Information Visualization
Katrien Verbert
Department of Computer Science
Faculty of Science
Vrije Universiteit Brussel
katrien.verbert@vub.ac.be
20/02/14

pag. 1
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 2
Where people run?

hJp://flowingdata.com/2014/02/05/where-­‐people-­‐run/	
  
	
  

pag. 3
20/02/14
visual explorations of urban mobility

hJp://senseable.mit.edu/visual-­‐explora7ons-­‐urban-­‐mobility/touching-­‐bus-­‐rides.html	
  

	
  

20/02/14

pag. 4
professional network

hJp://inmaps.linkedinlabs.com/network	
  
pag. 5
	
  
20/02/14
Immersion

hJps://immersion.media.mit.edu/demo#	
  
	
  
pag. 6
20/02/14
Last.fm music history

hJp://www.frederikseiffert.de/lasthistory/	
  
	
  
pag. 7
20/02/14
Twitter sentiment
hJp://www.csc.ncsu.edu/faculty/healey/
tweet_viz/tweet_app/	
  
	
  

20/02/14

pag. 8
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 9
Napoleon’s army drawn by Minard (1781-1870)

Source: http://www.napoleanic-literature.com, © John Schneider

20/02/14

pag. 10
•  Thickness of brown line is proportional to number of soldiers
(422,00 soldiers started out).
•  Black similarly encodes the retreat (10,000 returned).
•  Crossing of Berezina river.
•  Temperature plot at the bottom.
Source: Information Visualization Course, Katy Börner, Indiana University
William Playfair
… and the line/area chart based on time series

20/02/14

pag. 12
William Playfair
…and the bar chart

20/02/14

pag. 13
Florence Nightingale’s diagram showing the dramatic reduction in death
rates in the hospitals of Scutari following the changes she introduced
Source: Nightingale (1858)
Map of Cholera by John Snow in 1854

• 
• 

• 

link between cholera and
water
cholera occurred among
those near the Broad
Street water pump
removing the handle of
the pump ended the
neighborhood epidemic

Source: Information Visualization Course, Katy Börner

20/02/14

pag. 15
London Underground Map by Harry Beck in 1933

•  Harry Beck’s London
Underground’s way
finding system is an
extraordinary example
of directional signage.
•  Note the stylized
angles (90 and 45
degrees) and the
regular spacing
between station stops.

Source: Information Visualization Course, Katy Börner

20/02/14

pag. 16
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 17
information visualization
the use of computer-supported, interactive, visual
representations of abstract data to amplify cognition
[Card et al. 1999]

20/02/14

pag. 18
How many circles?

Slide	
  source:	
  Joris	
  Klerkx	
  

20/02/14

pag. 19
How many circles?

Humans have advanced perceptual abilities
Our brains makes us extremely good at recognizing visual patterns

Slide	
  source:	
  Joris	
  Klerkx	
  

20/02/14

pag. 20
Overview

Visualization
Scientific
visualization	
  

Slide	
  source:	
  John	
  Stasko	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Information
visualization	
  

20/02/14

pag. 21
Information visualization

Concerned with data that does not have a well-defined
representation in 2D or 3D space (i.e., “abstract data”)

Introduction to Information Visualization - Fall 2013

Slide	
  source:	
  Robert	
  Putman	
  

20/02/14

pag. 22
Scientific visualization

Specifically concerned with data that has a well-defined representation
in 2D or 3D space (e.g., from simulation mesh or scanner).

Introduction to Information Visualization - Fall 2013
Slide	
  source:	
  Robert	
  Putman	
  

20/02/14

pag. 23
Also: visual analytics

hJp://www.visual-­‐analy7cs.eu/faq/	
  

20/02/14

pag. 24
Focus: information visualization

20/02/14

pag. 25
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 26
some bad examples

20/02/14

pag. 27
What’s wrong with this graph?

Source: Stephen Few

20/02/14

pag. 28
Bar values should start at zero

Source: Stephen Few

20/02/14

pag. 29
Bad examples

hJp://flowingdata.com/category/sta7s7cs/mistaken-­‐data/	
  
Source: Joris Klerkx

20/02/14

pag. 30
Bad examples

hJp://flowingdata.com/category/sta7s7cs/mistaken-­‐data/	
  
Source: Joris Klerkx

20/02/14

pag. 31
What about 3D?

