SlideShare a Scribd company logo
KRZYSZTOF KUDRYŃSKI
BŁAŻEJ KUBIAK
DEEP LEARNING IN COMPUTER VISION
Plan
• Get excited (7 min)
about the world we live in
• Understand CNN (18 min)
from fundamentals to state-of-the art approach
• Apply CNN (15 min)
by walk-through a challenging computer-vision project.
• Get scared (1 min)
about the world we’ll live in
Deep Learning in Computer Vision
Krzysztof Kudryński
(1982)
www.youtube.com/watch?v=qHepKd38pr0Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
(2017)
Deep Learning in Computer Vision
Krzysztof Kudryński
(2017)
www.youtube.com/watch?v=W6wzUMk9w-cDeep Learning in Computer Vision
Krzysztof Kudryński
(2008)
Deep Learning in Computer Vision
Krzysztof Kudryński
(2016)
www.youtube.com/watch?v=FKXOucXB4a8Deep Learning in Computer Vision
ⓒKrzysztof Kudryński
www.youtube.com
(1982)
Deep Learning in Computer Vision
Krzysztof Kudryński
(2015)
Deep Learning in Computer Vision
Krzysztof Kudryński
(2015)
Deep Learning in Computer Vision
Krzysztof Kudryński
(2015)
Deep Learning in Computer Vision
Krzysztof Kudryński
A small bird with yellow
breast, brown crown and
black superciliary
(2015)
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
(2015-2018)
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
100%
0% 0%
Deep Learning in Computer Vision
Krzysztof Kudryński
vertical
edges
horizon
edges
frame
glasses
23
345
3%
97%
Convolution
Max-pooling
Deep Learning in Computer Vision
Krzysztof Kudryński
[n, 200, 180, 4][5, 5, 3, 4]
n
[n, 200, 180, 3]
200
180
n
3
4
3
5
5
4
200
180
DeepLearninginComputerVision
KrzysztofKudryński
vertical
edges
horizon
edges
frame
glasses
23
345
3%
97%
[n, 200, 180, 1] [3, 3, 1, 4] [n, 200, 180, 4]
[n, 20, 18, 4] [5, 5, 4, 1] [n, 20, 18, 1]
[n, 10, 9, 1] [6, 6, 1, 1] [n, 10, 9, 1]
[n, 5, 5, 1]
[25, 2] [n, 2] [n, 2]
placeholder
session
Parse
images with
labels
[0 1]
[0 1]
[1 0]
[1 0]
Deep Learning in Computer Vision
Krzysztof Kudryński
0
Deep Learning in Computer Vision
Krzysztof Kudryński
97% glasses99% glasses
51% glasses
DeepLearninginComputerVision
KrzysztofKudryński
0a
Deep Learning in Computer Vision
Krzysztof Kudryński
0b
Deep Learning in Computer Vision
Krzysztof Kudryński
1
Deep Learning in Computer Vision
Krzysztof Kudryński
1
Deep Learning in Computer Vision
Krzysztof Kudryński
Citations: 3000
ALWAYS
POSITIVE
Deep Learning in Computer Vision
Krzysztof Kudryński
1b
Deep Learning in Computer Vision
Krzysztof Kudryński
1c
Deep Learning in Computer Vision
Krzysztof Kudryński
2
Deep Learning in Computer Vision
Krzysztof Kudryński
2
Deep Learning in Computer Vision
Krzysztof Kudryński
3
Deep Learning in Computer Vision
Krzysztof Kudryński
4
LADY #0
LADY #1
NO
GLASSES
HAS
GLASSES
Deep Learning in Computer Vision
Krzysztof Kudryński
6a (5)
correct
correct
correct
correct
correct
wrong
wrong
Deep Learning in Computer Vision
Krzysztof Kudryński
6b (6)
Deep Learning in Computer Vision
Krzysztof Kudryński
7a
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
)
Deep Learning in Computer Vision
Krzysztof Kudryński
7b
Deep Learning in Computer Vision
Krzysztof Kudryński
We need to
cut the costs!
Optimizer().
minimize(cost)
Deep Learning in Computer Vision
Krzysztof Kudryński
We need to
cut the costs!
Optimizer().
minimize(cost)
Deep Learning in Computer Vision
Krzysztof Kudryński
)
We need to
cut the costs!
Optimizer().
minimize(cost)
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
7e
Deep Learning in Computer Vision
Krzysztof Kudryński
8b
Deep Learning in Computer Vision
Krzysztof Kudryński
• Smart initialization
• Regularization
• Gradient clipping
• New activation functions
• Huge training sets
• Deep networks
Sophisticated
problems
Clever solutions
• Hard to train
• Vanishing gradient
• Exploding gradient
Deep Learning in Computer Vision
Krzysztof Kudryński
• Smart initialization
• Regularization
• Gradient clipping
• New activation functions
• Intermediate training paths
• Huge training sets
• Deep networks
• Hard to train
• Vanishing gradient
• Exploding gradient
Sophisticated
problems
Clever solutions
Deep Learning in Computer Vision
Krzysztof Kudryński
• Smart initialization
• Regularization
• Gradient clipping
• New activation functions
• Intermediate training paths
• Residual connections
• Huge training sets
• Deep networks
• Hard to train
• Vanishing gradient
• Exploding gradient
Sophisticated
problems
Clever solutions
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
POLAND /112018
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
RGB Image
Convolution
Max pooling
X X
Convolution
Max pooling
A
B
C
||A – B||
||B – C||
L = ||A – Ex||2
L = ||B – C||2 – ||A – B||2
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
Convolution
Max pooling
X X
Convolution
Max pooling
A
B
|A – B|
Face recognition network
Deep Learning in Computer Vision
Krzysztof Kudryński
Deep Learning in Computer Vision
Krzysztof Kudryński
Kate Winslet
Arnold Schwarzenegger
Alec Baldwin
Abdullah
Deep Learning in Computer Vision
Krzysztof Kudryński
Convolution
Max pooling
X X
Convolution
Max pooling
A
B
|A – B|
Face recognition network
1
Deep Learning in Computer Vision
Krzysztof Kudryński
Convolution
Max pooling
X X
Convolution
Max pooling
A
B
|A – B|
Face recognition network
0
Deep Learning in Computer Vision
Krzysztof Kudryński
model = Sequential()
model.add(Dense(rowSize, input_dim=rowSize, activation='relu'))
model.add(Dense(rowSize, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
adam = optimizers.adam()
model.compile(loss='binary_crossentropy',
optimizer=adam,
metrics=['accuracy'])
model.fit_generator(generate_arrays_from_file(trainArr, tranLabelMap, 30),
steps_per_epoch=2000, epochs=100,
validation_data=(valData, valDataLabels))
Training Network in Keras
Deep Learning in Computer Vision
Krzysztof Kudryński
(2018)
source:http://dx.doi.org/10.1101/272518
Deep Learning in Computer Vision
Krzysztof Kudryński
(2018)
source:http://dx.doi.org/10.1101/272518
Deep Learning in Computer Vision
Krzysztof Kudryński
Krzysztof Kudrynski
k.kudrynski@gmail.com
@kriskudrynski
Blazej Kubiak
blazejkubiak@gmail.com
@blazkubiak
Deep Learning in Computer Vision
Krzysztof Kudryński

