SlideShare a Scribd company logo
4
Most read
5
Most read
11
Most read
Government Engineering College, Bhavnagar.
Civil Engineering Department
Topic:-
Interpolation
NUMERICAL AND STATISTICAL METHODS
FOR CIVIL ENGINEERING (2140606).
Contents
 Introduction
 Newton’s Divided-Difference Interpolating Polynomials
 Error Estimation in Newton’s Interpolating
Polynomials
 Lagrange Interpolating Polynomials
 Image Interpolation - Theory
Introduction
Interpolation : Estimation of a function value at an intermediate point
that lie between precise data points.
 There is one and only one nth-order polynomial that perfectly fits n+1 data points:
 There are several methods to find the fitting polynomial:
the Newton polynomial and the Lagrange polynomial (unequal
interval)
Newton’s Divided-Difference Interpolating
Polynomials
Linear Interpolation
Connecting two data points with a straight line
f1(x) designates a first-order interpolating polynomial.
)()()()(
01
01
0
01
xx
xfxf
xx
xfxf





Linear-
interpolation
formula
Slope
)(
)()(
)()( 0
01
01
01 xx
xx
xfxf
xfxf 



Quadratic Interpolation
• If three (3) data points are available, the estimate is improved by introducing some curvature into the line
connecting the points.
A second-order polynomial (parabola) can be used for this purpose
• A simple procedure can be used to determine the values of the coefficients
))(()()( 1020102 xxxxbxxbbxf 
)( 000 xfbxx  Could you
figure out how
to derive this
using the above
equation?
Represents a
second order
polynomial
)()(
01
01
11
xx
xfxf
bxx



02
01
01
12
12
22
xx
xx
xfxf
xx
xfxf
bxx







)()()()(
))(()()( 102010 xxxxbxxbbxf 
))((
)(
)()(
)()(
))((
)()()(
)()(
)(
1202
02
01
01
02
2
1202
02102
22
01
01
100
xxxx
xx
xx
xfxf
xfxf
b
xxxx
xxbxfxf
bxx
xx
xfxf
bxfb












))((
)(
)))(()((
)(
)))(()((
1202
01
1201
12
1212
2
xxxx
xx
xxxfxf
xx
xxxfxf
b







)(
)(
)()(
)(
)()(
02
01
01
12
12
2
xx
xx
xfxf
xx
xfxf
b







))((
)(
)))(()(()))(()((
))()((
)(
)))(()((
1202
01
01011201
01
12
1212
2
xxxx
xx
xxxfxfxxxfxf
xfxf
xx
xxxfxf
b







))((
)(
)))(()((
)(
)))(()()()((
1202
01
011201
12
120112
22
xxxx
xx
xxxxxfxf
xx
xxxfxfxfxf
bxx







General Form of Newton’s Interpolating
Polynomials
)()(
],[
ji
ji
ji
xx
xfxf
xxf



Bracketed function
evaluations are finite
divided differences
],,,,[],,[],[)(
)())(())(()()(
011012201100
110102010
xxxxfbxxxfbxxfbxfb
xxxxxxbxxxxbxxbbxf
nnn
nnn






],[],[
],,[
ki
kjji
kji
xx
xxfxxf
xxxf



0
02111
011
xx
xxxfxxxf
xxxxf
n
nnnn
nn


 

],,,[],,,[
],,,,[



xi f(xi)
x0 f(x0)
x1 f(x1)
x2 f(x2)
x3 f(x3)
x4 f(x4)
xi f(xi)
x0=0 2
x1=2 14
x2=3 74
x3=4 242
x4=5 602
f1(x) = 2 + 6*(x-0) (based on x0 and x1)
f2(x) = 2 + 6*(x-0)+18(x-0)(x-2) (based on x0, x1 and x2)
f3(x) = 2 + 6*(x-0)+18(x-0)(x-2)+9(x-0)(x-2)(x-3) (based on x0, x1, x2, and x3)
f4(x) = 2 + 6x +18x(x-2) +9x(x-2)(x-3) +1x(x-2)(x-3)(x-4) (based on x0, x1, x2, x3, and x4)
= x4 – x2 + 2
EXAMPLEDIVIDED DIFFERENCE TABLE
f[xi,xj]
6
60
168
360
f[xi,xj,xk]
18
54
96
f[x,x,x,x]
9
14
f[x...x]
1
f[xi,xj]
f[x1,x0]
f[x2,x1]
f[x3,x2]
f[x4,x3]
f[xi,xj,xk]
f[x2,x1,x0]
f[x3,x2,x1]
f[x4,x3,x2]
f[x,x,x,x]
f[x3,x2,x1,x0]
f[x4,x3,x2,x1]
Given:
x0=1 f(x0)=ln(1) = 0
x1=e f(x1)=ln(2.72) = 1
x2=e2 f(x2)=ln(7.39) = 2
Estimate ln(2) = ?
using interpolation
Find f(x) first
xi f(xi)
x0=1 0
x1=2.72 1
x2=7.39 2
f[xi,xj]
.58
.214
f[xi,xj xk]
-.057
f(x) = 0.58(x-1)
-0.057(x-1)(x-
2.72)
Then calculate
f(2)=0.58(2-1)-0.057(2-1)(2-
2.72)
= 0.621
[ TRUE ln(2) = 0.6931 ]
Example
Lagrange Interpolating Polynomials
• The Lagrange interpolating polynomial is simply a reformulation of the Newton’s polynomial that avoids the
computation of divided differences:
• Above formula can be easily verified by plugging in x0, x1…in the equation one at a time and checking if the
equality is satisfied.