Source: Stephen Few

20/02/14

pag. 32
But what if there is a 3rd variable

Source: Stephen Few

20/02/14

pag. 33

20/0
PAG
How to display additional variables?

Source: Stephen Few

20/02/14

pag. 34
What about pie charts?

“Save the pies for dessert” (Stephen Few)

Source: Stephen Few

20/02/14

pag. 35
What makes these graphics bad?

20/02/14

pag. 36
Summary of Tufte’s Principles

"The success of a visualization is based on deep
knowledge and care about the substance, and the
quality, relevance and integrity of the content."
(Tufte, 1983)

•  Tell the truth
–  Graphical integrity
•  Do it effectively with clarity, precision...
–  Design aesthetics

Source: Information Visualization Course, Katy Börner, Indiana University

20/02/14

pag. 37
design aesthetics

20/02/14

pag. 38
design aesthetics: five principles
1. 
2. 
3. 
4. 
5. 

Above all else show the data.
Maximize the data-ink ratio, within reason.
Erase non-data ink, within reason.
Erase redundant data-ink.
Revise and edit.

20/02/14

pag. 39
Above all else, show the data

20/02/14

pag. 40
Above all else, show the data

20/02/14

pag. 41
Data-ink ratio

“A large share of ink on a graphic should present data
information, the ink changing as the data change. Data-ink is
the non-erasable core of a graphic...” (Tufte, 1983)

20/02/14

pag. 42
Data-Ink Ratio

Data-ink ratio

=

data-ink
Total ink used to print graphic

=

Proportion of a graphic’s ink devoted to
the non-redundant display of datainformation.

=

1.0 – proportion of graphic that can be
erased without the loss of information

20/02/14

pag. 43
Data-ink ratio

20/02/14

pag. 44
What is the data-ink ratio?

20/02/14

pag. 45
What is the data-ink ratio?

< 0.05

20/02/14

pag. 46
What is the data-ink ratio of this graphic?

< 0.001

20/02/14

pag. 47
Five Principles
1.  Above all else show the data.
2.  Maximize the data-ink ratio.
–  Within reason
–  Every bit of ink on a graphic requires a reason
3.  Erase non-data ink, within reason.
4.  Erase redundant data-ink.
5.  Revise and edit.

20/02/14

pag. 48
Maximize the data-ink ratio, within reason

(Tufte)

“A pixel
is a
terrible
thing to
waste.”
(Shneiderman)
Slide	
  source:	
  Chris	
  North,	
  Virginia	
  Tech	
  

20/02/14

pag. 49
Five Principles
1. 
2. 
3. 
4. 
5. 

Above all else show the data.
Maximize the data-ink ratio, within reason.
Erase non-data ink, within reason.
Erase redundant data-ink.
Revise and edit.

20/02/14

pag. 50
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 51
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 52
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 53
Erase redundant data-ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 54
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 55
Erase redundant data-ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 56
Erase redundant data-ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 57
Erase redundant data-ink

20/02/14

pag. 58
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 59
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 60
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 61
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 62
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 63
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 64
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 65
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 66
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 67
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 68
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 69
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 70
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 71
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 72
Revise and edit

20/02/14

pag. 73
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 74
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 75
“Perfection is achieved not when there is nothing more to
add, but when there is nothing left to take away”
– Antoine de Saint-Exupery

20/02/14

pag. 76
graphical integrity

20/02/14

pag. 77
Pseudo-decline

20/02/14

pag. 78
Lie factor
Size	
  of	
  effect	
  shown	
  in	
  graphic	
  
Lie Factor = --------------------------Size	
  of	
  effect	
  in	
  data	
  
	
  

Edward	
  Tu)e	
  
The	
  Visual	
  Display	
  of	
  
Quan7ta7ve	
  Informa7on	
  
page	
  57	
  

(27.5-­‐18.0)/18=53%	
  actual	
  increase	
  
(5.3-­‐0.6)/0.6=783%	
  visual	
  increase	
  
Lie	
  factor=783/53=14.8	
  
20/02/14

pag. 79
Same data, simple graphic

20/02/14

pag. 80
Lie factor
• 

Use of area to portray 1D
data can be confusing
–  Area	
  has	
  2	
  dimensions	
  	
  

