.6, it is somewhat more compact than M4 making viewing a little easier. Still both of these clusters represent challenges even in a dark sky. In the southern hemisphere are two of the skies grandest jewels, the globular clusters 47 Tucanae and Omega Cen- tauri.Both of these monster globulars are easily visible to the unaided eye and out- shine any cluster in the north. Because they are only visible from the southern hemisphere, Messier could never add them to his catalog. Open star clusters can be even more difficult because they do not have the bright cores that characterize globulars. Still there are some that you can hunt down without any optical aid. Next to M45, the sky’s next brightest open cluster is called Praesepe in Cancer. Also known as the “Beehive Cluster” it is listed as M44 in the Messier catalog. The cluster lists at magnitude +3.5, but the light is scattered over more than a full degree of sky. A tighter grouping lies near the tail of Scorpius called M6.This open cluster near the Scorpion’s tail is only 21 minutes across,about the size of many globulars and its total light measures magnitude +4.6. M6 has a nearby partner called M7. This open cluster lists more than a full magnitude brighter at +3.3 but it covers more than four times as much sky so the two clus- ters appear to have a very similar surface brightness. The Messier catalog offers a treasure trove of deep-sky wonders. How many can you find on your own? If you can find ten, you’ve got a great sky and keen eyes. Observing Project 1E – The Sixth Naked-Eye Planet: Uranus In the late eighteenth century, William Herschel was scanning the skies from his observatory looking for comets when he chanced upon a sixth-magnitude star that his charts did not show. After observing the object for several nights it appeared to move across the sky in a slow but steady eastward motion. Herschel though he had discovered a new comet. But further observations yielded even more startling results.The object was moving in an orbit that was not very comet-like.The object’s orbit appeared to be circular,like that of a planet and not the highly elongated path followed by a comet. The object also seemed to exhibit more of a planet-like appearance, without the fuzzy coma characteristic of comets and it had no tail to be seen at all. After several weeks of careful research, Herschel stunned the world 14
  • 30. by announcing the discovery of his new planet. Astronomers around the world raced to their telescopes to see the new wonder of the solar system. Many modern names were floated for the new world, including “Herschel” for its discoverer and “Georgian Star”for Britain’s King George III,but the name that stuck was“Uranus,” the mythical father of Saturn and grandfather of Jupiter. Uranus’ discovery was historic, for the solar system had its first ever new member. The new world measured in at 29,000 miles in diameter, about the size of three and one-half Earth’s. Uranus for most of its history was considered to be a gas giant much like Jupiter and Saturn, consisting mainly of gaseous hydrogen and helium. The Voyager 2 flyby in 1986 changed all that. It showed the planet to be substantially different from the first two Jovian worlds in that it was made up of large quantities of ices, thus earning the new moniker “ice giant.” Neptune also turned out to be more like Uranus after Voyager 2’s 1989 flyby of that planet. Though Herschel needed a telescope and a lot of good luck to find Uranus, all you need is that dark sky, good eyes and a star chart to find the seventh planet from the sun. The planet generally shines at magnitude +5.8, placing it just above the threshold for naked-eye visibility. Finding it among the other 6,000 points of light in the sky magnitude six or brighter is an intimidating challenge. Popular astronomy magazines such as Sky & Telescope or Astronomy will print charts annu- ally, showing the location and path of Uranus through the evening sky for the year. To find such a faint nondescript object, work to become intimately familiar with the sky in that area.That way,anything that appears unusual will immediately jump out at you. As you carefully scan that area of sky on a nightly basis, you will see one of the faintest objects in the area move slightly.The motion is normally towards the east, but as Earth overtakes Uranus in its orbit each year, our point of view causes the illusion called retrograde motion. The planet appears to stop in its path and then begin to track backwards towards the west for several months before resuming normal motion again. In the darkest of skies, the planet may also betray its true green color, but for most of us it will just appear to be its normal shade of gray. The Integrated Observing System. Part I: Your Eyes 15 Figure 1.4. A speck in the darkness: Uranus. Celestron Super C8 Plus and Meade Pictor 216 XT at f/10. Photograph by author.
  • 31. Human Vision and the Night Sky Observing Project 1F – The Very Young Moon Each month as the Moon swings around Earth in its orbit it passes between Earth and the Sun (most of the time slightly above or below it). As the Moon passes this position it reemerges into the evening sky as a crescent, which grows fatter each night, as the Moon appears to move farther away from the Sun in the sky. In this project we will attempt to determine how soon after new moon can you first detect the crescent. There are several factors that improve or degrade your prospects for success in this project.The most important variable is the angle that the ecliptic makes against the sky.The ecliptic is the imaginary projection of the plane of Earth’s orbit against the celestial sphere. All the planets and our Moon orbit in a path around the Sun that always remains on or close to the ecliptic. Since the Moon never strays far from this line, the angle the ecliptic makes with the horizon is vital to your observ- ing prospects.An object can be very close to the Sun and yet be easily visible if the ecliptic makes a steep angle with the horizon. At other times, the object can be twice as far from the Sun and yet be nearly invisible if the ecliptic makes a shallow angle with the Sun. The best time to try and bag a very young moon is during the months of February, March and April. During these months, the ecliptic makes its steepest angle with respect to the horizon because Earth’s north pole is tipped so that it is pointing behind the planet with respect to its orbital path. Solar system objects close to the Sun appear to stand almost directly above it at sunset. During August, September and October the reverse situation occurs when Earth’s north pole leads in our orbit and the ecliptic appears to lie almost flat with respect to the western horizon at sunset. The reverse of this relationship occurs if you are trying to locate objects at sunrise. The most favorable months are August, September and October while the late winter and early spring months present poor viewing geom- etry at dawn. These relationships are also inverted if you are reading in the south- ern hemisphere. Any good astronomy publication will tell you not just the day when new moon occurs but in fact the precise moment of new moon, usually in Universal Time. If the moon is new precisely at the time of your local sunset, you will have the oppor- tunity to view a twenty-four hour old moon at sunset the next night. On nights where the viewing geometry is favorable, go out and find a spot with a clear view of the western horizon. Note the spot where the Sun sets and about thirty minutes later look about one fist-width (an average person’s fist at arm’s length subtends an angle of about 10 degrees) above the sunset point or slightly to the south. A twenty-four hour old moon should be fairly easy to spot, showing a hairline cres- cent hanging in an almost ghostly fashion just above the western horizon. Most people will not notice the moon until the next night. The extremely thin crescent, just 7% illuminated and only 11 degrees from the Sun, can be very difficult if any haze exists and makes for a good observing challenge. Once you’ve succeeded at this, try an even younger moon. At twenty hours, the moon is barely 6% illuminated. The youngest crescent that anyone has reportedly sighted with the unaided eye (that can be verified) was only fourteen hours old.At that age the Moon is only about 6 degrees east of the Sun and is only 4% illumi- nated. Such a feat requires a very clear sky, perfect eyesight and viewing technique and a good shot of good luck. Can you do it? Check your ephemeris for next month’s new moon and see if you can give it a try. 16
  • 32. Observing Project 1G – Elusive Mercury We all learned in grade school that there are five classic planets visible to the unaided eye.Venus and Jupiter flare brilliantly in the night sky and are unmistak- able. Saturn also shines brightly and prominently all night long when favorably placed. Mars is unique with its orange-red glow. All of these planets shine high in a dark sky when favorably placed and require no effort to find. Poor Mercury is left to suffer in anonymity, spinning around the Sun at breakneck speed complet- ing a circuit every eighty-eight days. As it passes between Earth and Sun (inferior conjunction) it enters the morning sky for several weeks, then passes behind the Sun (superior conjunction) and enters the evening sky. The period of visibility when the planet is in the morning or evening sky is referred to as an apparition. The planet will remain in the morning or evening sky for seven to nine weeks at a time depending on its distance from the Sun. The planet however will only be visible for a fraction of the time, for two to three weeks with the unaided eye while it is farthest from the Sun and reasonably bright. Observers wishing to sight Mercury must learn to deal with two important con- tradictions. First is the assumption that Mercury must be easiest to see when it ranges farthest from the Sun. Mercury orbits the Sun in a path that has a greater eccentricity (deviation from circular) than any other planet besides Pluto. This causes the planet at some apparitions to roam much farther from the Sun than at others. As a result when Mercury reaches its greatest elongation (farthest angular distance from the Sun for a particular apparition) at the same time it is closest to the Sun (perihelion), it never strays more than 18 degrees from the Sun. If Mercury reaches greatest elongation at the time of its aphelion (farthest from the Sun) it can appear as far as 28 degrees from the Sun. Northern hemisphere observers are at an unfortunate disadvantage. The problem is that when Mercury reaches greatest elongation at aphelion, it is always at a time when viewing geometry is at its most unfavorable. Greatest elongations when viewing geometry is most favorable occur only with Mercury near perihelion. As a result, when Mercury wanders farthest from the Sun, the ecliptic lies flat with respect to the horizon and the planet is buried in the glare of twilight. When Mercury sticks close to the Sun, the viewing angle is at its best. This is the best time to look for the elusive innermost planet even though it is much closer to the Sun than it would other- wise be. The second contradiction is that it is best to look for Mercury between the time of greatest elongation and inferior conjunction (in an evening apparition, in a morning apparition inferior conjunction comes first). This is when the planet is closest to Earth and therefore should be at its brightest. In fact, nothing could pos- sibly be farther from the truth. Mercury is a unique object in all the cosmos in that it is the only celestial body that grows fainter as it draws closer! No other body in the universe does this. No other body changes brightness through such a range as Mercury either. Mercury is actually at its brightest (magnitude −2.0, brighter than Sirius) when it is near superior conjunction, when it is farthest from Earth. As it draws nearer to Earth, it fades to magnitude zero by greatest elongation. Over the next two weeks as it nears its closest point to Earth,it completely fades out of sight, growing as faint as magnitude +4.6 just before inferior conjunction. We’ll discuss this remarkable aspect of Mercury’s behavior a little later on when we look at it through the telescope. The Integrated Observing System. Part I: Your Eyes 17
  • 33. Human Vision and the Night Sky Finding the planet is a simple matter of knowing exactly where to look and then being there at the right time. Trying to find the planet too soon after sunset will cause frustration because the sky is still too bright. Waiting too long will cause Mercury to sink too low to the horizon. The best time to look is during the time period starting about seven to ten days before greatest elongation in the evening sky or during the same period after greatest elongation in the morning sky. Begin looking about thirty minutes after sunset.During times of favorable viewing geom- etry, look just above and a little to the south of the sunset or sunrise point. As the pink sunset sky fades to deep blue, pinkish Mercury will appear. During this time, the planet will be shining at brighter than magnitude zero and will stand out nicely. During an evening apparition the planet will quickly retreat to the horizon and is lost within the next half-hour. If you are observing in the morning sky, see how long you can keep Mercury in sight as dawn approaches. The planet is at magni- tude zero at greatest elongation but about two weeks later, you should be able to see it as bright as magnitude −1.0. This should be bright enough to allow any observer to track the planet until sunrise. When you succeed, you will join a rather exclusive club. Everyone on Earth has seen the four other bright planets, but not one person in a thousand has con- sciously looked at Mercury and realized what it is. Now with our eyes well trained and exercised, let’s begin the work of assembling the equipment needed to com- plete the integrated observing system. 18
  • 34. CHAPTER TWO After spending my childhood and teen years observing under bright city or sub- urban lights with a small-aperture department store refractor telescope, I entered my college years with the dream of a larger instrument that would bring the deep sky into view for me. The two-inch Tasco refractor served its purpose well for showing the visible planets, Moon, and Sun. Seeing the deep sky beyond the solar system, the outer planets, faint comets, or the asteroid belt’s largest denizens was hopelessly beyond my department store telescope’s limited reach. As I began to search among the various manufacturers, the vast number of choices available rapidly overwhelmed me. Should I consider another refractor or a reflector? If I were to choose a reflector, what type should it be? What I decided to do was make The Integrated Observing System. Part II: Your Equipment 19 Figure 2.1. Celestron Super C-8 Plus. Photograph by author.