n
ij
j ji
j
i
n
i
iin
xx
xx
xL
xfxLxf
0
0
)(
)()()(
)()()( 1
01
0
0
10
1
1 xf
xx
xx
xf
xx
xx
xf






  
  
  
  
  
  
)(
)(
)()(
2
1202
10
1
2101
20
0
2010
21
2
xf
xxxx
xxxx
xf
xxxx
xxxx
xf
xxxx
xxxx
xf









A visual depiction of the rationale behind
the Lagrange polynomial . The figure
shows a second order case:
Each of the three terms passes through
one of the data points and zero at the
other two. The summation of the three
terms must, therefore, be unique second
order polynomial f2(x) that passes exactly
through three points.
  
  
  
  
  
  
)(
)(
)()(
2
1202
10
1
2101
20
0
2010
21
2
xf
xxxx
xxxx
xf
xxxx
xxxx
xf
xxxx
xxxx
xf









Image Interpolation - Theory
 [IDEA]
 In order to provide a richer environment we are thinking of using
interpolation methods that will generate “artificial images” thus revealing
hidden information.
 [RADON RECONSTRUCTION]
 Radon reconstruction is the technique in which the object is reconstructed
from its projections. This reconstruction method is based on approximating
the inverse Radon Transform.
 [RADON Transform]
 The 2-D Radon transform is the mathematical relationship which maps the
spatial domain (x,y) to the Radon domain (p,phi). The Radon transform
consists of taking a line integral along a line (ray) which passes through the
object space. The radon transform is expressed mathematically as:



 dxdypyxyxpR )sincos(),(),}({ 
Image Interpolation - Graphical
Representation (I)





l
z
dy
y
z
dxzyxyR
dyzyxxR
0
0
0
),,()0,(
),,()90,(
0
0
0
0


Image Interpolation - Graphical
Representation (II)
BHAVIK SHAH – 130210106049
DIGVIJAY SOLANKI – 130210106055
KARTIK HINGOL – 130210106030
NITIN CHAREL – 130210106011
Thank You For Bearing

More Related Content

PPTX
Interpolation and its applications
RinkuMonani
 
PPTX
Lagrange’s interpolation formula
Mukunda Madhav Changmai
 
PPTX
Interpolation In Numerical Methods.
Abu Kaisar
 
PPTX
lagrange interpolation
ayush raj
 
PPTX
Application of interpolation in CSE
Md. Tanvir Hossain
 
PDF
Interpolation with unequal interval
Dr. Nirav Vyas
 
PPT
Newton divided difference interpolation
VISHAL DONGA
 
PDF
Newton's Forward/Backward Difference Interpolation
VARUN KUMAR
 
Interpolation and its applications
RinkuMonani
 
Lagrange’s interpolation formula
Mukunda Madhav Changmai
 
Interpolation In Numerical Methods.
Abu Kaisar
 
lagrange interpolation
ayush raj
 
Application of interpolation in CSE
Md. Tanvir Hossain
 
Interpolation with unequal interval
Dr. Nirav Vyas
 
Newton divided difference interpolation
VISHAL DONGA
 
Newton's Forward/Backward Difference Interpolation
VARUN KUMAR
 

What's hot (20)

