SlideShare a Scribd company logo
Image Processing using Matlab
Sumitha Balasuriya
http//www.dcs.gla.ac.uk/~sumitha/
Image Processing using Matlab Sumitha Balasuriya 2
Images in Matlab
• Matlab is optimised for operating on
matrices
• Images are matrices!
• Many useful built-in functions in the
Matlab Image Processing Toolbox
• Very easy to write your own image
processing functions
Image Processing using Matlab Sumitha Balasuriya 3
Loading and displaying images
>> I=imread('mandrill.bmp','bmp'); % load image
>> image(I) % display image
>> whos I
Name Size Bytes Class
I 512x512x3 786432 uint8 array
Grand total is 786432 elements using 786432 bytes
image filename
as a string
image format
as a string
Matrix with
image data
Dimensions of I (red, green
and blue intensity information)
Matlab can only perform
arithmetic operations on
data with class double!
Display the left
half of the
mandrill image
Image Processing using Matlab Sumitha Balasuriya 4
Representation of Images
• Images are just an array of numbers
>> I % ctrl+c to halt output!
• Intensity of each pixel is represented by the pixel element’s
value in the red, green and blue matrices
>> I(1,1,:) % RGB values of element (1,1)
ans(:,:,1) =
135
ans(:,:,2) =
97
ans(:,:,3) =
33
Images where the pixel value in the image
represents the intensity of the pixel are called
intensity images.
Red
Green
Blue
Image Processing using Matlab Sumitha Balasuriya 5
Indexed images
• An indexed image is where the pixel values are indices to elements in a colour map or
colour lookup table.
• The colour map will contain entries corresponding to red, green and blue intensities for
each index in the image.
>> jet(20) % Generate a jet colourmap for 20 indices
ans =
0 0 0.6000
0 0 0.8000
0 0 1.0000
0 0.2000 1.0000
0 0.4000 1.0000
0 0.6000 1.0000
0 0.8000 1.0000
0 1.0000 1.0000
0.2000 1.0000 0.8000
0.4000 1.0000 0.6000
0.6000 1.0000 0.4000
0.8000 1.0000 0.2000
1.0000 1.0000 0
1.0000 0.8000 0
1.0000 0.6000 0
1.0000 0.4000 0
1.0000 0.2000 0
1.0000 0 0
0.8000 0 0
0.6000 0 0
RGB Entry for index value 3
3 4 7 3 6 1 9 8 9 1 2
5 6 14 4 2 5 6 1 4 5
2 8 9 4 2 13 7 8 4 5
5 1 11 5 6 4 1 7 4 4
1 9 5 6 5 5 1 4 4 6 5
5 9 2 1 11 1 3 6 1 9
7 6 8 18 1 8 1 9 1 3 3
9 2 3 7 2 9 8 1 6 6 4
7 8 6 7 4 15 8 2 1 3
7 5 10 8 4 10 4 3 6 4
Values can range
from 0.0 to 1.0
Red, green and blue intensities of
the nearest index in the colourmap
are used to display the image.
Image Processing using Matlab Sumitha Balasuriya 6
>> I2=I(:,:,2); % green values of I
>> image(I2)
>> colorbar % display colourmap
Displaying indexed images
Matlab considers I2 as an indexed image as it doesn’t
contain entries for red, green and blue entries
Index
Associated
color
Colour
Lookup
Table
Image Processing using Matlab Sumitha Balasuriya 7
Displaying indexed images (continued)
• change colourmap
>> colormap(gray)
• scale colourmap
>> imagesc(I2)
Type >>help graph3d to get a list of built-in
colourmaps. Experiment with different
built-in colourmaps.
Define your own colourmap mymap by
creating a matrix (size m x 3 ) with red,
green, blue entries. Display an image using
your colourmap.
Red =1.0,
Green = 1.0,
Blue =1.0,
corresponds to
index 64
Red =1.0,
Green = 1.0,
Blue =1.0,
corresponds to
index 255
Red =0.0,
Green = 0.0,
Blue = 0.0,
corresponds to
index 1
Red =0.0,
Green = 0.0,
Blue = 0.0,
corresponds to
index 0
Image Processing using Matlab Sumitha Balasuriya 8
Useful functions for displaying images
>> axis image % plot fits to data
>> h=axes('position', [0 0 0.5 0.5]);
>> axes(h);
>> imagesc(I2)
Investigate axis and axes
functions using Matlab’s help
Image Processing using Matlab Sumitha Balasuriya 9
Histograms
• Frequency of the intensity values of the image
• Quantise frequency into intervals (called bins)
• (Un-normalised) probability density function of
image intensities
Image Processing using Matlab Sumitha Balasuriya 10
Computing histograms of images in Matlab
>>hist(reshape(double(Lena(:,:,2)),[512*512 1]),50)
Convert image into a 262144 by
1 distribution of values
Histogram
function
Number of bins
Histogram equalisation works by equitably distributing the pixels among the
histogram bins. Histogram equalise the green channel of the Lena image
using Matlab’s histeq function. Compare the equalised image with the
original. Display the histogram of the equalised image. The number of pixels
in each bin should be approximately equal.
Generate the histograms of the green channel of the Lena image using the
following number of bins : 10, 20, 50, 100, 200, 500, 1000
Image Processing using Matlab Sumitha Balasuriya 11
>>surf(double(imresize(Lena(:,:,2),[50 50])))
Visualising the intensity surface
Remember to reduce
size of image!
Use Matlab’s built-in mesh and
shading surface visualisation
functions
Change type to
double precision
Image Processing using Matlab Sumitha Balasuriya 12
Useful functions for manipulating
images
• Convert image to grayscale
>>Igray=rgb2gray(I);
• Resize image
>>Ismall=imresize(I,[100 100], 'bilinear');
• Rotate image
>>I90=imrotate(I,90);
Image Processing using Matlab Sumitha Balasuriya 13
Other useful functions
Convert polar coordinates to
cartesian coordinates
>>pol2cart(rho,theta)
Check if a variable is null
>>isempty(I)
Trigonometric functions
sin, cos, tan
Convert polar coordinates to
cartesian coordinates
>>cart2pol(x,y)
Find indices and elements in a
matrix
>>[X,Y]=find(I>100)
Fast Fourier Transform
Get size of matrix
>>size(I)
Change the dimensions of a
matrix
>>reshape(rand(10,10),[100 1])
Discrete Cosine Transform
Add elements of a Matrix
(columnwise addition in matrices)
>>sum(I)
Exponentials and Logarithms
exp
log
log10
fft2(I)
dct(I)
Image Processing using Matlab Sumitha Balasuriya 14
Convolution
Bit of theory! Convolution of two functions f(x) and g(x)
Discrete image processing 2D form
( ) ( ) ( ) ( ) ( )
h x f x g x f r g x r dr