  • 35. Human Vision and the Night Sky a list of qualities that I needed to have in a telescope and then set about finding the one that would come closest to meeting my unique needs. Here are the items that made up my list: (1) Aperture: It had to be big enough to permit viewing deep sky objects and stars to a reasonably faint magnitude. Getting to magnitude 14 (Pluto) would require at least eight inches. (2) Portable: It had to be small enough to permit me to move it up or down stairs, transport easily by car and light enough to carry over moderate distances. (3) Optical Quality: I was going to pay what amounted to a lot of money for a college student so it had to be a serious instrument that would provide the best, brightest, crispest images possible for my investment. (4) Versatile: The telescope had to be capable of a full range of operations from wide-field viewing to providing high-power detail both as a visual and photo- graphic instrument. (5) Durability: This was going to be my telescope for many, many years. It would have to be solidly built and be able to withstand the rigors of decades of use. (6) Upgradeable: As my needs and skills in amateur astronomy grew through the years the telescope had to be able to grow with me. (7) Serviceable: In the unlikely event that there was ever a mechanical problem with the scope or a part needed to be replaced or if I just needed advice on how to work something, the manufacturer of the telescope had to be able to provide it. When you create this list, make certain that you organize the items in the order in which they are important to you in case you need to or are willing to compro- mise. In my case, all seven of these items were absolutely non-negotiable. For example, without aperture there is absolutely no reason for me to be buying a tele- scope. I already owned one and wanted to replace it because the one I had was not big enough. It would have made no sense to replace one small scope with another. Portability was number two because I had only a limited amount of space in which to store a telescope and needed to be able to move it as necessary to be able to get it to the observing site. All my equipment had to fit into a college student’s car (1981 K-Car, don’t laugh at me). It then had to be hauled from the car to the place where the telescope would be set up, often a distance of a hundred feet from where I would park. A huge telescope weighing more than a hundred pounds just would not get the job done. The quality of the optics was another issue. My plan was to spend about $2,000 on my new scope. For that money, it had to have the best optics I could afford. This required that I put in a fair amount of time learning about the strengths and weaknesses of various optical systems that were available. I also needed a scope that was versatile. It had to be of the right focal length and size so that it could make photographic images of the deep sky with reasonable speed yet also provide crisp images at high power when called for visually. It also had to be durable, capable of withstanding not only the test of time, but also the rigors of repeated transportation, bumping and jostling without not only remaining intact, but without requiring constant readjustment each time I put it in the car. It had to be upgradeable, meaning capable of accepting add-on accessories such as drive motors, eyepieces and camera adaptors. As my skill grew and I wanted to probe 20
  • 36. deeper into the heavens, the telescope had to be able to grow with me and be capable of using advanced equipment beyond its own equipment package. Finally, I demanded a telescope that would be easily serviceable in the rare event that something went wrong with it. I set my sights on a scope with a good warranty and a company with a good chain of dealers where a telescope could be taken for repair or at least for shipment back to the factory for maintenance. Remember that not everything on my list may appear on yours and you may in turn have needs that I did not. If you’re mounting the scope on a permanent pier, then its not likely that portability is important to you, especially if that pier is to be surrounded by a dome.You may desire the capability for full computer control of your telescope or Global Positioning System capability to eliminate any need for manual navigation of the heavens. I have always found these tasks among the most pleasurable in astronomy and I take great pride in finding my way around the sky. If you would prefer just to hit the GO TO button, there’s nothing wrong with that if it increases your pleasure in astronomy or at least lowers your frustration level. I would just prefer to find it myself.Anyway, when I bought my scope in 1986, there was no such technology available. You may have an absolute price cap to live with or other restrictions. Make out your own list and set your priorities accordingly. There are some things you should always remember about buying a telescope. If you are about to lay out money for a serious telescope, be aware that it is an investment that will hold good value. Telescopes are not cars. Optical systems do not degrade in quality from being used so plan to take very good care of it because its going to be with you for many years. Mine is now nineteen years old, still looks like its fresh out of the box even though we’ve been all over the universe together. I expect we will travel the cosmos together for many more years to come. Though I’m planning to add a second telescope to my collection, it is going to be a smaller scope for quick low-power viewing of the skies on short notice.Secondly,the scope is only as good as the quality of its optics and mount.A telescope with poor optics will produce images that are distorted either in shape, color or both. A telescope also can have the world’s best optics but if you put it on a shaky mount, an image magnified 100 times will only show you a vibration magnified 100 times. By now, you probably realize that I’ve spent some time taking backhanded swipes at “500×” department store telescopes. They may serve their purpose rea- sonably well as entry-level instruments, but if you buy one realistically believing it will produce 500×, forget it. My third key thing to remember is that the primary function of a telescope is not to magnify. Its primary function is to collect large amounts of light and bring that light to a clear, sharp focus. Magnification is a sec- ondary consideration and in fact is not performed by the telescope at all,but rather by the eyepiece.A telescope’s ability to clearly present magnified images is directly related to how much light it can collect. If you try to magnify an object 500 times using a 2-inch telescope (that’s 250× per inch of aperture), all you will wind up with is a blur magnified 500 times. A telescope of this size cannot magnify with that much power and bring the image to focus. Even medium-size telescopes of 8 inches aperture (that’s 62.5× per inch) cannot withstand the use of that much power. In reality, a telescope with good optics should be able to focus an image at a maximum of 50× per inch of aperture. Any more than that results in a loss of image brightness, clarity and contrast that grows progressively worse as more power is used. If you try to push that two-inch department store refractor to more The Integrated Observing System. Part II: Your Equipment 21
  • 37. Human Vision and the Night Sky than 100×, you are going to be sorely disappointed. Never buy a telescope that is marketed on the basis of its magnifying power. If you look at ads for Celestron or Meade telescopes, you will never ever see their instruments advertised on the basis of magnifying power. With an eyepiece of the proper focal length, any telescope can be made to magnify an object 500 times. Aggravating the situation further is the possibility that the lenses of that department store telescope may not be made of the best material available. Top-quality refractors are made with optical quality glass and top-end scopes may use a lens element made of calcium fluorite. Cheap scopes may have lenses made of plate glass, Pyrex or even worse, plastic! This will create imperfect or even badly distorted images even at low powers. Refractors vs. Reflectors Now that you have made the decision to step up to a medium to large aperture telescope from your department store model, you need to consider the various types of optical designs and decide what best suits your needs. The telescope you own now is most likely a refractor. This design, also called a dioptric telescope, is based directly upon the original opera glass telescope designed by Galileo in 1610. That original telescope used a simple convex lens to gather and focus light and a concave lens at the opposite end of the tube to bring that light to a crude focus. The lens at the front of the scope is called the objective. In any telescope the objec- tive is the lens or mirror element that gathers starlight and directs it to a focus point. With this simple design, Galileo discovered that Venus exhibited phases like the Moon and that Jupiter had satellites circling it. These discoveries led Galileo to realize that the geocentric model of the solar system was incorrect. Earth was not at the center of the solar system, but the Sun was! Galileo would pay dearly for his blasphemy. The church would torment him, ruin him, excommunicate him and finally forced him to recant. He was of course correct. The Sun was at the center of the solar system and all the planets circled it. It would be nearly 400 years before the church would come to admit it early in the reign of Pope John Paul II when Galileo was formally brought back into the Roman Catholic Church. Science has refined the design of the refractor over the years allowing it to create sharper images with better focus.For an amateur shopping for a telescope,the chief advantage of a refractor is that its lenses are rigidly held in place in the telescope tube making the telescope virtually maintenance free. The lenses never need to be adjusted and are in fact often cemented in place. The refractor lenses generally are of long focal length, often producing f ratios7 of f/12 to f/14. These long-focus tele- scopes provide sharp images with high magnification without using excessively short focal-length eyepieces. The refractor does have some drawbacks that prevent it from being used as a design for large-aperture telescopes. By the time the scope reaches about 4 inches (100mm) in diameter, the objective lens starts to become too heavy and the tube too long for use in a design that can still be considered portable.Lenses can be designed that provide a shorter focal length,but that results 22 7 Focal length is the distance from the objective lens to the point at which light rays come to focus. F- ratio is the focal length divided by the diameter of the objective.
  • 38. in some loss of image sharpness and they don’t get any lighter. Refractors also are subject to an error that is an inherent byproduct of the design. As light passes through the glass lenses, the colors are separated in the same way that a prism might and not transmitted evenly by the lens elements.This causes an error known as chromatic aberration.Objects viewed through a refractor will often have a fringe of false color surrounding them caused by the optical separation of the differing wavelengths of light through the telescope objective lens. To try to minimize the effects of this color distortion, the telescopes lenses may be coated with metallic- based compounds that also improve overall light transmission. For those who desire perfect color in their images, the closest you can get is a telescope with a calcium fluorite lens element. Calcium fluorite is not glass, but a mineral that must be ground and polished in a very time-consuming and expensive procedure. Flu- orite lenses however are not subject to the chromatic aberrations that plague glass lens refractors. Refractors do have other limitations as well. The long focal lengths produce very narrow fields of view that cannot contain entire deep sky objects. Long focal lengths are also tough for astrophotography work. The longer the focal ratio of the telescope becomes, the longer exposure times are required for imaging a given object. Refractors can be very frustrating telescopes for taking pictures. The limitations and chromatic aberrations of the refractor began to lead early astronomers to look for other solutions to the problems of building large-aperture telescopes. By 1681, the noted early physicist Sir Issac Newton invented a telescope using a large mirror as a light-collecting surface rather than a lens. This type of telescope is called a “reflector” or catropic telescope. Reflectors use a large concave spherical mirror (primary mirror or objective mirror) to gather light and bring it to focus on a small, optically flat mirror near the front of the telescope tube. This secondary mirror turns the light 90 degrees to an image-forming eyepiece at the side of the tube. This original type of reflector is called a Newtonian reflector in honor of its inventor.A later type of reflector,called a Cassegrain telescope,focuses light through a hole in the center of the primary mirror to an eyepiece in the back of the telescope. Because light does not actually pass through any of the telescopes surfaces, they do not actually need to be made out of pure glass. Telescope mirrors The Integrated Observing System. Part II: Your Equipment 23 Figure 2.2. A short- focus Newtonian reflector. Image by author.
  • 39. Human Vision and the Night Sky can be highly polished glass, Pyrex or even in some very early instruments, alu- minum. Glass or Pyrex is generally used today because it is easiest to polish and figure to exactly the precise shape needed,then once the mirror is correctly figured, an aluminum overcoat is applied and polished until ready for use. The glass or Pyrex only needs to be thick enough to form and maintain the shape of the mirror. Reflector telescope mirrors are therefore much lighter per inch of aperture than are refractors. This removed many of the limitations that existed on telescope size. The world’s largest refractor measures only 40 inches in diameter but reflectors now exist that are ten times that size. Like refractors, reflectors also have an inherent flaw. Because a spherical mirror is used to reflect light to a flat one, some points of the secondary mirror are farther from the primary mirror’s point of focus than others. Usually the objective is designed to focus light to the center of the secondary mirror. Portions of the image that fall on the outer parts of the secondary mirror tend to be distorted slightly. This error inherent in the reflector design is called spherical aberration. Stars at the center of the field focus to sharp points but stars near the edge may appear slightly streaked from the center of the field towards the edge. As telescope sales began to grow among the amateur public,two different types of fixes became avail- able. One is to use a primary mirror with a different type of shape called a para- bolic mirror. This mirror has a much deeper curve than a spherical mirror. A spherical mirror if continued in shape would eventually form a perfect sphere. A parabolic mirror has a much sharper curve to it and would close into a much more oblate form. This shape causes light to reach the secondary mirror in a more uniform manner creating sharper images. It can also be a very expensive mirror to produce because its curve is so complex. The second type of correcting mech- anism that has evolved over the years is called a corrector plate. The corrector plate is a glass lens introduced at the opening of the telescope. The corrector introduces an error into the light path that is exactly opposite of that introduced by the primary mirror.Thus in spite of what your mother told you,in this case two wrongs do make a right. There are two types of correctors commonly in use. Smaller tele- scopes may use a Maksutov corrector. This is a thick lens element with a heavy concave shape. Maksutov correctors are highly efficient and provide super-sharp images, but like refractor lenses, they become impractical to use once larger than about four inches in diameter.Schmidt correctors are not quite as effective as Mak- sutovs but are thin and very light. They are also relatively inexpensive to produce. Schmidt correctors are preferred for use in any reflector telescope design larger than four inches. Reflectors do have some other disadvantages. The classic Newtonian or Cassegrain design has an optical tube that is open to the elements and therefore must be carefully cared for. Mirror surfaces must be kept meticu- lously clean on a regular basis. The secondary mirror is in the path of light to the primary mirror and is held in place by a spider support that also blocks some light from reaching the primary mirror. This so-called secondary obstruction created by the mirror and its support can block as much as 15% of the light entering the tele- scope.The mirrors must be carefully kept in line with each other through a process called collimation. This is particularly true of the secondary mirror, which must be in perfect alignment to properly redirect light to the eyepiece. An improperly collimated reflector can rapidly become a source of great frustration. Telescopes that employ Schmidt or Maksutov correctors have the advantage of being sealed at the front end, protecting the telescope mirrors. These telescopes are also less 24
  • 40. prone to (but not immune from) collimation problems. The secondary mirror housing of a Schmidt corrector telescope is fixed in the center of the corrector plate and is easily adjustable with an Allen-head wrench. The Maksutov is even simpler. The secondary “mirror” is actually an aluminized spot in the center of the correc- tor and never needs to (and cannot) be adjusted. A telescope is only as good as the mounting it sits on. Mounts come in two basic types. The simpler type is called the alt-azimuth mounting. The mount rotates up–down and left–right allowing the telescope to be adjusted in both altitude and azimuth.To follow an object across the sky,one must follow the object in both axes. My4.5-inchBushnellsitsinaverysimpletypeof alt-azimuthmount,whichissimply a bowl in which the bulbous base of the telescope sits and rotates.At the other end of the complexity scale, most GO TO scopes are alt-azimuth mounted with a com- puter issuing corrections as they track across the sky. Equatorial mounted scopes also move left–right and up–down,but the left–right axis can be pointed directly at the north pole, allowing the telescope to track an object with only a single motion. A drive motor that turns the scope at the same rate as Earth rotates in the opposite direction will enable that scope to keep an object centered in the field so long as the scope is both properly aligned and perfectly level.The most important thing though about a mounting is that is must always be perfectly rigid and not move.If the mount vibrates, no matter how well the scope performs at high power, all you will see is a highly magnified vibration if the mount is not stable. Reflectors and refractors have other characteristics that cannot fairly be described as either strengths or weaknesses, but will play an important role in determining what type of telescope you will eventually settle on. Refractors tend to have fairly high f-ratios compared with reflectors. A typical refractor will have an f-ratio of anywhere from f/12 to as high as f/15. These telescopes will produce crisp images and high magnification with long focal-length eyepieces. But because the f-ratios are so large, they will be difficult to use for long-exposure astropho- tography.Exposures for deep sky objects will be impractically long.Reflectors,par- ticularly Newtonian types, have very short f-ratios that mean that high powers are not easily usable. Newtonian reflectors will have f-ratios around f/6. They will produce very wide field images that are bright. Reflectors are also very good for long-exposure astrophotography, often requiring less than half the time for an exposure that a refractor of the same size. Refractors will always have the eyepiece at the rear end of the optical tube. With the use of a right-angle prism, the refrac- tor user will always be able to find a comfortable observing position. Newtonian reflectors have the eyepiece near the other end of the telescope on the side of the tube. This can cause an observer to torque his body into many unusual positions while trying to see through his telescope.In the largest Dobsonian designs,a ladder may become necessary when viewing objects near the zenith. The Decision After many months of careful consideration, the telescope I finally settled on was the 1986 model Celestron Super C8 Plus. This telescope is a Cassegrain design reflector with a Schmidt corrector. This combination Schmidt–Cassegrain design is the most popular in use today among amateurs purchasing medium to large size The Integrated Observing System. Part II: Your Equipment 25
  • 41. Human Vision and the Night Sky telescopes. Let us revisit my original list of important qualities and see how the Celestron meets my needs. (1) Aperture: At 8 inches in diameter, the Celestron could reach objects as faint as magnitude +13.8,the brightness of Pluto.The telescope came with optional coat- ings to improve light transmission to boost the limit to magnitude +14.0 (2) Portability: The Schmidt–Cassegrain design uses a convex secondary mirror and an f/10 objective. This design allows an 80-inch focal-length telescope to be accommodated by a tube that is only 17 inches long. The entire telescope assem- bly, the fork-arm mount and clock drive base weighs only twenty-three pounds. (3) Optical Quality: At that time, there was no mass producer of consumer tele- scopes that had a better reputation for quality than Celestron. Remember that as I write this, this was nineteen years ago. Though Celestron certainly has not slipped, its competition has certainly gotten better. (4) Versatility: At f/10 and 8 inches of aperture, the Schmidt–Cassegrain has enough focal length to provide crisp images visually, but it is fast enough to yield reasonably short photographic exposure times while reaching a theoretical pho- tographic limit of magnitude +16. (5) Durability: The Schmidt–Cassegrain optical design is nearly as rigid and maintenance free as any refractor,though some collimation is occasionally needed. The fork mount and drive base are made of cast iron and will last forever. (6) Upgradeable: The Celestron product line comes with a wide range of visual and photographic accessories for use in any application. The scope comes with a star diagonal mirror and two eyepieces (a 26-mm Plossl and a 7-mm Orthoscopic) providing 77× and 286×. This got me off to a good start and I have been able to add many accessories since purchasing the scope, including some that could not have been imagined in 1986. (7) Serviceable: The telescope is covered by Celestron’s limited warranty. If anything breaks, it gets fixed for free (assuming that I did not take a hammer to it). Other telescope purchasers as I said may have other criteria that are important to them while others may not be interested in some of the things that I want. One observer may want aperture in a telescope and nothing else. He may have no inter- est in astrophotography or any other complex applications or may already have a smaller telescope that can do that. This observer may want a moderate cost second scope solely for the purpose of pulling out the faintest objects out of the sky he possibly can for the lowest cost.This observer might be interested in a type of New- tonian reflector called a“Dobsonian.” These scopes come mounted on the simplest type of mount, often on wheels for ease of movement. They are built for one thing only, size. Dobsonian buyers can get scopes as large as 16 inches or more for the same price as a Celestron Schmidt–Cassegrain half the size. There are also users who want a small telescope that can be whipped out with only a few minutes notice. Such telescopes as Bushnell’s Voyager and Edmund Scientifics Astroscan cost around $200 and provide a 5-inch Schmidt–Newtonian reflector that sits in your lap or on a special cradle.Whatever your needs are, there is a telescope to suit your purpose. Make sure you put in the research and thought needed to ensure you get the scope you need, not the one the salesman says you need. List what you need 26
  • 42. for a telescope to do and get one that does it. Don’t get a Dobsonian if a computer controlled GO TO telescope is what you really need. The only result of that will be that you will own a telescope that can detect sixteenth magnitude galaxies, but is completely useless to you if you don’t know how to navigate. The modern GO TO scope is wonderful if you are lost, particularly if they have a GPS receiver. All you have to do is turn it on and the GPS will automatically update your position and time so that the telescope can now point with arc second accuracy to any point in the sky without any other input from the user other that being told what the target is. Both Celestron and Meade sell their largest scopes with this technology, but you will pay over $5,000 for it. If you know your way around the sky, a 20-inch Dobsonian will do a better job optically and cost you only about 40% of the price. To use the analogy of the golfer again as we did in the first pages of this book, if you don’t have the right equipment to do the job, all you will experience is frus- tration.A golfer who uses clubs that are even 2 inches too long for him will be com- pletely unable to perform with them. The clubs must be perfect your game and your body. So must your optical equipment for the job you will ask it to do. Accessories My Celestron Super C8 Plus came equipped with several accessories out of the box (it was actually shipped in three boxes). These included an 8 × 50 polar axis finder scope with illuminated reticule,a star-diagonal prism,a 26-mm Plossl eyepiece and a 7-mm Orthoscopic eyepiece. This initial collection of equipment was adequate to allow me to begin exploring the heavens with my new telescope.As the next few months went my, I began to discover the need to expand my equipment inventory. With a focal length of 2,000mm, the 26-mm eyepiece yielded 77× while the 7-mm produced 286×. The low-power eyepiece gave good wide field views across an area of about 45 arc minutes.The higher power eyepiece was so powerful that even with the Celestron’s superior optics, getting a sharp steady view was a very rare event. I needed eyepieces that would allow me to use more intermediate magnifications for nights when the seeing was not as good as I would otherwise desire. After that came the desire to record on film, the sights that my eyes beheld. That led to my expanding into camera mounts and eventually into amateur CCD imaging. Lets now take a look at things that you will be eventually adding to your inventory. (1) Eyepieces (2) Barlow lenses and focal reducers (3) Solar filter (4) 35-mm SLR camera (5) CCD camera (6) Camera and CCD mounts and accessories (7) Color filters (8) Spectroscope (9) Carrying case The Integrated Observing System. Part II: Your Equipment 27
  • 43. Human Vision and the Night Sky (10) Laptop computer (11) Portable DC power supply (12) Paper or software star charts This is a list of equipment needed to bring your telescope up to a solid level of versatility both for planetary observing and deep sky work as well as visual astron- omy and photography. Let’s take a look now at what each different type of acces- sory does for us. Eyepieces The eyepiece is the lens assembly at the focal point of the telescope that forms and magnifies the image. Most telescopes, even department store types, come with at least one for initial use. Sadly today many of the major manufacturers deliver their telescopes with just that one eyepiece. Today’s Celestar 8 and Nexstar 8 telescopes, the current editions of the legendary Celestron C8, come with only a single 25-mm Plossl eyepiece (though Celestron does offer a nice observing kit that adds five more eyepieces and a filter set for under $100). When you purchase eyepieces, remember to get the proper size for your telescope. Eyepieces are sold in three industry-standard sizes (0.965 inch, 1.25 inch, and 2 inches) encompassing several different designs. The major things that distinguish eyepieces from one another are eye relief and field of view. Eye relief is the maximum distance from the tele- scope that you can see the entire field of view. The farther away you can keep your eyes,the more comfortable you will be.Field of view is the angular measure of how far you can see from the left edge to the right edge of the field. If you own an economy or department store type telescope it likely came with an eyepiece of the Huygens or Ramsden optical design.These are two-element eye- pieces designed to be low cost and produce satisfactory images to the undemand- ing eye. Eye relief is minimally adequate and the field of view is usually less than 28 Figure 2.3. Plossl eyepieces. Photograph by author.