PPT
numerical methods
HaiderParekh1
 
PPTX
Newton Forward Difference Interpolation Method
Adeel Rasheed
 
PPTX
Newton’s Divided Difference Formula
Jas Singh Bhasin
 
PPTX
newton raphson method
Yogesh Bhargawa
 
PPTX
Presentation on Numerical Integration
Tausif Shahanshah
 
PPT
Numerical integration
Sunny Chauhan
 
PPTX
application of differential equations
Venkata.Manish Reddy
 
PPTX
Bisection method
Md. Mujahid Islam
 
PPTX
Newton's Backward Interpolation Formula with Example
MuhammadUsmanIkram2
 
PPTX
Cauchy integral theorem & formula (complex variable & numerical method )
Digvijaysinh Gohil
 
PPT
Fourier series
Naveen Sihag
 
PPTX
Runge Kutta Method
Bhavik Vashi
 
PPTX
Newton’s Forward & backward interpolation
Meet Patel
 
PPTX
Laplace Transform of Periodic Function
Dhaval Shukla
 
PPTX
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
 
PPT
Fourier series
Shiv Prasad Gupta
 
PPTX
Euler and improved euler method
Sohaib Butt
 
PDF
Lecture 04 newton-raphson, secant method etc
Riyandika Jastin
 
PPTX
Numerical analysis ppt
MalathiNagarajan20
 
numerical methods
HaiderParekh1
 
Newton Forward Difference Interpolation Method
Adeel Rasheed
 
Newton’s Divided Difference Formula
Jas Singh Bhasin
 
newton raphson method
Yogesh Bhargawa
 
Presentation on Numerical Integration
Tausif Shahanshah
 
Numerical integration
Sunny Chauhan
 
application of differential equations
Venkata.Manish Reddy
 
Bisection method
Md. Mujahid Islam
 
Newton's Backward Interpolation Formula with Example
MuhammadUsmanIkram2
 
Cauchy integral theorem & formula (complex variable & numerical method )
Digvijaysinh Gohil
 
Fourier series
Naveen Sihag
 
Runge Kutta Method
Bhavik Vashi
 
Newton’s Forward & backward interpolation
Meet Patel
 
Laplace Transform of Periodic Function
Dhaval Shukla
 
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
 
Fourier series
Shiv Prasad Gupta
 
Euler and improved euler method
Sohaib Butt
 
Lecture 04 newton-raphson, secant method etc
Riyandika Jastin
 
Numerical analysis ppt
MalathiNagarajan20
 
Ad

Similar to Interpolation (20)

PDF
me310_6_interpolation.pdf for numerical method
kedirabdisa61
 
PDF
Applied numerical methods lec9
Yasser Ahmed
 
PPT
lagrange and newton divided differences.ppt
Thirumoorthy64
 
PPT
Interpolation functions
Tarun Gehlot
 
PDF
Interpolation(2) Numerical methods to CE Problems).pdf
AlyzaCaszyUmayat
 
PPT
interpolacrcrdcrdrcrdctctfct frfctfction.ppt
pawan070201
 
PPT
Chap_18.ppt on interpolation basics undersatanding
VinayakGovindCharyRu
 
PPTX
Es272 ch5b
Batuhan Yıldırım
 
PDF
a) Use Newton’s Polynomials for Evenly Spaced data to derive the O(h.pdf
petercoiffeur18
 
PDF
Computational methods for engineering...
briktititi812
 
PPT
NUMERICAL ANALYSIS CH4CISE301-Topic5.ppt
ahmedhussein561
 
PPTX
interpolation-190605141327 (1).pptx
singhakhil952
 
PPTX
interpolation-190605141327 (1).pptx
singhakhil952
 
PPTX
COMPLEX PROJECT-3.pptx
JayabiGaming
 
PPT
08 interpolation lagrange
Mohammad Tawfik
 
PDF
Lecture about interpolation
Rustam Pasennangi
 
PDF
Fortran chapter 2.pdf
JifarRaya
 
PDF
Intro. to computational Physics ch2.pdf
JifarRaya
 
PPTX
Numerical method (curve fitting)
Varendra University Rajshahi-bangladesh
 
me310_6_interpolation.pdf for numerical method
kedirabdisa61
 
Applied numerical methods lec9
Yasser Ahmed
 
lagrange and newton divided differences.ppt
Thirumoorthy64
 
Interpolation functions
Tarun Gehlot
 
Interpolation(2) Numerical methods to CE Problems).pdf
AlyzaCaszyUmayat
 
interpolacrcrdcrdrcrdctctfct frfctfction.ppt
pawan070201
 
Chap_18.ppt on interpolation basics undersatanding
VinayakGovindCharyRu
 
a) Use Newton’s Polynomials for Evenly Spaced data to derive the O(h.pdf
petercoiffeur18
 