• 

The ‘incredible’ shrinking
family doctor
–  Lie	
  factor	
  of	
  2.8	
  
–  Plus	
  perspec7ve	
  distor7on	
  
–  Plus	
  incorrect	
  horizontal	
  spacing	
  

20/02/14

pag. 81
Lie factor
• 

Use of area to portray 1D data can be
confusing
–  Area	
  has	
  2	
  dimensions	
  	
  

• 

The ‘incredible’ shrinking dollar

• 

A more accurate representation of the
1978 dollar would be about twice the
size of the one in this chart

20/02/14

pag. 82
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 83
Workflow
• 
• 
• 
• 
• 
• 
• 

Acquire
Parse
Filter
Mine
Represent
Refine
Interact

Adapted	
  from	
  	
  Fry,	
  Visualizing	
  Data	
  
Available	
  at:	
  hJp://it-­‐ebooks.info/book/143/	
  
	
  
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 84
Workflow
•  Acquire

[p. 7, Fry, Visualizing Data]
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 85
Workflow
•  Parse

[p. Introduction to Information Visualization - Fall 2013
8, Fry, Visualizing Data]

20/02/14

pag. 86
Workflow
•  Filter/Mine

Introduction to Information Visualization - Fall 2013
[p. 10, Fry, Visualizing Data]

20/02/14

pag. 87
Workflow
•  Represent

[p. 10, Fry, Visualizing Data]
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 88
Workflow
•  Refine

[p. Introduction to Information Visualization - Fall 2013
12, Fry, Visualizing Data]

20/02/14

pag. 89
Workflow
•  Interact

•  Demo

[p. 12, Fry, Visualizing Data]
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 90
Not the entire story!

20/02/14

pag. 91
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 92
Visualization tools and APIs!
• 
• 
• 
• 
• 
• 
• 

Many Eyes
http://www-958.ibm.com/software/data/cognos/manyeyes/
Ggplot2
http://ggplot2.org/
Tableau public
http://www.tableausoftware.com/public/
Google Charts
http://code.google.com/apis/chart/interactive/docs/gallery.html
Simile Widgets
http://www.simile-widgets.org/
Processing.js
http://processingjs.org/
D3.js
http://d3js.org/

20/02/14

pag. 93
Many Eyes

http://www-958.ibm.com/software/
data/cognos/manyeyes/"

/ name of department

20/02/14

pag. 94
Tableau public

hJp://www.tableausocware.com/public/community	
  
	
  

20/02/14

pag. 95
Google chart: treemap example

hJps://developers.google.com/chart/
interac7ve/docs/gallery/treemap	
  
	
  

20/02/14

pag. 96

20/0
PAG
Simile Widgets
•  http://www.simile-widgets.org/

20/02/14

pag. 97

20/0
PAG
Timeplot
hJp://www.simile-­‐widgets.org/7meplot/docs/	
  
	
  

20/02/14

pag. 98

20/0
PAG
Processing.js
•  http://processingjs.org/

20/02/14

pag. 99

20/0
PAG
D3.js!
•  http://d3js.org/
•  demo: http://vimeo.com/29862153

20/02/14

pag. 100
D3 example treemap
hJp://bl.ocks.org/mbostock/4063582	
  
	
  

/ name of department

20/02/14

pag. 101

20/0
PAG
D3 resources
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

http://vimeo.com/m/35005701 - nice overview and run-through video/talk
http://alignedleft.com/tutorials/d3/ - thorough d3 tutorials from an academic instructor
and the author of the open OReilly book, "Interactive Data Visualization for the
Web" (look for free preview link for the actual book draft
https://github.com/mbostock/d3/wiki/Tutorials - big list of resources from the author of
D3
https://github.com/mbostock/d3/wiki/API-Reference - well-done D3 documentation
http://www.d3noob.org - free ebook with lots of tips and tricks, actively update
http://www.jeromecukier.net/wp-content/uploads/2012/10/d3-cheat-sheet.pdf - cheat
sheet for D3, also see parent site for blog post
https://groups.google.com/forum/?fromgroups=#!forum/d3-js - D3 Google group
http://bost.ocks.org/mike/selection/ - Guide to understanding selections, key part of D3.
http://benclinkinbeard.com/talks/2012/NCDevCon/ - A talk, with interactive examples
and code snippets, explaining d3
http://enjalot.github.com/dot-enter/ - A live-coding set of videos to walk through a lot of
the basics
http://enjalot.github.com/dot-append/ - A live-coding set of videos to walk through a lot
of the basics (part 2)
http://tributary.io/ - A fast prototyping lounge similar to CodePen to let you test your
ideas out. Used by the enjalot fellow.