  • 44. 30 degrees. The perception that I always had with these eyepieces is that I was looking through a pinhole.If my head wandered slightly,my eye would wander out of the field and if my eye were to tear at the eyepiece, I would lose sight of the target. These eyepieces are almost universally sized at 0.965 inch and while they serve department store telescopes adequately, they are not suited for use in high- performance instruments. Telescopes intended for high-quality astronomical work are equipped with 1.25- inch eyepieces. The cast iron cell that seals the end of a Celestron or Meade tele- scope has an opening in it with a universal thread to allow attachment of 2-inch accessories. This opening is usually fitted with an optional adapter called a visual back that stops that opening down to 1.25 inches and has a thumbscrew to secure accessories with a non-threaded drawtube. This arrangement allows the telescope to accept 1.25-inch or two-inch accessories. The preferred size is 1.25 inch since there are a much wider variety of accessories at more modest cost and they are much lighter. Using 2-inch accessories usually requires that the telescope be care- fully counterbalanced. For these telescopes, the lowest cost eyepiece one should consider is the Kellner design.These eyepieces generally cost less than $50 per unit and provide a field of view of about 40 degrees. Kellners provide bright images and good eye relief as long as you do not use too much power. At higher powers, eye relief becomes uncomfortably short. The Kellner eyepiece uses three lenses in its design. Light first strikes a convex element that then focuses light on a second convex lens. That lens is directly mated to a concave third element. If you need to add more magnification flexibility to your telescope at a modest cost, orthoscopic eyepieces might be the way to go. Orthoscopic eyepieces utilize four elements in their design.Light first contacts a three-stage lens stack of convex, concave and convex lenses. These focus light onto a concave lens at the viewing end. Eye relief is better than in cheaper designs and, combined with their field of view, the Orthoscopic eyepiece was for many years considered the best all-around telescope eyepiece. It has over the years lost its top-of-the-line stature to more modern designs. Orthoscopics may also suffer from field curvature near the edges of the field of view. This may cause star images to appear slightly streaked rather than perfect pinpoints near the edge of the field of view. I added two Orthoscopic eyepieces to my equipment box after buying the Celestron, an 18-mm (111×) and a 12.5-mm (160×). These additions allowed me more magnification in conditions where my 7-mm would be useless. For those with a little more money to spend after the big purchase, consider adding more Plossl eyepieces to your collection. This design has replaced the Orthoscopic as the most popular among discriminating observers. The Plossl also utilizes four optical elements. The first and second elements are mated and are concave and convex. This stack sends light to a second stack that is convex and concave bringing the image to focus. The design has the advantage of providing an image that is uniformly sharp from center to edge. Each one can cost some- where between $60 and $100 depending upon size and manufacturer. Plossl designs feature excellent eye relief since the exit end of the eyepiece is consider- able wider than less costly designs.The field of view is about 50 degrees on a typical model. Unlike with the Kellner design, the Plossl provides excellent views at both high and low powers. Since the Plossl design is usually the featured eyepiece in most manufacturers product lines,you may have choices of equipment with special The Integrated Observing System. Part II: Your Equipment 29
  • 45. Human Vision and the Night Sky overcoatings to cut glare and improve light transmission. Eyepieces such as Celestron’s Ultima line provide improved image quality and sharpness at a con- siderably increased cost. Celestron now offers Plossls as part of a discount equip- ment kit. This allowed me to add 32-mm, 20-mm, 15-mm, 9-mm, 6-mm and 4-mm eyepieces to my collection (along with a Barlow and a filter set) for minimal cost of less than $100.You can now buy six of them for what a single Plossl cost twenty years ago. Two other highly popular high-end eyepieces are the Erfle and Nagler designs. These are super-wide field eyepieces that more resemble looking through a window than a telescope. This is accomplished using what is usually a six-element array providing a field of view as great as 70 degrees. With such extreme width in the field of view, these eyepieces are generally best used for low-power views. Some loss of image sharpness may be experienced when using these eyepieces with very short focal lengths. For those desiring the most field of view and maximum eye relief for maximum comfort, consider adding 2-inch accessories for your telescope. A special visual back allows 2-inch accessories to be added easily. Newtonian users might have to install a new focuser. Some elements might be directly attached to the rear cell of the telescope. Two-inch accessories are much larger and therefore more expensive to purchase.A single eyepiece can run to well over $200.They are also much heavier than 1.25-inch equipment and require counterbalancing. This in turn will cost more money. Barlow Lenses and Focal Reducers Adding a Barlow lens and a focal reducer to your equipment box will effectively triple the number of eyepieces at your disposal. These two accessories are remark- ably simple and fairly low cost. They have the effect of also changing the charac- ter of your telescope.A focal reducer effectively shortens the f-ratio of the telescope 30 Figure 2.4. Barlow lens. Photograph by author.
  • 46. creating a lower magnification and wide field of view. The Barlow lens does exactly the opposite. It will double or even triple the magnification provided by a typical eyepiece. The Barlow lens utilizes a single element concave lens that has the effect of dou- bling the magnification of the eyepiece–telescope combination.Adding one Barlow effectively doubles the number of eyepieces at your disposal. Barlows are usually inexpensive to add to a telescope collection making it a great addition for any scope. They are however a bit on the long side and that means there will be a dra- matic change in focus from where the focuser of the telescope was originally set. Barlows also are available in a triple magnification design. Some manufacturers also offer a short Barlow lens that will not affect focus position as severely as more traditional designs. Another variant on the Barlow theme is the zoom lens that introduces a movable negative element into the light path. By rotating a knob, the magnification of the telescope can be varied over a wide range allowing the user to work at different magnifications without changing eyepieces. Once you start handling expensive oculars with numb hands in freezing cold, you will quickly come to appreciate the value of a zoom eyepiece. In nearly all cases the Barlow lens or zoom lens slips into the drawtube of your focuser or visual back. The focal reducer is a positive lens that does the opposite of the typical Barlow. Instead of doubling the magnification, the focal reducer shortens the focal length of the telescope and reduces the magnification and creates a wider field of view. In addition to the wide field of view, low f-ratios mean brighter photography and shorter exposure times, both issues of great importance to astrophotographers. The telecompressor offered by Celestron reduces the f-ratio of my Schmidt–Cassegrain from f/10 to f/6.3. That means that my 26-mm Plossl’s magnification is reduced from 77× to 48× while the field of view increases from less than three-quarters of a degree to better than 1.2 degrees. The telecompressor has disadvantages as well. Its large lens size makes it unsuitable for a draw tube insertion. Mine attaches directly to the Celestron’s rear cell, then the visual back screws onto the back of the telecompressor. The telecompressor also requires a lot of back focus. Some observers may run out of focus travel before the telecom- pressor–eyepiece stack can come to a sharp focus.Observers who wish to turn their telescopes into real wide field instruments may opt for ultra-low f-ratio reducers such as the model designed by Optec. This reducer takes an f/10 telescope down to f/3.3. That would, using the eyepiece discussed previously with my Celestron, reduce magnification from 77× to 26× and take that three-quarter degree field of view up to over 2.1 degrees. The Optec reducer does introduce severe field curva- ture and Optec does not advise using their product for visual observing. It is strictly a photographic accessory. Users of Barlows and telecompressor also must remember one other thing. Any time you introduce a piece of glass into the light path, not all the light that enters that lens will come out the other side.Introducing any additional lens into the light path will reduce the brightness of the image at final focus. Given a choice of using a 20-mm ocular or a 40-mm with a Barlow to produce 100×, I would prefer to use the 20mm. Telecompressor users should also be aware that if they are doing astrophotography or CCD imaging that using a shorter f-ratio also means shortening the range of critical focus, the precise range in which the focuser must The Integrated Observing System. Part II: Your Equipment 31
  • 47. Human Vision and the Night Sky be placed to produce maximum image sharpness on film or the CCD chip. This range, measured in microns, can be cut in half by a telecompressor. These two accessories can add great flexibility to your equipment box but just as you would not use a screwdriver on a nail, make sure you use the right tool for the right job. A Barlow costs around about $40. Telecompressors are more expensive, usually around $140. Solar Filter Viewing and photographing the Sun can be a very rewarding endeavor, but it is one that requires a great deal of caution. The surface brightness of the Sun at Earth’s distance is equal to an eye-blowing 1.5 million candlepower per square inch. That much light will very quickly destroy the retina of the eye if you even glimpse at it for any length of time. Imagine that light amplified many times by the size of a telescope objective. To safely view the Sun, you must have a properly designed solar filter. There are two ways in which this type of filter can be added to the telescope.You can use either an aperture filter, which fits over the front end to the telescope, eliminating more than 99% of the Sun’s surface brightness and total light, or an eyepiece filter. This is a filter that screws into the open end of the ocular barrel. The only type of filter that you should consider using is the aperture filter. The reason why is because this filter is not required to absorb sunlight that has been amplified by the telescope. An eyepiece filter must absorb the sunlight amplified many times by the telescope objective.This can cause the filter to become extremely hot and under that kind of heat the glass element may crack or shatter while you’re looking through it leading to disaster. Aperture filters come in different types.The simplest type is a full-aperture filter that filters light passing through the full width of the objective. Most filters utilize a neutral density glass that renders the Sun in its natural yellow color. Because the Sun is the brightest object in the sky, a large aperture is not necessary to produce 32 Figure 2.5. Mylar solar filter. Photograph by author.
  • 48. a bright, crisp image. Celestron offers a 3-inch off-axis filter that fits over the 8- inch objective of the C8. This reduces the total amount of light reaching the eye- piece providing a more comfortable view.A disadvantage of this is that it will limit the amount of magnification you can use. Another type of filter that many people use now is a Mylar filter. This type of filter uses two sheets of Mylar each of which is aluminized on a single side. The two Mylar sheets are laid over each other with the aluminum on the inside, protecting it from scratches. These types of filters produce sharp images of the Sun at a fraction of the cost of their glass counter- parts. If you’re considering a Mylar filter, don’t be turned off by your first look at one. The aluminized Mylar looks like lightly crumpled aluminum foil leaving one to wonder how this could ever transmit a sharp image. Believe me, it does. Mylar filters do have one disadvantage. The aluminized Mylar strongly absorbs the red end of the spectrum rendering images of the Sun that are nearly powder blue in color. When I work with solar images, I always convert them to grayscale anyway so this does not bother me all that much. The Sun has been burning with the same color for all of human history and that value is very precisely known. The exact color that you see in the scope has no scientific importance at all, but if the aes- thetic value of a yellow Sun is important to you then you should avoid a Mylar filter. Solar filters run in price from about $80 and up in today’s market. 35-mm SLR Camera Capturing pictures of what you see in your telescope is one of the most rewarding and at the same time challenging tasks you can undertake in astronomy. In order to accomplish this you need a 35-mm SLR camera with a removable lens. A ring then is attached to the camera that will allow the camera to be mated to an adapter that directly threads onto the rear cell of the telescope in place of the visual back. The telescope then becomes the camera lens. This type of camera is the only type of camera that allows you to view directly through the light path rather than The Integrated Observing System. Part II: Your Equipment 33 Figure 2.6. 35-mm camera and lenses. Photograph by author.