More Related Content

PDF
A Survey on Image Processing using CNN in Deep Learning
IRJET Journal
 
PPTX
PyConZA'17 Deep Learning for Computer Vision
Alex Conway
 
PDF
Deep learning in Computer Vision
David Dao
 
PDF
Grokking TechTalk #21: Deep Learning in Computer Vision
Grokking VN
 
PDF
Deep Learning AtoC with Image Perspective
Dong Heon Cho
 
PDF
Deep Learning for Computer Vision - ExecutiveML
Alex Conway
 
PPTX
Data Con LA 2019 - State of the Art of Innovation in Computer Vision by Chris...
Data Con LA
 
PDF
Unsupervised Computer Vision: The Current State of the Art
TJ Torres
 
A Survey on Image Processing using CNN in Deep Learning
IRJET Journal
 
PyConZA'17 Deep Learning for Computer Vision
Alex Conway
 
Deep learning in Computer Vision
David Dao
 
Grokking TechTalk #21: Deep Learning in Computer Vision
Grokking VN
 
Deep Learning AtoC with Image Perspective
Dong Heon Cho
 
Deep Learning for Computer Vision - ExecutiveML
Alex Conway
 
Data Con LA 2019 - State of the Art of Innovation in Computer Vision by Chris...
Data Con LA
 
Unsupervised Computer Vision: The Current State of the Art
TJ Torres
 

Similar to infoShare AI Roadshow 2018 - Krzysztof Kudryński & Błażej Kubiak (TomTom) - Deep learning in computer vision (20)