   

convolution
operator
Image Filter
(mask/kernel)
Support region
of filter where
g(x-r) is nonzero
Output
filtered image
1 1
( , ) ( , ) ( , )
height width
j i
H x y I i j M x i y j
 
  
 
Compute the convolution where
there are valid indices in the kernel
Image Processing using Matlab Sumitha Balasuriya 15
Convolution example
Write your own convolution function
myconv.m to perform a convolution.
It should accept two parameters – the
input matrix (image) and convolution
kernel, and output the filtered matrix.

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9
i
j
Filter (M)
Image (I)
197 199 195 194 189 190 132 90 112 101
194 194 198 201 189 196 150 85 87 97
194 194 198 195 186 191 109 90 90 124
197 187 195 198 185 186 115 78 81 96
194 190 198 193 187 177 88 86 94 69
194 194 190 190 179 177 93 99 95 100
201 194 191 186 186 181 74 110 82 76
196 194 195 191 183 164 77 119 84 88
192 194 199 192 191 174 89 164 103 129
201 190 187 189 178 168 90 82 88 84
0 0 0 0 0 0 0 0 0 0
0 196 196 194 192 170 137 105 97 0
0 195 196 194 192 167 133 98 92 0
0 194 194 193 189 158 124 92 90 0
0 193 193 191 186 154 122 92 89 0
0 194 192 189 184 149 121 91 90 0
0 194 192 188 182 146 122 93 95 0
0 195 193 190 183 147 128 100 106 0
0 194 192 189 181 146 125 100 105 0
0 0 0 0 0 0 0 0 0 0
=
1 1
( , ) ( , ) ( , )
height width
j i
H x y I i j M x i y j
 