  • 49. Human Vision and the Night Sky through a parallel finder. This will allow you to directly sight and focus the target. Prior to reaching the film, the light is deflected by two 45-degree mirrors to the viewfinder.When the shutter is tripped, the first mirror is retracted out of the way either electrically or mechanically. This allows the light to reach the film when the shutter is opened. When the exposure is completed, the shutter closes and the mirror extends to its normal position. Another important benefit of this type of camera is that it allows you to select various exposure time lengths.A typical setup will allow automatic exposure times from as fast as 1/500 of a second to one full second. Of even greater importance is the bulb (B) setting. This allows the shutter to be manually held open for as long as the user desires. This is critical since most deep sky photographs are taken at the full focal length of the telescope (in my case, that’s f/10). Taking an exposure of a ninth-magnitude nebula might take as long as an hour. When buying a camera for astrophotography, buy as much quality as you can afford. If you buy a good camera, you will only have to do it once. Manual cameras are relatively inexpensive and have the advantage of not needing batteries that can die on you in extreme cold. Electric cameras operate much more smoothly and precisely. The quality of the lens of your camera is important since you will not always use it to image through your telescope.You may wish to mount the camera on top of the telescope “piggyback” style. This allows a clock-driven telescope to serve as mount for beautiful wide-field panoramic shots. Also consider a camera that offers an array of telephoto lenses. This allows modest magnifications to be used while retaining a wide field view. The only other type of accessory that is an absolute must is a cable release for the shutter. This allows the shutter to be opened without you touching the camera and thus creating vibrations. This can either be a manual type of release with a spring or an air-loaded type. The air-release is smoother,but also more expensive.If you choose to settle for a spring cable release for your camera, make sure you use the camera’s delay timer if you are not using the “B” setting. This will allow any vibrations created by the spring to damp out before the shutter trips. New cameras can cost $500 and up with just a single lens. When camera shopping,a trip to an Internet auction site is a great idea to get good- quality equipment at a cheap price. I recently bought a used Minolta and three lenses for under $100 in mint condition. CCD Camera The charge-coupled device (CCD) camera has been a part of astronomy for decades but until recently has been an exclusive province of professionals. The cameras were large, power-hungry and incredibly expensive. During the mid- 1990s, advances in electronics allowed CCD chips to be produced commercially on a large scale. This advance has made possible the digital imaging revolution that so many of us take advantage of today. Your camcorder, the camera in your cell phone and your digital camera all use CCD technology. The CCD chip is a tiny silicon wafer covered with an array of light-sensitive detectors called “pixels” (techno-speak for“picture elements”).The pixels collect photons and register their brightness for assembly into a completed image. 34
  • 50. One of the great advantages of the CCD chip is that it is far more light-sensitive than is film.An image that would take an hour to make on film can be recorded in just a few minutes or even seconds on a CCD. A CCD camera for astronomy is something of a different beast than those used for conventional photography. The CCD chip, like photographic film, does a much better job recording light when exposed to high levels of light for a brief period of time.Astrophotography involves exactly the opposite, exposing the chip or film to a very minute level of light for very long periods of time. Fortunately the speed at which the chip collects light improves dramatically as you reduce temperature. An astronomical CCD camera is equipped with a cooling system that chills the chip to a temperature well below zero degrees Celsius. The heat generated by the camera can register in the CCD pixels creating what is called “dark current,” or false light. Cooling the chip to sub- freezing temperatures reduces the amount of dark current. Another feature that increases light sensitivity is sacrificing color. Unless you have observatory class aperture, there is very little to be gained by using color sensors so most CCD cameras record light in shades of gray ranging between the extremes of white and black. In an 8-bit camera, CCD pixels measure shades of gray and report that data to a computer using a scale of 0 to 255. The “zero” value represents pure black while “255” represents pure white.Anything in between cor- responds to a shade of gray. Moving up the cost scale, cameras are available with 16-bit capability registering light on a scale of zero to 65,536. These cameras will produce images that are far smoother than the 8-bit camera with no large unnat- ural transitions between pixels. The image quality of the 16-bit camera is every bit as good as those taken on photographic emulsions. Eight-bit imagers tend to be somewhat grainy but if saving money is an issue, they are satisfactory because the human eye can only discern about forty shades of gray anyway. Like with the 35-mm camera,buy as much quality as you can afford.That assures that you will only have to do it once. My first camera was the Meade Pictor 216XT. This is a 16-bit camera with a CCD pixel array measuring 335 elements by 256 ele- ments. It produces images that are super-smooth and when properly focused, The Integrated Observing System. Part II: Your Equipment 35 Figure 2.7. Meade Deep Sky Imager CCD Camera. Photograph by author.
  • 51. Human Vision and the Night Sky nearly indistinguishable from a photographic print. It also is adaptable to color photography by installing a tricolor filter wheel. In this technique, separate expo- sures are obtained through red, green and blue filters, then stacked one on top of the other.This produces an image in what is called“RGB”color.I have not yet opted to do this because the filter wheel assembly is as costly as the camera itself. The Pictor 216 XT was also, at the time I purchased it, the only 16-bit imager available for under $1,000. Several smaller manufacturers are now also under that level with 16-bit capability and now even with color detectors. I have not had the opportu- nity to try out any of these cameras, but I was happy enough with my Meade that I eventually purchased their new Deep Sky Imager for color work.By the way,since all cameras use either the universal T-thread or standardized 1.25-inch draw tubes, you can mix and match telescopes and cameras. Just because you own a Meade telescope, you are not beholden to the Pictor line of CCD imagers. You can use a Santa Barbara Instruments Group camera and it will work just fine.My Meade CCD gets along just fine with my Celestron telescope since the interfaces are of uniform size. I cannot take advantage of some of the features in the Meade camera that are specifically designed for use with Meade’s LX200 line of telescopes such as auto- focus. Today I am using Meade’s Deep Sky Imager, which allows deep sky images to be taken in color. It has a larger chip (wider field) than the Pictor 216 XT and costs less than half what the Pictor did in 1998. CCD cameras have disadvantages as well. Each image must be carefully cali- brated.This involves subtracting what is called a“dark field”and a“flat field.”These techniques correct for any heat on the CCD that can generate false light and for any field curvature induced by the telescope. Taking one picture therefore involves actually taking three.You must first take a dark frame (usually done with the tele- scopes cover on) then a flat field frame (done with a white card over the telescope objective) prior to taking the actual picture. The two calibration frames are then deducted from the actual image to produce proper views. Removing this unwanted clutter is referred to as maximizing the “signal to noise ratio.” Remember that signal is good and noise is bad. Compounding the prospective photographer’s task is that the size of the chip is extremely small, only a few millimeters across. This means that at f/10, the field of view of the chip of the Pictor 216XT with my Cele- stron is a miniscule 5.5′ × 4.1′. Using a telecompressor gets the field up to 8.7′ × 6.5′. Remember that CCD imaging is an extremely difficult and demanding oper- ation,so consider adding this to your equipment box only when your skills warrant it. Otherwise, you will spend a great deal of money only to get frustrated. Get good with camera and film then step up to a CCD imager. In today’s market, CCD imagers start at about $150 for what is basically a web camera and can go up over $10,000. Camera and CCD Mounts and Accessories To get the most out of your camera equipment, it is necessary to have the proper supporting equipment. The devices used for 35-mm photography and for CCD imaging are very different from each other so we’ll discuss them separately. In 36
  • 52. photography, 35-mm cameras cannot be directly connected to a telescope so adapter equipment will be necessary in order to make the mechanical connection. The minimum that you will need is a T-ring and a T-adapter. The T-ring is a metal ring with two threads. One screws into your camera and provides the interface for the T-adapter which screws into the other end. At the far end of the T-adapter is a universal thread ring that will mate to the rear cell of a Schmidt–Cassegrain tele- scope in place of its visual back.These two devices allow the camera to be mounted at the prime focus of the telescope and allow for photography at the telescopes normal f-ratio (for me, f/10). Photography using this type of setup is therefore called prime focus imaging. This type of setup allows nice, short-exposure images of the entire Moon or Sun,reasonable length images of star clusters or other bright objects in the deep sky and the shortest possible exposure time for any other type of object,unless a telecompressor is used.For imaging the planets or small objects, the magnification is generally inadequate to show any detail. For small targets, a different technique must be employed. We can gain extra magnification by intro- ducing an eyepiece into the light path. This will require moving the camera several inches farther away from the telescope using an empty metal tube called a “tele- extender.”After inserting an eyepiece directly into the visual back of the telescope, the tele-extender then screws over the outside of the visual back. The other end of the tele-extender screws directly into the T-ring on the camera. This has the effect of dramatically increasing the focal ratio of the telescope, sometimes into triple digits! Tele-extension photography can be extremely challenging because with so much power,it can be difficult to focus the telescope and like with the CCD imager, field of view is agonizingly small.This can make it difficult to even find your target, never mind focus on it and shoot. If you get good at it though, the results are well worth it. Long-exposure astrophotography requires that the telescope be carefully guided throughout all the time the shutter is opened. If the target is allowed to drift, the result will be a badly streaked image. Modern clock drives are very good at track- ing objects,but no motor drive is perfect so you will always need to correct in right ascension. With an extremely accurate polar alignment and a perfectly level tele- scope, you can eliminate the need to correct in declination. Still, very few of us are that good or that lucky so some minor declination correction will almost always be required as well. To make these corrections, you will first need a control device. This is a simple four-button (up, down, left, right) hand-held box that connects via a telephone-style jack to your drive base. It controls the right ascension correction by speeding up or slowing down the motor in response to your commands. For declination corrections, commands are sent to an external motor that inputs the north–south correction. The motor, normally purchased separately, connects to a power port on the telescope drive base. Using these motors draws a lot of power from your telescope battery, so be prepared to plug into either a larger DC battery or some source of AC power with a DC inverter. Most telescopes come with equip- ment to allow you to do the latter while DC/DC adapters (to plug into your car’s cigarette lighter) are readily available. Now that you have the means to make corrections, you need to be able to see what you are doing. With the camera shutter open, there is no means to look through the telescope to see the target. There are two ways around this problem. The old fashioned way is to mount a guide telescope on top of the main telescope. The Integrated Observing System. Part II: Your Equipment 37
  • 53. Human Vision and the Night Sky This is usually a 2–3 inch refractor with a high-power eyepiece. The guide scope is mounted precisely in line with the main telescope so that by keeping the target object centered in the guide scope, you also keep it centered in the main scope. The advantage of this apparatus is that you can use the target itself to guide the tele- scope. This is a huge advantage if you are imaging a moving object, such as a close- by comet. The problem with the guide telescope is that if you are photographing a faint deep-sky object in your main telescope, it may prove too faint to see in the guide scope. Most owners of Schmidt–Cassegrain telescopes prefer to use an off-axis guider for controlling the telescope. The off-axis guider connects directly to the rear cell of the telescope. Most of the light passes directly through the guider body to the camera. A small amount of light is redirected by a prism to an eyepiece at a 90- degree angle to the light path. This allows the observer to see a small amount of the field of view and pick a target to guide on. The advantage of the off-axis guider is that you can take advantage of the full light gathering power of your telescope to find a guide star. The problem with this system is that you cannot see the actual object you are trying to photograph. The prism does not extend that far into the light path. You must aim and focus the camera carefully, then hope that the off- axis guider is able to view a star onto which you can focus, center and guide the telescope. A CCD camera adds to the aim, guide and focus difficulties because you cannot view through it at all. Attaining a proper focus is a difficult process of trial and error. This is very frustrating because image quality is very dependent upon a very precise focus. The range of focus position is literally only a few hundred microns wide.To help aim and focus,many amateurs now use a device called a“flip mirror.” The flip mirror uses a fixed mirror that directs light to an eyepiece that allows the viewer to see exactly what the camera will see. When the target is centered in the eyepiece, the mirror is then retracted out of the way allowing the light to go to the camera.Once the camera is focused once,you can bring your eyepiece to focus. Then all you will need to do is center and focus in the flip mirror, and you will have a point and shoot CCD setup. The flip mirror can also be used for 35-mm photography provided it is large enough to allow the entire field of view to reach the camera. If the field of view is smaller than the camera frame (due to the obstruction of the flip mirror) then you will see the circular edge of the field of view on the frame, a phenomenon called vignetting. I use the larger of two flip mirror models offered by Meade. Some more modern CCD cameras will allow you to view real time video. This makes aiming and focusing easier, but it only works with the brightest of objects. When you buy any photographic accessory, make absolutely certain that it is of sound construction so as to avoid any mechanical flexing caused by the weight of the camera. If the camera or CCD is allowed to bend the mount by even a few mil- limeters, then the light path will no longer fall into the center of the camera’s field of view. This was a key selling point in selecting the Meade flip mirror. Other devices that I tried caused the camera to flex slightly off the telescope’s optical cen- terline. T-rings and adapters and tele-extenders are less than $40 each but the flip mirror and illuminated reticule eyepiece can set you back close to $400 if you go for larger models. 38
  • 54. Color Filters When you view through your telescope,you are viewing the full range of the visible light spectrum. There are times however when seeing all the light is not necessar- ily the best thing. Certain features stand out when certain wavelengths of light are eliminated. Viewing Mars through a blue filter brings out details in the planet’s atmosphere and clouds. This occurs because most of the planet’s dominant red color cannot pass through the filter. A yellow filter will emphasize the presence of dust in the atmosphere. Mars’s surface is best in a red or orange filter. An orange filter can enhance subtle differences in the atmospheres of Jupiter or Saturn. A neutral density filter reduces the brilliant glare of the Moon or Venus by simply reducing the surface brightness and total light. When less than about 17 arc seconds in diameter or close to the horizon,the disk of Venus can be nearly impos- sible to detect because it is lost in its own glare. Filters come in two types for Schmidt–Cassegrain telescopes. Eyepiece filters screw directly into the eyepiece barrel. Make certain that when you buy eyepieces that they have threaded barrels; some cheaper units may not be threaded. These are simple filters that are easy to use. Eyepiece filters are also useful for tele- extension photography since an eyepiece is always involved. For prime focus photography, you will need a drop-in filter. These filters are inserted into the telescope’s visual back before it is connected to the scope. The drop-in filter will also work for visual applications. A set of six filters can typically be purchased for a modest price from astron- omy equipment retailers for as little as $75. If you intend to do both visual and photographic observations, the drop-in set is probably best for you since the filter can be “dropped in” to a visual back, T-adapter or off-axis guider.A typical set will include red,blue,green,orange,yellow and a neutral density filter.If your telescope is a refractor or Newtonian reflector, you can only use eyepiece filters. The Integrated Observing System. Part II: Your Equipment 39 Figure 2.8. Color filter set. Photograph by author.
