This document proposes a reconfigurable approximate architecture for MPEG encoders that optimizes power consumption while maintaining a particular Peak Signal-to-Noise Ratio threshold for any input video. It designs reconfigurable adder/subtractor blocks that can modulate their degree of approximation, and integrates them into the motion estimation and discrete cosine transform modules of the MPEG encoder. Experimental results show the approach dynamically adjusts the degree of hardware approximation based on the input video to respect the given quality bound across different videos while achieving up to a 38% power saving over a conventional non-approximated MPEG encoder architecture.