  
 
http://www.s2.chalmers.se/undergraduate/courses0203/ess060/PDFdocuments/ForScreen/Notes/Convolution.pdf
Image Processing using Matlab Sumitha Balasuriya 16
Convolution example in 1D
Horizontal slice from Mandrill image
0.01 0.08 0.24 0.34 0.24 0.08 0.01
1D Gaussian filter
 =
Filtered Signal
Image Processing using Matlab Sumitha Balasuriya 17
Common convolution kernels
0.11 0.11 0.11
0.11 0.11 0.11
0.11 0.11 0.11
Arithmetic mean
filter (smoothing)
>>fspecial('average')
-0.17 -0.67 -0.17
-0.67 3.33 -0.67
-0.17 -0.67 -0.17
Laplacian (enhance edges)
>>fspecial('laplacian')
-0.17 -0.67 -0.17
-0.67 4.33 -0.67
-0.17 -0.67 -0.17
Sharpening filter
>>fspecial('unsharp')
0.01 0.08 0.01
0.08 0.62 0.08
0.01 0.08 0.01
Gaussian filter
(smoothing)
>>fspecial('gaussian')
Investigate the listed kernels in Matlab by
performing convolutions on the Mandrill and
Lena images. Study the effects of different
kernel sizes (3x3, 9x9, 25x25) on the output.
1 2 1
0 0 0
-1 -2 -1
1 0 -1
2 0 -2
1 0 -1
Sobel operators (edge detection in x
and y directions)
>>fspecial('sobel')
>>fspecial('sobel')’
The median filter is used for noise reduction. It works by
replacing a pixel value with the median of its neighbourhood
pixel values (vs the mean filter which uses the mean of the
neighbourhood pixel values). Apply Matlab’s median filter
function medfilt2 on the Mandrill and Lena images. Remember
to use different filter sizes (3x3, 9x9, 16x16).
Image Processing using Matlab Sumitha Balasuriya 18
Useful functions for convolution
Perform the convolution of an image using Gaussian
kernels with different sizes and standard deviations
and display the output images.
• Generate useful filters for convolution
>>fspecial('gaussian',[kernel_height kernel_width],sigma)
• 1D convolution
>>conv(signal,filter)
• 2D convolution
>>conv2(double(I(:,:,2)),fspecial('gaussian‘,[kernel_height kernel_width] ,sigma),'valid')
Border padding options
kernel
image
Image Processing using Matlab Sumitha Balasuriya 19
Tutorial 2
1) Type the code in this handout in Matlab and investigate the results.
2) Do the exercises in the notes.
3) Create a grating2d.m function that generates a 2D steerable spatial frequency.
Compute spatial frequencies with an amplitude =1 and the following parameters
frequency = 1/50, 1/25, 1/10, 1/5 cycles per pixel,
phase= 0, pi/5, pi/4, pi/3, pi/2, pi
theta = 0, pi/5, pi/4, pi/3, pi/2, pi
The value for pi is returned by the in-built matlab function pi.
Display your gratings using the in-built gray colourmap. (figure 1)
3) Create a superposition of two or more gratings with different frequencies and
thetas and display the result. You can do this by simply adding the images you
generated with grating2d (figure 2)
frequency = (1/10 and 1/20), (1/20 and 1/30)
theta = (pi/2 and pi/5), (pi/10 and pi/2), (pi/2 and pi)
Make sure you examine combinations of different frequencies and theta values.
(figure 3).
Visualise the intensity surface of the outputs that you have generated. (figure 4)
4) Write a matlab function that segments a greyscale image based on a given
threshold (i.e. display pixels values greater than the threshold value, zero
otherwise). The function should accept two inputs, the image matrix and the
threshold value, and output the thresholded image matrix. (figure 5)
function H=grating2d(f,phi,theta,A)
% function to generate a 2D grating image
% f = frequency
% phi = phase
% theta = angle
% A = amplitude
% H=grating2d(f,phi,theta,A)
% size of grating
height=100;
width=100;
wr=2*pi*f; % angular frequency
wx=wr*cos(theta);
wy=wr*sin(theta);
for y=1:height
for x=1:width
H(x,y)=A*cos(wx*(x)+phi+wy*(y));
end
end
Figure 1 Figure 3
Figure 2 Figure 4
Figure 5

More Related Content

Similar to Image Processing using Matlab . Useful for beginners to learn Image Processing (20)