  • 55. Random documents with unrelated content Scribd suggests to you:
  • 56. que nos iriamos en breve, acordó de irse á concertar con otros Principales para matarnos en tierra á todos, y por la mar tenian prestos canaluchos armados y llenos de mucha gente, para barluar en el Navio y tomarlo, y este fué su intento. Y ansi Viernes á la noche que se contaron dos de Marzo, venia por tierra mucha gente y por la mar con los canaluchos con proposito de cortarnos el amarra de fuera, y los de tierra alar por el prois, para que el Navio diese á la costa y fuesen señores de nosotros, y ansi nosotros Rezelandonos de que de tierra no nos viniese algun daño por estar muy cerca, acordamos echar unos perros que teniamos, en tierra, para que en ella hiciesen vela, y nosotros en el Navio, y haciase tan buena que los que velavan en el Navio á la grita de los perros en tierra que arremetian bravamente con los Indios, me llamaron diciendome les parescia haver gente en tierra, por la braveza que los perros tenian, y ansi me lebanté y miré ácia tierra, y conocí que havia gente, y luego miré á la mar y ví tres canaluchos grandes, y ansí nos apercevimos todos con nuestras armas; y como ellos sintieron que nosotros estavamos despiertos bolvieronse con los canaluchos detrás de una punta; y allí echaron toda la gente y armas en tierra, por ser en parte que entendian que desde el Navio no los podiamos ver, y ansi se estuvieron hasta la mañana; y ansi en amanesciendo vinieron los dos á bordo muy toldados y empabesados con muchachos al remo, y dos ó tres Indios amarrados como que venian á benderlos y á rescatar, como que nosotros no les entendiamos su bellaqueria, y dentro de la una dellas venia el Viban con un Principal á quien él tenia respeto, y como nos vió armados y con los arcabuzes en las manos temió, y alzó las manos como otras veces solia hacer, y luego nosotros fuimos fronteros del Navio con nuestro Batel, y el Viban no nos habló, antes se fué luego á llamar los Indios segun entendimos, y no paresciendonos bien fuimonos á nuestro bordo, y acordamos de nos hacer á la vela; por que no era cosa de esperar mas, viendo la gente de la Isla tan alborotada, y que se nos atrevian; y ansi comenzó á acudir alguna gente, aunque los Principales devian de ser idos á llamar y juntar los mas que pudiesen; y ansi vino la noche, y otro dia Domingo de mañana que se contaron quatro de Marzo salimos deste Puerto y de Mindanao,
  • 57. aunque no dexaramos de estar allí otros quinze ó veinte dias esperando el Armada, sino fuera por temor de ver la gente tan escandalizada, aunque haviamos estado en ella treinta y tres dias, y ansi dexamos en ella muchas cruzes, y una botija con cartas al pié de una cruz, por que si el Armada alli viniese, supiese lo que nos havia sucedido, y la derrota que llevabamos en su busca; y hecho esto partimos de este Puerto, Domingo por la mañana, y ansi como fuimos á fuera cazamos á popa la vuelta del Sudueste, y fuimos otro dia á ver la Isla de Saragan, y vimos que no estaba allí el Armada, y no pudiendo surgir en ella atravesamos á la Isla de Mindanao por ser Isla grande, que terná de tierra como ciento y cinquenta leguas, y por que en ella hay muchos puertos; y ansi llegamos este dia á dar fondo en un Puerto, y estando para querer dar fondo vino un canalucho á nuestro bordo, y los Indios que venian dentro hablavan muchos vocablos españoles, y nos preguntaron si veniamos de Malaca ó ivamos á los Malucos: nosotros les respondimos que no, que eramos venidos de hacia Levante: espantabanse mucho de como no los entendiamos, y en esto conocieron que eramos venidos de lexas tierras y ansí no osaron llegar á bordo, y en todo lo que hablavan nombravan Capitan y Señores, y zaraguelles, y otras cosas, y ansi nos paresció que havian llegado por allí Portugueses muchas veces, y ansi nos señalaron haver visto allí tres Navios, los quales en su lengua llaman Mito, y entiendo debian de ser de las Armadas pasadas, que han venido en estas Islas, y ansi no surgimos, antes nos hizimos á la vela, y fuimos vaxando toda la Isla, viendo muchos Puertos y muy buenos, y siendo tan abante como media Isla vimos una Bahia grande que estaba diez leguas por la tierra adentro, y ansi fuimos al cabo desta Bahia á dar fondo, y allí estuvimos dos dias sin ver poblacion ninguna ni señal de haber portado por alli Navio ninguno; y ansi fuimos en tierra, por ver si veiamos algunas cruzes del tiempo pasado, por parescernos ser Puerto principal de aquesta Isla, y por hacer nuestra aguada; y como no vimos muestra ninguna ni señal, hizimos nuestra agua, por no haver defensa de Indios, y estando haciendo el agua me aparté por el monte, donde vi tanto rastro de benados, que era, maravilla; é ansi tomamos el Piloto y yo dos perros que traiamos, y salimos con ellos á un raso donde
  • 58. descubrieron un benado y le mataron; vimos cantidad de gallinas montesas por toda la Isla, donde anduvimos, y muchos puercos, y ansi nos bolvimos á nuestro Navio, con proposito de nos hacer á la vela y seguir nuestro camino en busca de la Armada, y venida la noche saltó el viento á la tierra y echamos mano á nuestro cable para levarle, y no pudimos por estar empachada el ancla en una piedra que por mucha fuerza que hizimos al cabestrante no pudimos levarla, y ansi nos detuvimos dos dias que por mucho que hizimos no la pudimos levar, y visto que perdida estava el ancla eramos nosotros perdidos, por que un Rezon que traiamos se nos havia quedado en Mindanao quando se nos quebró el cable: visto esto, estando en esta confusion rogamos á Nuestra Señora todos los que en el Navio ivamos, que ella lo guiase como fuese mas servida, y ansi fué servida de darnos nuestra ancla sin daño en ella, ni en cable: largamos esta noche una vela y fuimos saliendo del Puerto: calmonos el viento esta noche, y metionos el aguage, en una ensenada enfrente de unos fuegos que tenian unos pescadores, y por el propio fuego vimos que estavamos cerca de tierra: entonces el Piloto mandó á los Marineros que entrasen en el Batel, y que tomasen un remolque para sacar el Navio fuera, é yendo ansi remolcandole, vió el Piloto blanquear por proa, y preguntó á los del Batel si era baxo, y uno dellos con el remo fué á sondar y halló que habia medio remo de agua; y visto esto hicieron ciaboga con el Batel al Navio, y ansi salimos aunque con arto travajo; á pique de este arracife havia veinte brazas y por toda la Bahia habia veinte y á treinta; y ansi fuimos por la costa abaxo viendo muchos Puertos y Pueblos, y en muchos llegamos á surgir por ver si podiamos ver algunas señales de la Armada, ó de Navio que por allí huviese ido, y como no hallamos señales pasamos de largo, é yendo de luengo de costa vino una alva de mañana una vela á tierra de nos muy grande, y que ninguno que en aquellas Islas huviesemos visto, y ansi amuramos para ir en demanda dél, y como estuvimos cerca vimos que era un Canalucho grande ó Junco: llegamos á él para ablalles, y ellos pusieronse en arma, y entonces por señas les diximos, que no les queriamos ninguna cosa: ellos no curaron desto, antes como nos vieron cerca se pusieron apercevidos, y nos comenzaron á tirar con
  • 59. las armas que traian, que son baras tostadas, y lanzas con muy buenos yerros, y flechas, y ellos con sus escupiles de algodon como los de la Nueva España, con sus tablachinas y alfanjes en las manos: visto esto se les tiró con un berso, el qual dió dentro é hizo daño en él que lo medio desaparejó, y ansi el del timon se descuidó y el Navio dió una guiñada, de manera que nos barluamos, y visto esto y que tan mal desde él nos tratavan, se les tiró con otro berso, y ansi entraron dentro seis hombres, y ellos se echaron al agua: todos serian como unos cinquenta Indios: todo lo que hallaron estos hombres que entraron en él, fué gran cantidad de arroz, y mantas de palma y de algodon, y de frisoles y cocos, y pesos y medidas de oro, y otras cosas de su comida: mandoseles tomar un poco de arroz, por la necesidad de bastimentos que traiamos, y tomaronsele algunos pesos de palma y algodon, que todo ello valia arto poco: largamosles su Junco llamandoles viniesen por él, entendiendo segun la derrota que estos llevaban ivan á rescatar á otra Isla. Ansi pasamos de largo por la derrota que llevabamos, y otro dia en la noche yendo amurados la vuelta de tierra, por meternos al abrigo della por el mucho viento que hacia, pareciendole al Piloto ser aquel cavo de la Isla, se fué á proa del Navio por que havia visto blanquear la mar, parenciendole ser un baxo, pidió la sonda, y antes que se la traxesen varó el Navio en un arrecife de tal manera que pensamos perder allí todos las vidas, y quiso Nuestra Señora, que dando el Navio viró la proa á la mar, dando golpes de manera que nos echó el timon fuera, é ansi salimos sin rescivir daño ninguno el Navio, y luego en saliendo fuera del baxo cayó el timon en su lugar, y fuimos corriendo con nuestra derrota, viendo todos los Puertos y Ensenadas, como no víamos á que parar, pasamos de largo hasta que llegamos al cabo desta Isla de Mindanao, y en el cabo de la tierra tiene muchas Islas apartadas á tres y á quatro leguas y mas; ansi nos entramos por entre el cavo desta Isla, y las Islas de fuera, y allí surgimos por que es todo aplacelado y buen fondo, que hay diez, y doze brazas, y hay muy grandes corrientes, de tal manera, que si el cable no es nuevo rebentara con la fuerza del agua; ansi de creciente, como de menguante, crece y mengua mucho: todo el
  • 60. pescado que hay entre estas Islas, viene á desobar á estas corrientes, y que estando nosotros un dia surtos esperando la marea para desembocar de entre estas Islas, vimos venir muchos canaluchos atravesados con la corriente, los quales venian cargados de Indios Pescadores, y llegando á nuestro bordo vimos que traian los canaluchos llenos de pescado y preguntamosles por señas ¿si lo querian vender? respondieron, que sí, y ansi les rescatamos mucha cantidad dello: lebamonos de aquí y desembocamos de fuera destas Islas, y fuimos á dar fondo en tierra de la Isla de Mindanao, y salieron á nosotros muchos canaluchos cargados de cera y canela, rescatasmosles parte dello para comer, y alguna cera, para que si algo se ofreciera de calafateria breasemos con ella. Hay por aqui tanta cantidad de canela, que si un Navio llevase rescate en dos dias puede cargar. Despues que nos vinimos al cavo desta Isla que haviamos corrido toda la parte del Sur, y no haviamos hallado señas del Armada, y pareciendome que no era bien correr al Sur en demanda de otras muchas Islas que hay, lo uno por no llevar mas de un ancla, y lo otro con temor no diesemos con Portugueses, de que nos vendria mas daño, y tambien por no saber lugar cierto donde esperar el Armada, ó Isla cierta donde el Armada havia de venir, ni por instrucción me lo dieron no sabiendo que nos hacer, me dixo el Piloto ¿si traia alguna instruccion ó savia del General, ó de otra alguna persona, en demanda de que Isla venia el Armada? y el Piloto me mostró en la carta las Islas Filipinas: yo le dixe: que no savia ninguna ni tal me havian dicho, ni quando del Puerto partimos no savia adonde ivamos; y ansi acordamos que era mejor dar fin á toda la Isla, y boxandola, de allí atravesar á las Islas de Magallanes, que son las primeras que se pueden tomar viniendo de la Nueva España, y por haber ya allí estado el Armada de nuestro Emperador, y tener entendido venir allí el Armada, acordamos de ir en demanda desta Isla, y ansi fuimos costeando la Isla de Mindanao, y por la parte del Norte barloventeando, y con arto travajo fuimos á dar fondo, el cual tenía un Pueblo grande, y luego como dimos fondo vinieron á nuestro bordo ciertos canaluchos cargados de cera y gallinas y
  • 61. puercos, y cantidad de canela: no le rescatamos nada desto por que no teniamos con que: pusimosle por nombre el Cavo de la Canela, por que havia mucha cantidad: está este cavo en siete grados y medio, y ansi fuimos por la derrota que llevabamos, y habiendo caminado por esta vanda como treinta y cinco leguas, fuimos á dar fondo en un Puerto, en el qual vimos un Pueblo en un alto, grande, y por encima unas palmas de cocos, y ansi como nos vieron que dimos fondo, tocaron una bozina ó corneta, que fué llamar á recoger los canaluchos, y gente que estava fuera del pueblo, y en viendola tocar venian muchos canaluchos derechos al Pueblo, y ansi se recogieron todos que no quedó ninguno por la mar. Este dia vinieron á nuestro bordo dos canaluchos, y de fuera nos hablaron, y como vieron que no los entendiamos, dieron vuelta á su Pueblo, y aquella noche nos hizimos á la vela pareciendonos ver la gente ruin, y ansi como fuimos fuera en la mar, cargó tanto la brisa que de fuerza nos hizo arribar á este mismo Puerto, aunque una legua abaxo por estar más apartado del Pueblo; y ansi llegamos á dar fondo a una punta que parescia Isla respecto de un rio que la atravesava, y echamos el Batel fuera para tomar agua y leña, de que teniamos necesidad, y ansi se principiaron á tomar el dia siguiente, y estando tomando el agua, dixo el Maestre que queria quedarse en tierra labando su ropa, y con el un Mozo y un muchacho para labar la ropa de todos, é yo acordé de me quedar en tierra, por no ir ni venir tantas veces en el Batel, é por dar orden en tierra que se hinchasen las vasijas; y haviendo echado dos ó tres caminos en el Batel, y al camino postrero estaban ya todos en la orilla de la mar, salieron del monte un golpe de Indios con sus lanzas y tablachinas con tanta furia arremetiendo á los nuestros hiriendolos, y ellos como no tenian armas acogieronse al Batel, y del Batel con los remos botando fuera, y defendiendose, bolvieron á bordo: huvo hombre dellos que truxo nueve heridas, algunas de á palmo, el qual herido fué el Maestre, que por escapar la ropa que havia labado llevó las heridas y quedose sin ropa, y á todos los demas nos dexaron con la ropa que teniamos en el cuerpo.
