This document presents research on content-based image retrieval using color and texture features. It proposes using both quadratic distance based on color histograms to measure color similarity, and pyramid structure wavelet transforms and gray level co-occurrence matrix (GLCM) to measure texture. For color features, quadratic distance is calculated between color histograms to retrieve similar images based on color. For texture, pyramid structure wavelet transforms are used to decompose images into sub-bands and calculate energy levels, while GLCM extracts texture statistics. The methods are evaluated on a dataset of 10000 images and results show the integrated approach of color and texture features provides more accurate and faster retrieval compared to individual features.