PPTX
Image processing in MATLAB
Amarjeetsingh Thakur
 
PDF
Basics of image processing using MATLAB
Mohsin Siddique
 
PPTX
Image processing tool box.pptx
AvinashJain66
 
PDF
Dip 2
moramvenkat
 
PDF
Dip 3
moramvenkat
 
PDF
Image processing with matlab
neetirajsinh
 
PPTX
Intensity Transformation and Spatial filtering
Shajun Nisha
 
PDF
Basics of Image Processing using MATLAB
vkn13
 
PPTX
Dip day1&2
nakarthik91
 
PPT
Computer Vision - Image Filters
Yoss Cohen
 
PDF
Matlab dip
Jeevan Reddy
 
PPTX
Introduction to Image Processing with MATLAB
Sriram Emarose
 
PPT
lec1_matlab.ppt basic all operations matlab operations
samraj sundarraj
 
PDF
Programming in matlab lesson5
najmah17
 
PDF
Image processing basics using matlab
Ankur Tyagi
 
PDF
Image processing using matlab
dedik dafiyanto
 
PPT
Image processing for robotics
SALAAMCHAUS
 
PDF
Introduction to Digital Image Processing Using MATLAB
Ray Phan
 
PDF
Image processing
maheshpene
 
PPT
DIP.ppt
SukainaShukur1
 
Image processing in MATLAB
Amarjeetsingh Thakur
 
Basics of image processing using MATLAB
Mohsin Siddique
 
Image processing tool box.pptx
AvinashJain66
 
Image processing with matlab
neetirajsinh
 
Intensity Transformation and Spatial filtering
Shajun Nisha
 
Basics of Image Processing using MATLAB
vkn13
 
Dip day1&2
nakarthik91
 
Computer Vision - Image Filters
Yoss Cohen
 
Matlab dip
Jeevan Reddy
 
Introduction to Image Processing with MATLAB
Sriram Emarose
 
lec1_matlab.ppt basic all operations matlab operations
samraj sundarraj
 
Programming in matlab lesson5
najmah17
 
Image processing basics using matlab
Ankur Tyagi
 
Image processing using matlab
dedik dafiyanto
 
Image processing for robotics
SALAAMCHAUS
 
Introduction to Digital Image Processing Using MATLAB
Ray Phan
 
Image processing
maheshpene
 

Recently uploaded (20)

PDF
Incident Response and Digital Forensics Certificate
VICTOR MAESTRE RAMIREZ
 
PDF
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
PDF
MusicVideoProjectRubric Animation production music video.pdf
ALBERTIANCASUGA
 
PPTX
TSM_08_0811111111111111111111111111111111111111111111111
csomonasteriomoscow
 
PDF
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
PDF
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
PPTX
Rocket-Launched-PowerPoint-Template.pptx
Arden31
 
PPT
1 DATALINK CONTROL and it's applications
karunanidhilithesh
 
PDF
List of all the AI prompt cheat codes.pdf
Avijit Kumar Roy
 
PDF
WEF_Future_of_Global_Fintech_Second_Edition_2025.pdf
AproximacionAlFuturo
 
PPTX
Hadoop_EcoSystem slide by CIDAC India.pptx
migbaruget
 
PPTX
recruitment Presentation.pptxhdhshhshshhehh
devraj40467
 
PDF
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
PDF
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
PDF
Performance Report Sample (Draft7).pdf
AmgadMaher5
 
PDF
Avatar for apidays apidays PRO June 07, 2025 0 5 apidays Helsinki & North 2...
apidays
 
PPTX
Introduction to Artificial Intelligence.pptx
StarToon1
 
PPTX
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
PPTX
AI Project Cycle and Ethical Frameworks.pptx
RiddhimaVarshney1
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
Incident Response and Digital Forensics Certificate
VICTOR MAESTRE RAMIREZ
 
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
MusicVideoProjectRubric Animation production music video.pdf
ALBERTIANCASUGA
 
TSM_08_0811111111111111111111111111111111111111111111111
csomonasteriomoscow
 
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
Rocket-Launched-PowerPoint-Template.pptx
Arden31
 