  • 62. Quisimonos hacer á la vela este dia, y no pudimos por el tiempo ser ruin, y de ahi dos dias abonanzó el tiempo, y nos hizimos á la vela por nuestro camino; y estando de este Puerto quatro ó cinco leguas, cargonos mucho la brisa, y tambien por ser este el cabo de toda la Isla, atravesamos á las Islas de Magallanes, que son tres Islas principales, la una es costa de cabo de Matanzas, y la otra es donde murió Magallanes, y la otra Bahia de Macadaos, y ansi fuimos en demanda dellas, que estan todas tres del Este U-este, y á la vista de la Isla de Mindanao, que estarán della como quinze leguas; boxamoslas por la parte del Norte y entrando por la primera dellas que es costa del cabo de Matanzas empezamos á hallar tierra de poco fondo, el qual fondo hay destas Islas á los Malucos, y por encima de este placel hay tantas Islas, que nos paresció entrar en el Archipielago, y bien lo podemos decir por que hay muchas mas, por que andando entre ellas no sabiamos por donde haviamos de salir, y todas estas Islas son pobladas de mucha gente y son Islas pequeñas de á diez leguas, y de á seis, y de á quatro, y todas las demas de á dos, y de una legua, viven en alguna de estas Islas, principalmente en la de Mindanao, y algunas de estas otras pequeñas sobre arboles, y ansi tienen las casas como picazas en los mas altos arboles, que tendran á diez y á doze brazas de alto: paresceme que todas estas Islas pequeñas estan sugetas á la Isla donde mataron á Magallanes, por que haviendo quatro ó seis dias que andavamos por entre estos baxos é Islas, fuimos á dar fondo á una Isla pequeña que estaba pegada á la en que mataron á Magallanes, vimos de noche hacer tres fuegos, y paresciendonos que era señal por que los que traian los fuegos andavan por la playa, y pararonse enfrente de una Isleta pequeña que estaba á la mar de nosotros, y en levandonos por la mañana vimos venir atravesando once canaluchos cargados de gente, los quales venian desta Isleta pequeña huyéndola, y desamparando la Isla por la seña que la noche de antes les havian fecho: y ansi pasamos por barlovento de estos canaluchos, que si los quisieramos embestir bien pudieramos, antes no quisimos arribar sobre ellos por no metelles temor: ansi se fueron á la Isla donde se les hizo la señal. La Isla donde estos salieron, tenrá un tiro de ballesta, y sin arboleda, cercala toda un arracife, de tal manera, que
  • 63. con pasar dos leguas della fuimos por dos brazos y tres, quatro ó cinco horas, corriendo con buen tiempo, dexando la Isla de Cabo de Matanzas, y entrando por la de donde mataron á Magallanes. Entre esta Isla y muchas Islas que estan de la parte del Norte, que son Islas muy pequeñas, vimos las Islas pequeñas de fuera tan cerca de la Isla donde mataron á Magallanes, que me paresció no haver parte por donde salir, por ver tantas Isletas por la proa, y visto esto se fué el Piloto á la Gavia, y dende allí vió que devian (sic) estas Islas á la de donde mataron á Magallanes, y fuimos corriendo con la sonda en la mano por quatro y tres brazas, por que aunque rodeamos treinta leguas ni quarenta no hallaramos mas agua de aquestas tres brazas, por lo qual antes y despues vimos, que los naturales que en estas Islas se crian, tengo entendido que si caminan diez leguas por entre estas Islas se perderan, por que en cada diez leguas hay cien Isletas, y todas pobladas de gente y especeria; y ansi yendo por las tres brazas vi por la proa á una mancha prieta, y fué el Piloto á la proa y conoció que era baxo y mandó que fuese á orza de golpe, y con las velas encima dimos fondo á una ancla, y quando cayó el ancla dexó el cepo encima del agua; y visto el Piloto que estavamos encima del placel, mandó tomar las velas muy de presto, y acabadas de tomar empezó el Navio á dar culadas en el baxo, y viendo esto el Piloto mandó echar el trinquete arriba para que con él y la Mesana saliese fuera el Navio, y ansi como levantamos el ancla tomava el Navio ruin buelta, y todas las veces lo hacia ansi, por respecto de la mucha corriente que aquí andava en este placel, y no sabiendo el Piloto que hacer, acordó que con la verga de la cevadera botasen dos hombres el Navio para que tomase la buena buelta, y ansi salió el Navio sin daño ninguno, y fuimos corriendo de luengo destas Islas siempre por mucho placel, aunque en algunas partes se podia dar fondo por ser limpio. Yendo dexando estas Islas donde mataron á Magallanes pareciome que quedaban todas estas Isletas, y otro dia de mañana emprincipiamos á costear la costa de la Isla del Cavo de Macadaos, y vimos por la parte del Norte dellas tantas Islas como las de atras, que si temor tuvimos de las pasadas mucho mas en ver estas por el
  • 64. mucho arrecife que tenian, y por las grandes corrientes que havia, que nos ponian cada dia en tanto travajo y la noche en mucho mas, que ya no havia hombre en el Navio que se pudiese tener con dar fondo y tomar velas, y de velarnos de los Enemigos, y velar el cable, por que si perdiamos el ancla no nos quedava otra, que este era el mayor travajo que en el Navio se sentia. Dexada esta Isla de Macadaos vimos otras muchas Islas sin baxos ni placel ninguno, sino de mucho fondo, y en esto conosció el Piloto ser las postreras Islas: yendo corriendo entre ellas vimos muchos Pueblos cerca de la mar, y Islas de muy buen parecer, no pudimos dar fondo en ninguna dellas, y ansi pasamos de largo; y una tarde que fué Jueves Santo en la tarde yendo prolongando una Isla grande, que al U-este dellas havia otras Islas grandes y altas, y al Leste no parescia ninguna, y ansi entendimos que era el cabo de todas las Islas, y el agua corria por fuera reciamente, quisimos desembocar por vernos ya fuera de tanto travajo, vió el Piloto reventar un arrecife por la proa, mando arrivar por dar esta noche fondo en la Isla, y esperar á la mañana, y estando cerca desta Isla se hizo muchas Islas, y en medio no havia fondo, y el agua corria tan recio que nos metió por una angostura que apenas cavia el Navio, y el sol puesto y la noche escura, y los Indios de la una banda y de la otra tocando cornetas y bozinas, que sonaban dos leguas y mas, y el Navio por esta angostura dando muchas bueltas por causa de la mucha corriente y poco viento, que no havia ninguno: fué tanta la corriente que en un quarto de hora anduvimos quatro ó cinco leguas[10] yendo por este estrecho, con arto travajo y temor de que no nos acosase el agua ó algun baxo donde nos perdiesemos, que segun lo que viamos aquella noche no podia ser menos: andando en este travajo vimos atravesar un canalucho cargado de gente á dar aviso á la otra vanda del estrecho, el qual llevaba la sonda en la mano: dixo, fondo, y ansi con vela y todo dimos fondo á una ancla, y tomamos presto nuestras velas, y quando el Navio vino á hacer por el amarra echava fuego el abita[11], ansi largamos el cable hasta la punta, y ansi estuvimos el primer quarto en vela que menguava el agua, y de media noche abaxo principió á venir la creciente, venia con tan gran peso de agua
  • 65. que parescia que se abria la tierra, y en esto conosció el Piloto que era macareo, y ansi se fué á popa y se puso cabe al del timon mandandole governar toda la noche; yo quedé á proa encomendando la via, porque á tomar el Navio atravesado la corriente tampoco aprovecharan diez cables como uno, y luego en amanesciendo el agua fué pleamar, y mandó el Piloto á un Marinero subir á la Gavia, para que mirase por la parte de la mar si rebentaba algun arrecife, y dixo, que no havia ninguno, sino las Islas que nos tenian cercados; y queriendonos levar vimos venir cinco canaluchos toldados y empabesados que parescian Galeras; y en cada uno venian cien hombres: llegaronsenos por popa y comenzaron á alzar las manos en señal de paz, y nosotros hizimos lo mismo, y llamandoles que se llegasen á bordo, deciannos por señas que fuesemos á su Puerto; y tan claro lo decian como uno de nosotros, por que preguntaban por el Capitan y Piloto, nombravan Navio y Batel. Ya que estavan cerca de bordo meneó un Marinero un berso de los que estaban para en defensa nuestra: viendo esto ellos hizieron ciaboga con los canaluchos, de manera, que no osaron llegar á bordo: paresceme que estos contratan con Portugueses, de Maluco, por que estan muy cerca destas Isletas; y de alli nos hizimos á la vela la buelta de la mar, aunque con mucho travajo por doblar la Isla que teniamos mas cercana, huvieramos de dar á la costa por falta de viento, y ansi anduvimos aqui dos dias barloventeando, aunque por la parte del U-este no havia Isla ninguna, y esta noche nos quadró bien el viento y fuimos por el tenor deste, y pensando que haviamos doblado todas las Islas amanescimos con Islas de Cavo, y tanto en tierra que de una buelta ni de otra la podiamos doblar, y ansi nos dexamos ir de aquella buelta pareciendole al Piloto que era lo mejor, y el viento cada vez nos abonanzava, y la mar mucha que nos arronçaba en tierra, y hechose la sonda abaxo muchas veces no se halló fondo ninguno de que nos pesó arto, por que alli no havia remedio si no era con dar fondo, y como vi que no lo havia acordé que sacasen remos y remasen todos, y ansi travajaron todos este dia todo lo que se pudo trabajar, y andando con este travajo nos proveyó Nuestra Señora con un poco de viento con que doblamos esta Isla con el costado de luengo de un arrecife
  • 66. que della salia; y vistonos fuera desta Isla que no havia otra ninguna, y no saviendo que camino llevasemos, por que bolviendonos á meter en estas Islas era perdernos, hablé al Piloto y le dixe: que ya veia en la parte que estavamos, que era fuera de todas las Islas: el me dixo, que lo que á mi me paresciese y mas en servicio de S. M. fuese, se hiciese: yo le dixe, que mirase bien lo que deviamos hacer en esta navegacion, y que procurase tomar derrota y camino que fuese en servicio de Dios y de S. M. y del salvamiento de todos; y ansi estando pensando lo que haria, tomando la carta en las manos tanteandolo muy bien, y visto los inconvenientes desta navegacion me dixo, que lo mejor dello era dar buelta á la Nueva España, pues venia el verano y metidos en el altura por la parte del Norte nos quadrarian los tiempos y harian nuestra navegacion, y que ansi era mejor que no ir en poder de Isleños, ó de Portugueses, como las demas Armadas han hecho que á esta tierra han venido; é yo entendiendo esto, le dixe, que mi parescer era aquel, que mas queria morir en la mar en servicio de S. M., que no perescer entre esta gente, y que pues el intento de S. M. era descubrir esta buelta, y nosotros no podiamos topar el Armada, que mi determinacion era acavar este viaje ó morir, y ansi hablé á Pedro de Rivero y le dixe, que él y el Piloto baxasen á ver los bastimentos y que viesen el agua, y pan que teniamos, y hallaron ocho pipas de agua y veinte quintales de mazamorra[12] por que en aquello se havia convertido el vizcocho, y haba y garvanzo; y ansi bolvieron y me dixeron lo que havia, y que á las pipas del agua les faltava á quatro y á cinco arrobas de agua, y luego hize proveer un hombre que tuviese cuenta con ello, y todas las veces que se dava racion abaxava uno de nosotros á vello, pues nos iva la vida: sabido por alguno de los que en el Navio venian la determinacion mia, andavan medio amotinados por verse cerca de los Malucos, que habria como veinte leguas, y decian que en ellos havia Portugueses, y que á la Nueva España havia dos mil leguas, y que era imposible descubrirse por el ruin recaudo que llevabamos de bastimentos, y de todo lo demas que havian oido de las demas Armadas; y ansi quisieran ir mas á los Malucos que no venir acá; pero no era parte ninguna cosa, por que
  • 67. mi determinacion era lo que tengo dicho, y dexallo en las manos de Dios y de su bendita Madre, en el nombre de quien dexamos esta Isla de Cabos para dar principio en esta nueva Navegacion. LA VUELTA. Y luego el dia siguiente que fué dia de Pasqua de Resureccion que se contaron veinte y dos dias de Abril de este presente año de mil e quinientos y sesenta y cinco años, nos hizimos á la vela en demanda de la Nueva España, y ansi como partimos fuimos navegando al Norte por ser la brisa escasa, y el otro dia del Nor- nordeste, y quando nos fuimos apartando de la tierra ansi nos iva el viento alargando: pasados quatro dias ivamos corriendo á Leste y Les-Nordeste para meternos en el altura é ir en demanda del Pago mejor, que es una Isla grande que está treinta grados, y de la parte del Sur tiene tres ó quatro Islas pequeñas, y de la banda del Norte tiene la tierra firme de la China muy cerca, segun la carta lo demostrava, y segun las señas que vimos de palos y aves de la tierra y corrientes las quales nos favorecieron mucho: haciendose el Piloto cerca desta Isla nos dieron unos aguazeros con mucho viento Susueste, con el qual pasamos entre esta Isla del Pago mayor y las demas que quedavan al Sur, sin ver ninguna dellas, y paresciendole al Piloto que havia pasado por ellas, mandó governar al Nordeste, por que hasta allí venimos al Este por dar en estas Islas y ansi fuimos por el Nornosdeste corriendo hasta meternos en altura de quarenta grados, y llegados que fuimos á treinta y uno descubrimos un peñol del tamaño de una casa pequeña, y tan alto que dudo haver en el mundo torre mas alta, ni á un tanto é sin baxo, ni arrecife ni otra cosa cabe él, sino sola la mar; havitan en este Peñol unos Alcatrazes mayores que Abestruzes; y ansi fuimos corriendo por el Nordeste, y antes de llegar á los quarenta grados nos seguian unas Pardelas negras dando muchos gritos de dia y de noche; y tan espantosos que ponian grima á quien las oia, por ser aves que jamás Marineros las havian visto gritar: yendo corriendo hasta los quarenta grados por este rumbo nos cargó mucha brisa con la qual
  • 68. estuvimos ocho dias mar en través: corren las aguas á la vanda del Norte, por que haviendonos puesto mar en traves en quarenta grados que no tomamos el altura dentro de ocho dias nos hallamos en quarenta y tres grados por la causa de las corrientes con arto travajo, y estando ansi vimos venir nadando á bordo un perrillo de la mar con sus pies, y manos, y colas y orejas naturalmente, un raposo; y despues vimos otros, y uno se vino á bordo y nos comenzó á ladrar, cosa de que todos nos admiramos, por que entiendo que no hay ninguno que los haya visto: tambien vimos por este golfo pejes puercos del tamaño de una baca. Estando en esta altura fué tanto el frio que pasamos, que en ninguna parte creo lo hace mas en Ivierno, aunque nosotros veniamos en medio del Verano que fué por Junio y Julio; paresceme que en tiempo de Ivierno pasaran trabajo los que por alli navegaren; pero con venir aforrados lo pasaron todo: hay grandes serrazones, tanto, que en treinta dias no vimos sol ni estrella, y ansi venia el Piloto corriendo á tiento y por espiriencia; aqui vi á onze de Junio dia de San Bernavé que es el mayor dia de todo el año conforme á la altura que estavamos, nebada toda la cubierta, y duró hasta medio dia, y debaxo de cubierta teniamos una bota de aceyte, y se heló de tal manera que sino fué puesta al fuego no queria salir, y aun ansi salia á pedazos como manteca. Hallandose el Piloto abante del Pago mayor quinientas leguas, vimos muchos palos y aves, las quales creo son de la tierra firme de la China, la qual biene á fenescerse muy cerca de la Nueva España, por las señales que vimos en las dos tercias partes del camino, y ansi viniendo por los quarenta grados, entendiose estar cerca de la China, de la costa de la Nueva España hasta quinientas y treinta leguas, poco mas ó menos, conforme á el punto que el Piloto traia por la carta: un dia tomó el Sol por que este fué claro, y el primero que vimos al cavo de un mes: hallamonos en quarenta y tres grados, y aunque quisiera enmendar el punto que en la carta traia para ponella en los quarenta y tres grados, no havia en la carta mas mar, y ansi mandó correr al Este por no subir mas altura, y por llevar tiempos hechos, y ansi iva el Navio por los quarenta y tres grados, y