PPTX
Introduction to computer vision
Marcin Jedyk
 
PPTX
Dssg talk CNN intro
Vincent Tatan
 
PDF
CNN Algorithm
georgejustymirobi1
 
PDF
Classification case study + intro to cnn
Vincent Tatan
 
PPTX
Introduction to computer vision with Convoluted Neural Networks
MarcinJedyk
 
PPTX
[Revised] Intro to CNN
Vincent Tatan
 
PDF
深度學習在AOI的應用
CHENHuiMei
 
PDF
Computer Vision Bootcamp: First Worshop
MohammedArbi
 
PDF
Introduction to deep learning in python and Matlab
Imry Kissos
 
PDF
Classification of Images Using CNN Model and its Variants
IRJET Journal
 
PPTX
Deep Learning for Computer Vision - PyconDE 2017
Alex Conway
 
PDF
Deep Learning a whirlwind tour of key principles
tobybreckon1
 
PDF
Overblik over kunstig intelligens og digital billedanalyse
LFF - Landsforeningen til bevaring af foto og film
 
PPTX
Image classification using convolutional neural network
KIRAN R
 
PDF
From Pixels to Understanding: Deep Learning's Impact on Image Classification ...
IRJET Journal
 
PDF
Computer Vision with Deep Learning
Capgemini
 
PDF
imageclassification-160206090009.pdf
KammetaJoshna
 
PDF
Deep Learning - Convolutional Neural Networks
Christian Perone
 
PDF
DLD meetup 2017, Efficient Deep Learning
Brodmann17
 
PPTX
Introduction to Computer Vision and its Applications
RamSIyer2
 
Introduction to computer vision
Marcin Jedyk
 
Dssg talk CNN intro
Vincent Tatan
 
CNN Algorithm
georgejustymirobi1
 
Classification case study + intro to cnn
Vincent Tatan
 
Introduction to computer vision with Convoluted Neural Networks
MarcinJedyk
 
[Revised] Intro to CNN
Vincent Tatan
 
深度學習在AOI的應用
CHENHuiMei
 
Computer Vision Bootcamp: First Worshop
MohammedArbi
 
Introduction to deep learning in python and Matlab
Imry Kissos
 
Classification of Images Using CNN Model and its Variants
IRJET Journal
 
Deep Learning for Computer Vision - PyconDE 2017
Alex Conway
 
Deep Learning a whirlwind tour of key principles
tobybreckon1
 
Overblik over kunstig intelligens og digital billedanalyse
LFF - Landsforeningen til bevaring af foto og film
 
Image classification using convolutional neural network
KIRAN R
 
From Pixels to Understanding: Deep Learning's Impact on Image Classification ...
IRJET Journal
 
Computer Vision with Deep Learning
Capgemini
 
imageclassification-160206090009.pdf
KammetaJoshna
 
Deep Learning - Convolutional Neural Networks
Christian Perone
 
DLD meetup 2017, Efficient Deep Learning
Brodmann17
 
Introduction to Computer Vision and its Applications
RamSIyer2
 
Ad

More from Infoshare (20)

PDF
infoShare AI Roadshow 2018 - Barbara Leśniarek (Elitmind) - ”Łapać złodzieja!...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Wojtek Ptak (Freshmail) - Teraz - najlepszy czas...
Infoshare
 
PPTX
infoShare AI Roadshow 2018 - Tomasz Brzeziński (iTaxi) - Niestandardowe metod...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Rafał Cycoń (ShelfWise.ai) - Wyzwania w tworzeni...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Paweł Wyborski (QuarticON) - Jak AI pomaga sprze...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Mateusz Biliński (Niebezpiecznik) - Hackowanie (...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Magdalena Wójcik (Data Love) - Data Science na d...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Adrian Boguszewski (Linux Polska) - Czy sieć neu...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Dorian Nikoniuk (Microsoft) - Usługi poznawcze, ...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Tomasz Kopacz (Microsoft) - jakie możliwości daj...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Adam Karwan (Groupon) - Jak wykorzystać uczenie ...
Infoshare
 
PDF
infoShare AI Roadshow 2018 - Michał Ćwiok (Clouds on Mars) - Usługi AI w chmurze
Infoshare
 
PPTX
infoShare 2014: Peter Taylor,The Art of Productive Laziness
Infoshare
 
PDF
infoShare 2014: Paweł Brodziński, Efektywny czy zajęty? Jesteś pewien, że dob...
Infoshare
 