1 DATALINK CONTROL and it's applications
karunanidhilithesh
 
List of all the AI prompt cheat codes.pdf
Avijit Kumar Roy
 
WEF_Future_of_Global_Fintech_Second_Edition_2025.pdf
AproximacionAlFuturo
 
Hadoop_EcoSystem slide by CIDAC India.pptx
migbaruget
 
recruitment Presentation.pptxhdhshhshshhehh
devraj40467
 
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
Performance Report Sample (Draft7).pdf
AmgadMaher5
 
Avatar for apidays apidays PRO June 07, 2025 0 5 apidays Helsinki & North 2...
apidays
 
Introduction to Artificial Intelligence.pptx
StarToon1
 
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
AI Project Cycle and Ethical Frameworks.pptx
RiddhimaVarshney1
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
Ad

Image Processing using Matlab . Useful for beginners to learn Image Processing

  • 1. Image Processing using Matlab Sumitha Balasuriya http//www.dcs.gla.ac.uk/~sumitha/
  • 2. Image Processing using Matlab Sumitha Balasuriya 2 Images in Matlab • Matlab is optimised for operating on matrices • Images are matrices! • Many useful built-in functions in the Matlab Image Processing Toolbox • Very easy to write your own image processing functions
  • 3. Image Processing using Matlab Sumitha Balasuriya 3 Loading and displaying images >> I=imread('mandrill.bmp','bmp'); % load image >> image(I) % display image >> whos I Name Size Bytes Class I 512x512x3 786432 uint8 array Grand total is 786432 elements using 786432 bytes image filename as a string image format as a string Matrix with image data Dimensions of I (red, green and blue intensity information) Matlab can only perform arithmetic operations on data with class double! Display the left half of the mandrill image
  • 4. Image Processing using Matlab Sumitha Balasuriya 4 Representation of Images • Images are just an array of numbers >> I % ctrl+c to halt output! • Intensity of each pixel is represented by the pixel element’s value in the red, green and blue matrices >> I(1,1,:) % RGB values of element (1,1) ans(:,:,1) = 135 ans(:,:,2) = 97 ans(:,:,3) = 33 Images where the pixel value in the image represents the intensity of the pixel are called intensity images. Red Green Blue
  • 5. Image Processing using Matlab Sumitha Balasuriya 5 Indexed images • An indexed image is where the pixel values are indices to elements in a colour map or colour lookup table. • The colour map will contain entries corresponding to red, green and blue intensities for each index in the image. >> jet(20) % Generate a jet colourmap for 20 indices ans = 0 0 0.6000 0 0 0.8000 0 0 1.0000 0 0.2000 1.0000 0 0.4000 1.0000 0 0.6000 1.0000 0 0.8000 1.0000 0 1.0000 1.0000 0.2000 1.0000 0.8000 0.4000 1.0000 0.6000 0.6000 1.0000 0.4000 0.8000 1.0000 0.2000 1.0000 1.0000 0 1.0000 0.8000 0 1.0000 0.6000 0 1.0000 0.4000 0 1.0000 0.2000 0 1.0000 0 0 0.8000 0 0 0.6000 0 0 RGB Entry for index value 3 3 4 7 3 6 1 9 8 9 1 2 5 6 14 4 2 5 6 1 4 5 2 8 9 4 2 13 7 8 4 5 5 1 11 5 6 4 1 7 4 4 1 9 5 6 5 5 1 4 4 6 5 5 9 2 1 11 1 3 6 1 9 7 6 8 18 1 8 1 9 1 3 3 9 2 3 7 2 9 8 1 6 6 4 7 8 6 7 4 15 8 2 1 3 7 5 10 8 4 10 4 3 6 4 Values can range from 0.0 to 1.0 Red, green and blue intensities of the nearest index in the colourmap are used to display the image.
  • 6. Image Processing using Matlab Sumitha Balasuriya 6 >> I2=I(:,:,2); % green values of I >> image(I2) >> colorbar % display colourmap Displaying indexed images Matlab considers I2 as an indexed image as it doesn’t contain entries for red, green and blue entries Index Associated color Colour Lookup Table
  • 7. Image Processing using Matlab Sumitha Balasuriya 7 Displaying indexed images (continued) • change colourmap >> colormap(gray) • scale colourmap >> imagesc(I2) Type >>help graph3d to get a list of built-in colourmaps. Experiment with different built-in colourmaps. Define your own colourmap mymap by creating a matrix (size m x 3 ) with red, green, blue entries. Display an image using your colourmap. Red =1.0, Green = 1.0, Blue =1.0, corresponds to index 64 Red =1.0, Green = 1.0, Blue =1.0, corresponds to index 255 Red =0.0, Green = 0.0, Blue = 0.0, corresponds to index 1 Red =0.0, Green = 0.0, Blue = 0.0, corresponds to index 0