  • 69. el punto de la carta por los quarenta por la falta dicha; y ansi vinimos corriendo con arto travajo, por no haver pedazo de vela con que poder remendar las velas, y ansi cortabamos las bonetas para remendarlas, los papaigos; y despues que no habia bonetas cortabamos de los propios papaigos para remendar las demas, y el hilo con que se cosia era hilera, dimos tras los cordeles de pescar y otros mecates delgados; y demas deste travajo criose tanta cantidad de ratones que á palos andavamos tras dellos, y como havia poca agua y ellos no tenian de que beber, arrataban las pipas de manera que se nos fueron las dos dellas en dos horas, que nos pusieron en tanto travajo, que no pudo ser mayor, segun la parte que estavamos que era trescientas leguas de la costa de Nueva España, y con solas tres pipas, y destas le faltava á cada una quatro ó cinco arrobas, y el viento brisa que nos duró veinte dias, y en todos veinte no truximos mas vela de los papaigos y mar mucha: comenzonos á dar en treinta y ocho grados y dexonos en veinte y siete; pero el camino que haziamos era al Sueste, por que el viento era Nordeste, y ansi acordamos hacer vela á los ratones de dia y de noche con lumbre encendida devaxo de cubierta, y quatro hombres de cada guardia, y ansi mataban cada noche veinte y treinta ratones. Dexado que nos huvo la dicha brisa se halló el Piloto cien leguas de la Nueva España, y el viento en el Norte, que decia ser los envates de la tierra, y ansi mandó governar al Este, y á la quarta del Nordeste, por cierta diferencia que el decia haver en el ahuja, y ansi en el dia que se hizo con la tierra que fué Martes en la noche á diez y seis de Julio, mandó se hiciese buena guardia, y luego otro dia al quarto del Alva se levantó y me llamó diciendo viniese á ver la tierra de la Nueva España, y en viendola dimos muchas gracias á Nuestro Señor Jesu- Christo por las mercedes que nos havia hecho. Venido el medio dia, que estavamos cerca de la tierra tomó el Piloto el Sol en veinte y siete grados y tres quartos, la qual tierra era una punta de una ensenada grande, donde cae Isla de Corones, y ansi mandó cazar á popa con el viento Norueste la buelta del Sueste, por que ansi se corre esta costa: yendola corriendo este dia, á media noche nos dió un poco de viento Sueste por la proa, el qual fué causa que no diesemos en un baxo que teniamos por la proa, y venido el dia nos
  • 70. hallamos pegados á él: dimos gracias á Nuestra Señora por las mercedes que nos habia hecho en darnos aquel viento contrario, y ansi pasamos de largo corriendo la costa con bonanzas y Suestes los quales nos hacian surgir por la costa, y pasados tres ó quatro dias de Suestes nos bolvieron los vientos al Poniente, vinimos corriendo la costa hasta el Sabado que se contaron veinte y ocho de Julio: estando tanto abante como la punta de la California, é yendola atravesando esta noche cargó tanto tiempo del U-est Norueste que con ir con los dos papaigos baxos en popavia corriendo, y viendo el Piloto que cargava tanto el tiempo y la mar, acordó de mandar tomar la vela mayor para correr con el trinquete solo, y ansi estandola tomando nos dió un golpe de viento y mar y agua del cielo, que no saviamos si ivamos por tierra, si por mar, y con la gran fuerza del viento se les destomó la vela á los que la tomaban, que no se pudo tomar por mucho que se hizo, y ansi descalabró á dos ó tres, y á dos echó por la cubierta, y á la fin se hubo de encapillar el un penol con la vela en el estay mayor, y el otro penol por el agua, é yendo con este travajo nos dió un golpe de mar por la vanda de estribor que entró todo el Navio y dió en la vitacora, y echó á la ahuja y á todo lo demas, y á la lumbre que dentro estava, por la cubierta, y al del timon lo mismo, y ansi nos quedamos sin lumbre y el Navio atravesado, y medio sozobrado metido debaxo de la mar; y viendo esto el Piloto mandó que quartelasen el trinquete para que arribase el Navio, y ansi dió muchas voces y la gente estava turbada, que no havia quien acudiese ni acertase con cabo ninguno por la grande escuridad que hacia, y tambien por estar toda la gente enferma de la grande hambre y sed que han pasado y pasaban, y aunque huvieran que comer no podian por que á todos se les andaban los dientes, y les creció mucha carne de la boca, tanto, que les tapaban las encias, y en tocando en qualquier cosa se les caian los dientes; y ansi plugo á Nuestra Señora que arribó el Navio, y la vela mayor se hizo pedazos, y la cebadera, y bonetas que dentro estavan se las llevó la mar; y ansi yendo corriendo con solo el trinquete que ya no teniamos otra vela y á llevarnosla el viento quedabamos perdidos, prometimos á Nuestra Señora de llevarle este papaigo á su casa de Guadalupe en Mexico, por que no havia en el Navio mas que este, y
  • 71. este era hecho de una boneta del papaigo mayor, el qual hizimos por la mar, por que el papaigo que traiamos del trinquete nos le llevó un viento que nos dió por quarenta grados en demanda de la costa de la Nueva España, el qual viento nos dió del Sur, que son los tiempos que en este golfo ventan recios, el qual viento nos hizo ir un dia y una noche al Norte, por la fuerza y mar del tiempo, y al fin nos ubo de desaparejar, y nos llevó el trinquete, y el que hizimos para remedio fué el que nos traxo á la Nueva España, y por respecto deste trinquete no sozobramos al atravesar de la California como dicho tengo, y ansi rogamos á Nuestra Señora nos le guardase, y ansi ella nos le guardó, á quien prometimos todos de se lo llevar á cuestas todos á su santa casa de Guadalupe de Mexico, y ansi en esta travesia fuimos corriendo con este tiempo hasta la mañana que nos dexó, de tal manera, que nosotros y el Navio no estavamos para ver, y ansi remediamos el papaigo mayor con cierto Ruan que traia Pedro de Rivero, amigo mio, á cuya intercesion bino este Navio, y luego acavó de remediarnos lo mejor que pudimos, saltó el viento en el U-este con mucha furia, y fuimos corriendo con el amurados hasta el Martes que fué postrero del dicho mes, y vimos al otro dia la tierra de la otra vanda de la California, y tomó el Piloto el altura en veinte y cinco grados y medio, y dixo, que havia distancia de donde estavamos al Puerto ciento y quarenta leguas, y el otro dia que fué primero de Agosto nos comenzaron los Ponientes bonanzas, y á las noches aguazeros sin viento ninguno, y á las mañanas ventava el Sudueste un poco, y vistonos con pocas velas, y que en el Navio no havia dos varas de lienzo, acordó el Piloto que las frazadas que teniamos para dormir se hiziesen bonetas para aprovecharnos de la virazon de medio dia, y con el ayuda de Nuestro Señor y con la buena industria llegamos al Puerto de la Navidad á nueve de Agosto de mil é quinientos é sesenta y cinco años=Don Alonso de Arellano=Lope Martin, Piloto. Decreto.—En la Ciudad de Mexico á veinte y dos dias del mes de Noviembre de mil é quinientos é sesenta y cinco años: Los Señores Presidente é Oydores de la Audiencia Real de esta Nueva España,
  • 72. haviendo visto esta relacion de Don Alonso de Arellano, Capitan del Patax nombrado Sant Lucas que fué con la Flota del General Miguel Lopez de Legaspi, al descubrimiento de las Islas del Poniente, dixeron: Que mandavan y mandaron que el dicho Don Alonso de Arellano, y Lope Martin, Piloto del dicho Patax, y los demas Marineros y Soldados que entienden la Navegacion y cosas de la mar, declaren con juramento, en forma de derecho, esta dicha relacion, y todo lo en ella contenido, es cierta y verdadera, y lo firmen de sus nombres para que se embie á Su Magestad; y ansi lo pronunciaron y mandaron. Paso antemi=Bartholomé de Vilches. Declaracion.—En la Ciudad de Mexico á veinte y dos dias del mes de Noviembre de mil é quinientos é sesenta y cinco años: En cumplimiento de lo proveydo y mandado por los Señores Presidente é Oydores de esta Real Audiencia, por el auto de esta otra parte contenido; estando presentes Don Alonso de Arellano, Capitan del dicho Patax Sant Lucas, é Lope Martin, Piloto, é Juan Yañez, Contramaestre, é Juan de Bayona, Marinero, que fueron é vinieron en él á las dichas Islas del Poniente, yo Alonso de Segura, Escribano de S. M. é de la dicha real Audiencia, les lei de berbo ad berbun esta relacion presentada por el dicho Don Alonso de Arellano como en ella se contiene, y haviendola oido y entendido, tomé é reciví dellos, y de cada uno dellos juramento en forma devida de derecho por Dios é por Santa Maria, é por una señal de la cruz tal como esta ✠. Só cargo del qual les pregunté, si lo contenido en la dicha relacion de lo sucedido en el dicho viage es verdad como en ella se contiene é declara, é lo que cerca dello pasa, los quales haviendo absuelto el dicho juramento dixeron: Que lo contenido en la dicha relacion, que por mi el dicho Escribano les ha sido leyda, es lo que pasó en el discurso de su viaje é navegacion que hicieron con el dicho Patax San Lucas desde el dia que se hicieron á la vela en compañia de la dicha Armada, de que fué por General Miguel Lopez de Legaspi, del Puerto de la Navidad, hasta que tornaron á bolver á él, só cargo del juramento que tienen fecho, y el dicho Piloto dixo: Que demás de lo en la dicha relacion contenido, el particularmente declara, que las derrotas y señas de tierra é alturas, es la verdad como en la dicha
  • 73. relacion se declara, por lo haver ordenado y escrito en esta relacion por lo que vió y entendió en la dicha Navegacion como tal Piloto; lo qual dixeron ser la verdad só cargo del juramento que fecho tienen; y el dicho Capitan Don Alonso de Arellano, é Lope Martin, Piloto, lo firmaron de sus nombres, é los demas dixeron que no sabian.=Don Alonso de Arellano=Lope Martin, Piloto=Pasó antemi=Alonso de Segura, Escribano de S. M. El qual dicho treslado fué corregido é concertado con la relacion original de donde fué sacado por mi Bartholomé de Vilches, Secretario de la Governacion de esta Nueva España, en cuyo poder queda é testigos de yuso escritos, é de pedimento del dicho Don Alonso de Arellano, é por mandado de los Señores Presidente é Oydores de la Real Audiencia que en ella reside, dile por testimonio firmado é signado de mi nombre é signo, en esta Ciudad de Mexico á 27 dias del mes de Noviembre de 1565 años, siendo presentes por testigos, Alonso de Segura, é Juan Perez de Echavarri, Escribanos de S. M., é Bernardino Alvarez, estantes en esta dicha Ciudad.=En testimonio de verdad=Bartholome de Vilches. (Orig. A. de I.)
  • 74. 38. Testimonios de toma de posesion de algunas Islas. (Año 1565.—9 de Enero á 8 de Mayo.)—Comprenden las de Barbudos en 9 de Enero.—Ladrones en 26 de Enero.—Cibabao; en 15 de Febrero el Poder del General al Alferez, y en 20 de Febrero la toma de posesion por aquél.—Bahia de San Pedro comarcana á la isla de Tandaya en 23 de Febrero.—Bahia de Maletic en la isla de Abuyo en 8 de Marzo.—Isla Camiguinin en 14 de Marzo.—Isla de Bohol en 15 de Abril.—Isla de Çubu en 8 de Mayo.—(A. de I.: Escrituras y rrecaudos tocantes al descubrimiento de las Islas del ponyente)[13]. ISLA DE LOS BARBUDOS (9 Enero). En la nao capitana a nueve dias del mes de henero de mill e quinientos y sesenta y cinco años el muy yllustre señor miguel lopez de legazpi governador y capitan general por su Mag.d de la gente y armada que va en su Real servicio al descubrimiento de las yslas del poniente estando a vista de la ysla de los barbudos por ante mi hernando Riquel scrivano mayor de governacion de las dichas yslas y de la dicha armada, su señoria dixo que por quanto oy dicho dia se a visto esta ysla y en ella casas e rancherias e yndios en canoas que se an huido de la playa y conviene que en nombre de su Mag.d se tome posesion della y de las demas que se descubrieren y su señoria por su persona no la puede al presente tomar porque la flota esta en la mar a la vela y no a podido surgir, por ende que en nombre de su Mag.d como mejor en derecho lugar aya, daba y dio su poder
  • 75. cumplido a felipe de sauzedo su nieto para que tome y aprehenda la posesion de la dicha ysla por de la Mag.d Real del Rey don phelipe nuestro señor y en su Real nombre como la persona de su señoria la podia y devia Tomar y quan Amplio y cumplido poder se requiere para tomar la dicha posesion otro tal y ese mismo le dio y otorgo al dicho felipe de sauzedo con sus yncidencias e dependencias, Anexidades y conexidades en forma de derecho con todas las clausulas que se suelen e acostumbran en semejante caso que ovo por expresas aunque aqui no se declaren ni especifiquen y en firmeza dello lo firmo de su nombre siendo Testigos el padre fray andres de Urdaneta religioso de la orden de san Agustin y el capitan joan de la Ysla y el capitan joan maldonado miguel lopez paso ante mi hernando Riquel scrivano mayor. En cumplimiento de lo suso dicho su señoria del señor general envio a la dicha ysla un batel y dentro al dicho felipe de sauzedo y a mi el dicho scrivano y al padre fray andres de Urdaneta con soldados de guarda a los quales mando que no hiziesen daño ni mal tratamiento alguno a los yndios y naturales de la dicha ysla ni les tomasen bastimentos ni otras cossas de sus haziendas y antes les dio quentas y otros rescates que diesen a los dichos naturales en señal de paz y amistad y amor, y las naos aguardaron al dicho batel dando vueltas de un bordo e otro, hernando Riquel scrivano mayor. E luego yncontinente en este dicho dia mes y año suso dicho el dicho felipe de saucedo por virtud del poder quel muy yllustre señor miguel lopez de legazpi governador y capitan general le dio para tomar en nombre de su Mag.d la posesion de la dicha ysla de los Barbudos que esta en altura de diez grados estando de pies en ella por ante mi el dicho scrivano Tomo la dicha posesion de la dicha ysla rreal y autual vel casi en forma de derecho cortando Ramas y Arrancando yervas y haziendo otras çerimonias de posesion y fue a las casas de los naturales de la dicha ysla para en nombre de su Mag.d atraellos asi de paz y no se hallo ninguna persona en ellas hasta que se truxo un yndio biejo con su muger e hijos a los quales se les hizo todo buen tratamiento y se les dio quentas cuchillos y otras cosas en señal de amistad y a la usanza de su tierra y ellos lo
  • 76. rescebieron con mucha alegria y contentamiento y baylaron a uso de su tierra mostrando mucho placer y la dicha posesion se tomo en paz sin contradicion de persona alguna de como ansi passo todo lo suso dicho y de como se tomo la dicha posesion en nombre de su Mag.d por el dicho phelipe de saucedo como persona que tenia poder del dicho señor governador, el dicho phelipe de saucedo me lo pidio por testimonio. E yo Hernando Riquel Scrivano mayor de la governacion de las Yslas del poniente por su Mag.d doy fee de lo suso dicho como persona que se hallo personalmente a todo lo suso dicho con mucha cantidad de soldados que se hallaron Presentes por testigos, y para que conste dello lo firme de mi nombre con firma e rubrica acostumbrada ques atal en testimonio de Verdad hernando Riquel scrivano mayor de governacion.—Corregido con el original— Hernando Riquel Scrivano de governacion. ISLA DE LOS LADRONES (26 Enero). En veinte y seis dias del mes de henero de mill y quinientos y sesenta y cinco años estando en una ysla de los Ladrones, que los naturales della dieron por señas a entender llamarse Guan, el muy ylustre señor Miguel lopez de legazpi, governador y capitan general por su Mag.d de la gente y armada que va en su Real servicio al descubrimiento de las yslas del poniente Aviendo desembarcado en la caleta donde hizo su aguada por ante mi hernando Riquel scrivano mayor de la dicha Armada y de la governacion de las dichas yslas del poniente dixo que en nombre de la mag.d Real del Rey don phelipe nuestro señor y como su governador y capitan general, tomava e tomo e aprehendia e aprehendio la tenencia e posesion Real e auttual vel casi desta dicha ysla e de las demas a ella subjetas comarcanas y en señal de verdadera posesion hecho mano a su espada y corto Ramas de arboles y arranco yervas e tiro piedras y hizo hazer cruçes en los arboles specialmente en unas palmas de cocos questan junto a la marina y hizo dezir y celebrar misas a los