Source: John Stasko

20/02/14

pag. 102
D3 support
•  Active community online
–  hJps://github.com/mbostock/d3/wiki	
  
–  Including	
  Mike	
  Bostock	
  ocen	
  answering	
  ques7ons	
  
•  In active development
–  Though	
  the	
  cri7cal	
  features	
  are	
  unlikely	
  to	
  change	
  

20/02/14

pag. 103
hJp://blog.profitbricks.com/39-­‐data-­‐visualiza7on-­‐tools-­‐for-­‐big-­‐data/	
  

20/02/14

pag. 104
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 105
About me

20/02/14

pag. 106
About me

20/02/14

pag. 107
Teaching assistant
•  Sandra Trullemans
http://wise.vub.ac.be/sandra-trullemans

20/02/14

pag. 108
Required text book

20/02/14

pag. 109
Course goals

	
  

know	
  the	
  	
  
founda1ons	
  

learn	
  the	
  principles	
  of	
  
informa7on	
  visualiza7on	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Learn	
  about	
  exis1ng	
  
techniques	
  and	
  systems	
  

	
  
learn	
  about	
  exis7ng	
  
techniques	
  and	
  systems,	
  
and	
  their	
  effec7veness	
  	
  
	
  
develop	
  the	
  knowledge	
  
to	
  select	
  appropriate	
  
visualiza7on	
  techniques	
  
for	
  par7cular	
  tasks	
  	
  
	
  

	
  

build	
  
	
  

	
  
build	
  your	
  own	
  	
  
visualiza7ons	
  
	
  
apply	
  theore7cal	
  	
  
founda7ons	
  
	
  
	
  
	
  
	
  

20/02/14

pag. 110
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 111
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 112
Team project:
an interactive visualization
•  Teams of 3-4
•  Limited number of restrictions
•  Be creative!

20/02/14

pag. 113
Team project

•  hands-on experience of building interactive visualizations
•  using D3

20/02/14

pag. 114
Inspiration
• 

• 

Related courses
KU Leuven: http://ariadne.cs.kuleuven.be/wiki/index.php/MM-Course1314
Berkeley: http://blogs.ischool.berkeley.edu/i247s13/
Columbia university: http://columbiadataviz.wordpress.com/student-work/	
  
Other examples
Information is beatiful:
http://www.informationisbeautiful.net/2013/over-300-of-the-best-datavisualization/?utm_source=feedly
Gap Minder World: http://www.gapminder.org/world
Netflix Map
http://www.nytimes.com/interactive/2010/01/10/nyregion/20100110netflix-map.html
NYC Parking Map
http://www.nytimes.com/interactive/2008/11/26/nyregion/
20081128_PARKING.html
How people spend their day
http://www.nytimes.com/interactive/2009/07/31/business/20080801metrics-graphic.html
20/02/14

pag. 115
hJp://nycusefuldata.com/	
  
	
  
20/02/14 pag. 116
hJp://bit.ly/1fqy8yy	
  
	
  
	
  	
  
20/02/14

pag. 117
Datasets

hJp://websci14.org/#info	
  

20/02/14

pag. 118

20/0
PAG
Team project milestones
1. 
2. 
3. 
4. 
5. 

due	
  27	
  Feb.	
  
Form teams
due	
  13	
  March	
  
Project proposal
due	
  3	
  April	
  
Intermediate presentation
Final presentation
Short report

22	
  May	
  

due	
  29	
  May	
  

20/02/14

pag. 119
Project proposal
1 page description of your intended project:

–  mo7va7on	
  
–  which	
  datasets	
  you	
  will	
  use	
  
–  current	
  status.	
  If	
  available,	
  first	
  designs.	
  
–  problems/ques7ons	
  
due

13 March

If you want earlier feedback, send us your proposal earlier ;-)

20/02/14

pag. 120
Intermediate and final presentation
• 
• 
• 
• 

20 mins (15 mins presentations + 5 mins questions)
What is your project about?
Most important part final presentation: demo
What have you learned when implementing the project?

20/02/14

pag. 121
Short report (max. 3 pages)
Motivation
Dataset
Visualization design and implementation
Reflection
–  How	
  is	
  your	
  work	
  related	
  to	
  the	
  topics	
  taught	
  in	
  the	
  course?	
  