PPTX
infoShare 2014: Michał Sierzputowski, Testy automatyczne aplikacji webowych o...
Infoshare
 
PDF
infoShare 2014: Michał Polak, Smart Cities na wyciągnięcie smartfona.
Infoshare
 
PPTX
infoShare 2014: Mariusz Róg, Big Data w praktyce -- jak efektywnie przetwarza...
Infoshare
 
PDF
infoShare 2014: Marek Landowski, Architektura SWIFT obiektowego przechowywani...
Infoshare
 
PDF
infoShare 2014: Maciej Saganowski, Designing Mobile Services.
Infoshare
 
PPTX
infoShare 2014:Jacek Samsel, Andrzej Pyra, Marketingowa mapa skarbów: w jaki ...
Infoshare
 
infoShare AI Roadshow 2018 - Barbara Leśniarek (Elitmind) - ”Łapać złodzieja!...
Infoshare
 
infoShare AI Roadshow 2018 - Wojtek Ptak (Freshmail) - Teraz - najlepszy czas...
Infoshare
 
infoShare AI Roadshow 2018 - Tomasz Brzeziński (iTaxi) - Niestandardowe metod...
Infoshare
 
infoShare AI Roadshow 2018 - Rafał Cycoń (ShelfWise.ai) - Wyzwania w tworzeni...
Infoshare
 
infoShare AI Roadshow 2018 - Paweł Wyborski (QuarticON) - Jak AI pomaga sprze...
Infoshare
 
infoShare AI Roadshow 2018 - Mateusz Biliński (Niebezpiecznik) - Hackowanie (...
Infoshare
 
infoShare AI Roadshow 2018 - Magdalena Wójcik (Data Love) - Data Science na d...
Infoshare
 
infoShare AI Roadshow 2018 - Adrian Boguszewski (Linux Polska) - Czy sieć neu...
Infoshare
 
infoShare AI Roadshow 2018 - Dorian Nikoniuk (Microsoft) - Usługi poznawcze, ...
Infoshare
 
infoShare AI Roadshow 2018 - Tomasz Kopacz (Microsoft) - jakie możliwości daj...
Infoshare
 
infoShare AI Roadshow 2018 - Adam Karwan (Groupon) - Jak wykorzystać uczenie ...
Infoshare
 
infoShare AI Roadshow 2018 - Michał Ćwiok (Clouds on Mars) - Usługi AI w chmurze
Infoshare
 
infoShare 2014: Peter Taylor,The Art of Productive Laziness
Infoshare
 
infoShare 2014: Paweł Brodziński, Efektywny czy zajęty? Jesteś pewien, że dob...
Infoshare
 
infoShare 2014: Michał Sierzputowski, Testy automatyczne aplikacji webowych o...
Infoshare
 
infoShare 2014: Michał Polak, Smart Cities na wyciągnięcie smartfona.
Infoshare
 
infoShare 2014: Mariusz Róg, Big Data w praktyce -- jak efektywnie przetwarza...
Infoshare
 
infoShare 2014: Marek Landowski, Architektura SWIFT obiektowego przechowywani...
Infoshare
 
infoShare 2014: Maciej Saganowski, Designing Mobile Services.
Infoshare
 
infoShare 2014:Jacek Samsel, Andrzej Pyra, Marketingowa mapa skarbów: w jaki ...
Infoshare
 
Ad

Recently uploaded (20)

PDF
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
PDF
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
PDF
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
PDF
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
PPTX
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PDF
Software Development Methodologies in 2025
KodekX
 
PDF
Doc9.....................................
SofiaCollazos
 
PDF
AI-Cloud-Business-Management-Platforms-The-Key-to-Efficiency-Growth.pdf
Artjoker Software Development Company
 
PDF
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
PDF
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
PDF
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
PDF
REPORT: Heating appliances market in Poland 2024
SPIUG
 
PDF
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
Software Development Methodologies in 2025
KodekX
 
Doc9.....................................
SofiaCollazos
 
AI-Cloud-Business-Management-Platforms-The-Key-to-Efficiency-Growth.pdf
Artjoker Software Development Company
 
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
The Future of Artificial Intelligence (AI)
Mukul
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
REPORT: Heating appliances market in Poland 2024
SPIUG
 
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 

infoShare AI Roadshow 2018 - Krzysztof Kudryński & Błażej Kubiak (TomTom) - Deep learning in computer vision