  • 77. Religiosos de la orden del señor san Agustin que van en la dicha flota, e se paseo de una parte a otra e hizo otros auttos y çerimonias de posesion corporal formal y autual como en tal caso se requiere suele y acostumbra hazer la qual dicha posesion paso quieta y pacificamente en presencia de muchas personas sin contradicion de persona alguna y de como ansi paso todo lo suso dicho pidio a mi el dicho scrivano se lo diese por testimonio en manera que haga fee en cumplimiento de lo qual yo el dicho hernando Riquel scrivano suso dicho doy dello fee porque me halle presente a todo lo suso dicho juntamente con su señoria del dicho señor governador, siendo testigos el muy Reverendo padre fray andres de Urdaneta prior y el maestre de campo Mateo del sanz y el Contador andres cauchela y el factor andres de Mirandaola y el alferez general andres de ybarra y geronimo de monçon y otras muchas personas, y para que conste dello fiz aqui mi firma y Rubrica acostumbrada ques atal en testimonio de verdad hernando Riquel scrivano Mayor.—Corregida con el original—Hernando Riquel scrivano de governacion—una rubrica. ISLA CIBABAO (20 Febrero)[14] . En veinte dias del mes de hebrero de mill y quinientos y sesenta y cinco años estando en una ysla que los naturales della dieron por señal a entender llamarse çibabao el muy yllustre señor miguel lopez de legazpi governador y capitan general por su Mag.d de la gente y armada del descubrimiento de las yslas del poniente, por ante mi hernando Riquel scrivano de governacion de las dichas yslas del poniente, aviendo su señoria del dicho señor governador saltado en tierra y estando de pies en una ysla pequeña pegada con la qual estaban otras yslas que della procedian dixo que en nombre de su Mag.d Real del Rey don phelipe nuestro señor y como su governador y capitan general tomava e tomo e aprehendia e aprehendio la tenencia e posesion Real e auttual vel casi desta dicha Isla e de las demas a ella subjetas y comarcanas y en señal de verdadera posesion hecho mano a su espada y corto Ramos de arboles, y hizo
  • 78. otros auttos de verdadera posesion corporal autual formal como en tal casso se requiere suele y acostumbra hazer la qual dicha possesion passo quieta y pacificamente sin contradicion de persona alguna y de como ansi passo todo lo suso dicho pidio a mi el dicho scrivano se lo diese todo por testimonio en manera que haga fee en cumplimiento de lo qual yo el dicho hernando Riquel scrivano suso dicho doy dello fee porque me halle presente a todo lo suso dicho juntamente con su señoria del dicho señor governador, siendo Testigos el muy Reverendo padre fray andres de Urdaneta prior de la orden del señor san Agustin y el alferez general andres de ybarra e pedro brizeño de herrera e joan pacheco gentiles hombres de su señoria e otros muchos soldados y para que conste dello fiz aqui mi firma e Rubrica acostumbrada ques a tal en testimonio de verdad hernando Riquel scrivano de governacion.—Corregido con la original —Hernando Riquel scrivano de governacion. BAYA DE SANCT PEDRO (23 Febrero). En la Baya de sanct pedro comarcano a la ysla de Tandaya A veinte y tres de hebrero de mill e quinientos y sesenta y cinco años el muy illustre señor miguel lopez de legazpi governador y capitan general por su Mag.d de la gente y armada del descubrimiento de las yslas del poniente por ante mi hernando Riquel scrivano de governacion de las yslas del poniente dixo que en nombre de su Mag.d Real del Rey don phelipe nuestro señor tomava e tomo la posesion y tenencia Real y corporal autual vel casi de esta dicha ysla y baya e de las demas a ella subjetas y comarcanas y en señal de verdadera posesion estando su señoria de pies en la dicha baya e aviendo hecho dezir y celebrar el oficio devino A los religiosos de la dicha armada hecho mano a su espada e corto Ramos de Arboles y Arranco yervas e hizo otros auttos y diligencias que en tal casso se requiere suelen y acostumbran hazer en señal de verdadera posesion, lo qual todo paso quieta y pacificamente sin contradicion de persona alguna siendo presentes el muy Reverendo padre fray andres de Urdaneta y pedro de herrera y joan pacheco maldonado y
  • 79. hernan lopez e otros muchos soldados E de como ansi passo todo lo suso dicho su señoria del dicho señor governador pidio a mi el dicho scrivano se lo diese todo por Testimonio e yo el dicho hernando Riquel scrivano suso dicho presente fuy a lo que dicho es e doy fee dello y para que conste ser ansi fiz aqui mi firma y Rubrica acostumbrada que es atal en testimonio de verdad Hernando Riquel scrivano de governacion corregido con la original Hernando Riquel scrivano de governacion. BAYA DE MALETIC (8 Marzo). En la Baya de maletic ques en la ysla de Abuyo a ocho dias del mes de Março de mill y quinientos y sesenta y cinco años el muy yllustre señor miguel lopez de Legazpi governador y capitan general por su Mag.d de la gente y armada del descubrimiento de las yslas del poniente por ante mi hernando Riquel scrivano de governacion dixo que daba e dio su poder cumplido segun que de derecho en tal casso se requiere a felipe de saucedo su nieto para tomar la posesion desta ysla e de las a ella comarcanas en nombre de su Mag.d atento que su señoria esta ocupado e no la puede personalmente tomar y para que conste dello lo firmo de su nombre ante mi el dicho scrivano siendo testigo el tesorero guido de lebaçares y joan pacheco maldonado e joan lopez Miguel llopez paso ante mi hernando Riquel scrivano de governacion. E despues de lo susodicho en este dicho dia mes y año susodicho el dicho felipe de sauzedo fue a tierra en Un batel y estando en el pueblo que dizen de malette (sic) por ante mi el dicho escrivano y de los testigos yuso scriptos dixo que por virtud del poder que tiene de su señoria tomava e tomo posesion Real y autual desta ysla y de todas las demas a ella comarcanas en nombre de la mag.d Real del Rey don Phelipe nuestro señor y en señal de verdadera posesion hecho mano a su espada y corto Ramos de arboles y hizo otros auttos y çerimonias en señal de verdadera posesion segun que en tal casso se suelen y acostumbran hazer, lo qual paso quieta y pacificamente sin contradicion de persona alguna, y de como ansi
  • 80. paso. Todo lo suso dicho pidio á mi el dicho scrivano se le diese por fee y testimonio yo. el dicho hernando Riquel scrivano suso dicho doy fee de lo que dicho es porque ante mi passo y fuy a ello presente siendo presentes por testigos graviel de Ribera alguacil mayor e pablo hernandez e pedro escudero de la portilla e gonçalo martin e otros muchos y en fee dello fiz aqui mi firma e Rubrica acostumbrada que es atal en testimonio de verdad hernando Riquel escrivano de governacion-corregido con la original, hernando Riquel scrivano de governacion. ISLA DE CAMIGUININ (14 Marzo). En la nao capitana a catorce dias del mes de março de mill y quinientos y sesenta y cinco años estando surta el armada en la ysla de Camiguinin el muy yllustre señor miguel lopez de legazpi governador y capitan general por su Mag.d de la gente y armada que va al descubrimiento de las yslas del poniente, por ante mi hernando Riquel scrivano de governacion de las dichas yslas del poniente su señoria dixo que atento que conviene tomarse posesion de las tierras que se descubrieren en nombre de la Mag.d Real del Rey don felipe nuestro señor y su señoria no tiene todas vezes aparejo conviniente para saltar en tierra a tomar posesion dellas por quedar en guarda del armada Real, por ende que dava e dio su poder cumplido qual de derecho en tal casso se requiere para tomar posesion en nombre de su Mag.d de las tierras que se descubrieren a felipe de sauzedo su nieto al qual como dicho es daba e dio poder special para lo susodicho con sus anexidades e conexidades yncidencias y dependencias e con libre e general administracion lo relevo en forma de derecho y lo firmo de su nombre siendo testigos el muy Reverendo padre fray andres de Urdaneta prior y el padre fray andres de aguirre y amador de a Riaran, miguel lopez, paso ante mi hernando Riquel scrivano de governacion. En la Ysla de camiguinin de las yslas del poniente a catorze dias del mes de março de mill y quinientos e sesenta y cinco años el muy magnifico señor felipe de saucedo por ante mi hernando Riquel
  • 81. scrivano de governacion de las yslas del poniente por su Mag.d dixo quel por virtud del poder que tiene del muy ylustre señor miguel lopez de legazpi governador y capitan general de las dichas yslas del poniente, tomava e tomo posesion Real autual vel casi en nombre de la Mag.d Real del Rey don phelipe nuestro señor desta dicha ysla de camiguinin e de las demas a ella subjetas y comarcanas y en señal de verdadera posesion hecho mano a su espada y corto ciertas Ramas de arboles y Arranco e tiro piedras e hizo otros autos e diligencias en señal de verdadera posesion. Lo qual paso quieta y pacificamente sin contradicion de persona alguna e de como ansi passo todo lo suso dicho pidio a mi el dicho scrivano se le diese por testimonio todo siendo testigos el capitan martin de goyti y san joan soldado y francisco de coztar y bartolome Rodriguez soldados y otros muchos e yo el dicho hernando Riquel scrivano suso dicho doy fee de lo que dicho es porque me halle presente a todo ello y para que conste ser ansi fiz aqui mi Rubrica y firma atal en testimonio de verdad hernando Riquel scrivano de governacion.—Corregida con la original.—hernando Riquel scrivano de governacion. ISLA DE BOHOL (15 Abril). En la ysla de Bohol de las yslas del Poniente de su Mag.d A quinze dias del mes de abrill de mill y quinientos y sesenta y cinco años, el muy ilustre señor miguel lopez de legazpi governador y capitan general por su Mag.d de la gente y armada del descubrimiento de las yslas del poniente por ante mi hernando Riquel scrivano de governacion de las dichas yslas del poniente por su Mag.d aviendo su señoria del dicho señor governador saltado en tierra y hecho dezir y celebrar missas a los religiosos della orden del señor san agustin y hecha amistad con un principal desta dicha ysla llamado xicatuna y estando de pies en la dicha ysla dixo que en nombre de su Mag.d Real tomaba e tomo e aprehendia e aprehendio la tenencia e posesion Real autual vel casi de esta dicha ysla y de las demas a ella subjetas y comarcanas y en señal de verdadera
  • 82. posesion hecho mano a su espada y corto ramas de arboles y arranco yervas y tiro piedras e fizo otros Auttos y cerimonias segun que en tal casso se suelen y acostumbran hazer, lo qual todo passo quieta y pacificamente sin contradicion de Persona alguna siendo presentes por testigos el muy Reverendo padre fray andres de Urdaneta prior e pedro de herrera e hernan lopez e joan de pedraça y otras muchas personas y de como Ansi passo todo lo suso dicho su señoria del dicho señor governador pidio a mi el dicho scrivano se lo diese todo por testimonio e yo el dicho hernando Riquel scrivano suso dicho presente fuy a lo que dicho es, e doy fee dello E para que conste ser ansi fiz aqui mi firma y Rubrica acostumbrada que es atal en testimonio de verdad fernando Riquel scrivano de governacion.— Corregido con la original—fernando Riquel scrivano de governacion. ISLA ÇUBU (Posesion y trazado del fuerte) (8 Mayo). En la ysla de Çubu de las felipinas del poniente de su Mag.d A ocho dias del mes de mayo de mill y quinientos y sesenta y cinco años el muy yllustro señor miguel lopez de legaspi governador y capitan general por su Mag.d de la gente y armada del descubrimiento de las yslas del poniente por ante mi hernando Riquel escrivano de governacion estando el dicho señor governador de pies en el pueblo llamado çubu que los naturales del lo desmampararon donde estaba alojada la gente del armada el qual dicho pueblo es junto a la marina y puerto donde los navios estan surtos en una punta que la tierra haze a la mar, dixo que en nombre de su Mag.d Real tomava e tomo e aprehendia y aprehendio la tenencia Posesion Propiedad e señorio de la dicha ysla e de todas las demas a ella subjetas y comarcanas y en señal de verdadera posesion aviendo hecho dezir en ella misa y celebrado el culto divino y señalado yglesia se anduvo paseando de una parte á otra e hizo otros auttos y çerimonias de verdadera posesion todo lo qual hizo en haz y en paz de los que presentes estavan sin contradicion de
  • 83. persona alguna y de como ansi passo todo lo suso dicho pidio á mi el dicho scrivano se lo diese por testimonio, e de como en nombre de su Magd . quedava por posehedor de la dicha ysla e tomada la dicha posesion con paresçer del maestre de campo y de otras personas que se hallaron presentes señalo e traço el fuerte que se ha de hazer en la dicha punta en triangulo con tres cavalleros que a de tener que miren y defiendan a la mar y a la tierra e luego el dicho señor governador tomo una açada en la mano y començo a cabar el lugar y sitio del primer cavallero hazia la punta de la mar y en el se puso por señal un madero alto y en el secundo cavallero començo a cabar el maestre de campo e se puso otro madero y en el terçero cavallero començaron a cabar los capitanes martin de goiti e joan de la ysla, en que ansi mismo se puso otro madero e hecho esto el dicho señor governador mando que ante todas cossas se haga una cassa de tierra dentro del sitio del dicho fuerte donde se metan y pongan las municiones rescates y bastimentos del armada y acabada esta se entienda en hazer el fuerte, lo qual cometio y encargo al maestre de campo, y para que conste desto que dicho es el dicho señor governador lo firmo de su nombre testigos los dichos capitanes e otros muchos soldados, miguel lopez passo ante mi e doy fee de todo lo suso dicho porque me halle presente a todo ello. Hernando Riquel scrivano de governacion—corregida con la original. —Una rubrica.
  • 84. Welcome to our website – the perfect destination for book lovers and knowledge seekers. We believe that every book holds a new world, offering opportunities for learning, discovery, and personal growth. That’s why we are dedicated to bringing you a diverse collection of books, ranging from classic literature and specialized publications to self-development guides and children's books. More than just a book-buying platform, we strive to be a bridge connecting you with timeless cultural and intellectual values. With an elegant, user-friendly interface and a smart search system, you can quickly find the books that best suit your interests. Additionally, our special promotions and home delivery services help you save time and fully enjoy the joy of reading. Join us on a journey of knowledge exploration, passion nurturing, and personal growth every day! ebookbell.com