  • 8. Image Processing using Matlab Sumitha Balasuriya 8 Useful functions for displaying images >> axis image % plot fits to data >> h=axes('position', [0 0 0.5 0.5]); >> axes(h); >> imagesc(I2) Investigate axis and axes functions using Matlab’s help
  • 9. Image Processing using Matlab Sumitha Balasuriya 9 Histograms • Frequency of the intensity values of the image • Quantise frequency into intervals (called bins) • (Un-normalised) probability density function of image intensities
  • 10. Image Processing using Matlab Sumitha Balasuriya 10 Computing histograms of images in Matlab >>hist(reshape(double(Lena(:,:,2)),[512*512 1]),50) Convert image into a 262144 by 1 distribution of values Histogram function Number of bins Histogram equalisation works by equitably distributing the pixels among the histogram bins. Histogram equalise the green channel of the Lena image using Matlab’s histeq function. Compare the equalised image with the original. Display the histogram of the equalised image. The number of pixels in each bin should be approximately equal. Generate the histograms of the green channel of the Lena image using the following number of bins : 10, 20, 50, 100, 200, 500, 1000
  • 11. Image Processing using Matlab Sumitha Balasuriya 11 >>surf(double(imresize(Lena(:,:,2),[50 50]))) Visualising the intensity surface Remember to reduce size of image! Use Matlab’s built-in mesh and shading surface visualisation functions Change type to double precision
  • 12. Image Processing using Matlab Sumitha Balasuriya 12 Useful functions for manipulating images • Convert image to grayscale >>Igray=rgb2gray(I); • Resize image >>Ismall=imresize(I,[100 100], 'bilinear'); • Rotate image >>I90=imrotate(I,90);
  • 13. Image Processing using Matlab Sumitha Balasuriya 13 Other useful functions Convert polar coordinates to cartesian coordinates >>pol2cart(rho,theta) Check if a variable is null >>isempty(I) Trigonometric functions sin, cos, tan Convert polar coordinates to cartesian coordinates >>cart2pol(x,y) Find indices and elements in a matrix >>[X,Y]=find(I>100) Fast Fourier Transform Get size of matrix >>size(I) Change the dimensions of a matrix >>reshape(rand(10,10),[100 1]) Discrete Cosine Transform Add elements of a Matrix (columnwise addition in matrices) >>sum(I) Exponentials and Logarithms exp log log10 fft2(I) dct(I)
  • 14. Image Processing using Matlab Sumitha Balasuriya 14 Convolution Bit of theory! Convolution of two functions f(x) and g(x) Discrete image processing 2D form ( ) ( ) ( ) ( ) ( ) h x f x g x f r g x r dr        convolution operator Image Filter (mask/kernel) Support region of filter where g(x-r) is nonzero Output filtered image 1 1 ( , ) ( , ) ( , ) height width j i H x y I i j M x i y j        Compute the convolution where there are valid indices in the kernel
  • 15. Image Processing using Matlab Sumitha Balasuriya 15 Convolution example Write your own convolution function myconv.m to perform a convolution. It should accept two parameters – the input matrix (image) and convolution kernel, and output the filtered matrix.  1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 i j Filter (M) Image (I) 197 199 195 194 189 190 132 90 112 101 194 194 198 201 189 196 150 85 87 97 194 194 198 195 186 191 109 90 90 124 197 187 195 198 185 186 115 78 81 96 194 190 198 193 187 177 88 86 94 69 194 194 190 190 179 177 93 99 95 100 201 194 191 186 186 181 74 110 82 76 196 194 195 191 183 164 77 119 84 88 192 194 199 192 191 174 89 164 103 129 201 190 187 189 178 168 90 82 88 84 0 0 0 0 0 0 0 0 0 0 0 196 196 194 192 170 137 105 97 0 0 195 196 194 192 167 133 98 92 0 0 194 194 193 189 158 124 92 90 0 0 193 193 191 186 154 122 92 89 0 0 194 192 189 184 149 121 91 90 0 0 194 192 188 182 146 122 93 95 0 0 195 193 190 183 147 128 100 106 0 0 194 192 189 181 146 125 100 105 0 0 0 0 0 0 0 0 0 0 0 = 1 1 ( , ) ( , ) ( , ) height width j i H x y I i j M x i y j        http://www.s2.chalmers.se/undergraduate/courses0203/ess060/PDFdocuments/ForScreen/Notes/Convolution.pdf