–  If	
  you	
  would	
  start	
  over,	
  what	
  would	
  you	
  do	
  differently?	
  
•  Effort
–  How	
  much	
  effort	
  did	
  it	
  take	
  to	
  implement	
  the	
  project?	
  	
  
–  how	
  did	
  you	
  distribute	
  it	
  in	
  your	
  group?	
  
• 
• 
• 
• 

20/02/14

pag. 122
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 123
Research paper
•  Select papers from list available on pointcarré
–  Present	
  a	
  paper	
  of	
  your	
  choice	
  in	
  class	
  
–  Prepare	
  3	
  ques7on	
  about	
  a	
  second	
  paper	
  

•  Topics:
– 
– 
– 
– 
– 
– 
– 
– 
– 

Trees	
  
Hierarchies	
  
Focus	
  +	
  context	
  
Graphs	
  
Time	
  series	
  
Interac7on	
  
Documents	
  
Social	
  media	
  
…	
  

•  Individual assignment
20/02/14

pag. 124
Research presentation
•  Selected papers available on PointCarré
•  Select paper at: http://doodle.com/3ubzmy6fid4baqgk
•  When all presentations are scheduled: select a second paper
for questions.

20/02/14

pag. 125
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 126
Oral exam
•  40% of the grade
•  Closed book
•  Material:

–  Robert	
  Spence.	
  Informa7on	
  visualiza7on:	
  design	
  for	
  interac7on	
  
–  Lecture	
  slides	
  
–  Two	
  research	
  papers	
  
•  Paper	
  from	
  presenta7on	
  
•  Paper	
  you	
  asked	
  ques7ons	
  about	
  
•  Example questions will be posted

20/02/14

pag. 127
Tentative schedule
week	
   date	
  

Lecture	
  	
  
14:00-­‐16:00	
  

WPO	
  
16:00-­‐18:00	
  

23	
  

20	
  Feb.	
  

Introduc7on:	
  defini7on,	
  examples,	
  
toolkits,	
  overview	
  assignments	
  

24	
  

27	
  Feb.	
  

Percep7on	
  and	
  principles	
  

25	
  

6	
  March	
  

Representa7on:	
  values	
  and	
  rela7ons	
  

26	
  

13	
  March	
  

Presenta7on	
  

presenta7ons	
  

27	
  

20	
  March	
  

Interac7on	
  

presenta7ons	
  

28	
  

27	
  March	
  

Case	
  studies	
  

presenta7ons	
  

29	
  

3	
  April	
  

32	
  

24	
  April	
  

Informa7on	
  dashboards	
  

presenta7ons	
  

34	
  

8	
  May	
  

Visual	
  analy7cs	
  

presenta7ons	
  

35	
  

15	
  May	
  

No	
  lecture:	
  work	
  on	
  team	
  projects	
  

36	
  

22	
  May	
  

Final	
  team	
  project	
  presenta7ons	
  

Intermediate	
  team	
  project	
  presenta7ons	
  

20/02/14

pag. 128
Contact

Office	
  

	
  
Katrien:	
  10F721	
  
Sandra:	
  10G731e	
  

	
  
	
  

Email	
  

	
  
Katrien:	
  katrien.verbert@vub.ac.be	
  
Sandra:	
  sandra.trullemans@vub.ac.be	
  

	
  
	
  

20/02/14

pag. 129
Questions?

20/02/14

pag. 130
5 minute paper
What do YOU expect from this course?

20/02/14

pag. 131
Additional examples
• 
• 
• 
• 
• 
• 

http://infosthetics.com/
http://visualizing.org
http://www.visualcomplexity.com/vc/
http://visual.ly/
http://flowingdata.com
http://www.infovis-wiki.net

Introduction to Information Visualization - Fall 2013

20/02/14

pag. 132
Readings
•  Chapter 1 – 2

20/02/14

pag. 133
The beauty of data visualization - David
McCandless

hJp://www.youtube.com/watch?v=5Zg-­‐C8AAIGg	
  

	
  

20/02/14

pag. 134
Don’t forget
Form teams by 27 February

20/02/14

pag. 135
Next lecture:
perception and principles

20/02/14

pag. 136
References

•  Stuart K. Card, Jock D. Mackinlay, and Ben Scheiderman,
Academic Press, San Diego CA, 1999, p. 7

20/02/14

pag. 137

Information visualization - introduction