  • 16. Image Processing using Matlab Sumitha Balasuriya 16 Convolution example in 1D Horizontal slice from Mandrill image 0.01 0.08 0.24 0.34 0.24 0.08 0.01 1D Gaussian filter  = Filtered Signal
  • 17. Image Processing using Matlab Sumitha Balasuriya 17 Common convolution kernels 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 Arithmetic mean filter (smoothing) >>fspecial('average') -0.17 -0.67 -0.17 -0.67 3.33 -0.67 -0.17 -0.67 -0.17 Laplacian (enhance edges) >>fspecial('laplacian') -0.17 -0.67 -0.17 -0.67 4.33 -0.67 -0.17 -0.67 -0.17 Sharpening filter >>fspecial('unsharp') 0.01 0.08 0.01 0.08 0.62 0.08 0.01 0.08 0.01 Gaussian filter (smoothing) >>fspecial('gaussian') Investigate the listed kernels in Matlab by performing convolutions on the Mandrill and Lena images. Study the effects of different kernel sizes (3x3, 9x9, 25x25) on the output. 1 2 1 0 0 0 -1 -2 -1 1 0 -1 2 0 -2 1 0 -1 Sobel operators (edge detection in x and y directions) >>fspecial('sobel') >>fspecial('sobel')’ The median filter is used for noise reduction. It works by replacing a pixel value with the median of its neighbourhood pixel values (vs the mean filter which uses the mean of the neighbourhood pixel values). Apply Matlab’s median filter function medfilt2 on the Mandrill and Lena images. Remember to use different filter sizes (3x3, 9x9, 16x16).
  • 18. Image Processing using Matlab Sumitha Balasuriya 18 Useful functions for convolution Perform the convolution of an image using Gaussian kernels with different sizes and standard deviations and display the output images. • Generate useful filters for convolution >>fspecial('gaussian',[kernel_height kernel_width],sigma) • 1D convolution >>conv(signal,filter) • 2D convolution >>conv2(double(I(:,:,2)),fspecial('gaussian‘,[kernel_height kernel_width] ,sigma),'valid') Border padding options kernel image
  • 19. Image Processing using Matlab Sumitha Balasuriya 19 Tutorial 2 1) Type the code in this handout in Matlab and investigate the results. 2) Do the exercises in the notes. 3) Create a grating2d.m function that generates a 2D steerable spatial frequency. Compute spatial frequencies with an amplitude =1 and the following parameters frequency = 1/50, 1/25, 1/10, 1/5 cycles per pixel, phase= 0, pi/5, pi/4, pi/3, pi/2, pi theta = 0, pi/5, pi/4, pi/3, pi/2, pi The value for pi is returned by the in-built matlab function pi. Display your gratings using the in-built gray colourmap. (figure 1) 3) Create a superposition of two or more gratings with different frequencies and thetas and display the result. You can do this by simply adding the images you generated with grating2d (figure 2) frequency = (1/10 and 1/20), (1/20 and 1/30) theta = (pi/2 and pi/5), (pi/10 and pi/2), (pi/2 and pi) Make sure you examine combinations of different frequencies and theta values. (figure 3). Visualise the intensity surface of the outputs that you have generated. (figure 4) 4) Write a matlab function that segments a greyscale image based on a given threshold (i.e. display pixels values greater than the threshold value, zero otherwise). The function should accept two inputs, the image matrix and the threshold value, and output the thresholded image matrix. (figure 5) function H=grating2d(f,phi,theta,A) % function to generate a 2D grating image % f = frequency % phi = phase % theta = angle % A = amplitude % H=grating2d(f,phi,theta,A) % size of grating height=100; width=100; wr=2*pi*f; % angular frequency wx=wr*cos(theta); wy=wr*sin(theta); for y=1:height for x=1:width H(x,y)=A*cos(wx*(x)+phi+wy*(y)); end end Figure 1 Figure 3 Figure 2 Figure 4 Figure 5