Computational methods for engineering...
briktititi812
 
NUMERICAL ANALYSIS CH4CISE301-Topic5.ppt
ahmedhussein561
 
interpolation-190605141327 (1).pptx
singhakhil952
 
interpolation-190605141327 (1).pptx
singhakhil952
 
COMPLEX PROJECT-3.pptx
JayabiGaming
 
08 interpolation lagrange
Mohammad Tawfik
 
Lecture about interpolation
Rustam Pasennangi
 
Fortran chapter 2.pdf
JifarRaya
 
Intro. to computational Physics ch2.pdf
JifarRaya
 
Numerical method (curve fitting)
Varendra University Rajshahi-bangladesh
 
Ad

More from Bhavik A Shah (20)

PDF
The battle against corruption starts from within
Bhavik A Shah
 
PPTX
Swachchhta shapath
Bhavik A Shah
 
PPTX
Smart city
Bhavik A Shah
 
PPTX
Slope deflection method
Bhavik A Shah
 
PPTX
Purpose of Valuation
Bhavik A Shah
 
PPTX
Development of Sonpari village Under the Scheme of Smart Village
Bhavik A Shah
 
PPTX
Orientation
Bhavik A Shah
 
PPTX
Monetary Policy
Bhavik A Shah
 
PPT
Moment Distribution Method
Bhavik A Shah
 
PPT
Matrix methods
Bhavik A Shah
 
PPT
Indeterminate frame by using energy principle
Bhavik A Shah
 
PPTX
Hardened concrete
Bhavik A Shah
 
PPTX
Survey required
Bhavik A Shah
 
PPT
The Water act 1947
Bhavik A Shah
 
PPTX
Traffic engineering
Bhavik A Shah
 
PPTX
Flood management
Bhavik A Shah
 
PPT
Geographic information system
Bhavik A Shah
 
PPT
Strain measurement
Bhavik A Shah
 
PPT
Food chains and food Webs
Bhavik A Shah
 
PPTX
Earthquake - Disaster Management
Bhavik A Shah
 
The battle against corruption starts from within
Bhavik A Shah
 
Swachchhta shapath
Bhavik A Shah
 
Smart city
Bhavik A Shah
 
Slope deflection method
Bhavik A Shah
 
Purpose of Valuation
Bhavik A Shah
 
Development of Sonpari village Under the Scheme of Smart Village
Bhavik A Shah
 
Orientation
Bhavik A Shah
 
Monetary Policy
Bhavik A Shah
 
Moment Distribution Method
Bhavik A Shah
 
Matrix methods
Bhavik A Shah
 
Indeterminate frame by using energy principle
Bhavik A Shah
 
Hardened concrete
Bhavik A Shah
 
Survey required
Bhavik A Shah
 
The Water act 1947
Bhavik A Shah
 
Traffic engineering
Bhavik A Shah
 
Flood management
Bhavik A Shah
 
Geographic information system
Bhavik A Shah
 
Strain measurement
Bhavik A Shah
 
Food chains and food Webs
Bhavik A Shah
 
Earthquake - Disaster Management
Bhavik A Shah
 

Recently uploaded (20)

PPTX
Tunnel Ventilation System in Kanpur Metro
220105053
 
PDF
Unit I Part II.pdf : Security Fundamentals
Dr. Madhuri Jawale
 
PPTX
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
PDF
Zero carbon Building Design Guidelines V4
BassemOsman1
 
PDF
CAD-CAM U-1 Combined Notes_57761226_2025_04_22_14_40.pdf
shailendrapratap2002
 
PPTX
database slide on modern techniques for optimizing database queries.pptx
aky52024
 
PDF
2025 Laurence Sigler - Advancing Decision Support. Content Management Ecommer...
Francisco Javier Mora Serrano
 
PPTX
Civil Engineering Practices_BY Sh.JP Mishra 23.09.pptx
bineetmishra1990
 
PDF
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
PPT
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
PDF
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
PDF
Zero Carbon Building Performance standard
BassemOsman1
 
PDF
STUDY OF NOVEL CHANNEL MATERIALS USING III-V COMPOUNDS WITH VARIOUS GATE DIEL...
ijoejnl
 
PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PPTX
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
PDF
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
PDF
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
PPTX
MSME 4.0 Template idea hackathon pdf to understand
alaudeenaarish
 
PDF
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
PDF
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
Tunnel Ventilation System in Kanpur Metro
220105053
 
Unit I Part II.pdf : Security Fundamentals
Dr. Madhuri Jawale
 
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
Zero carbon Building Design Guidelines V4
BassemOsman1
 
CAD-CAM U-1 Combined Notes_57761226_2025_04_22_14_40.pdf
shailendrapratap2002
 
database slide on modern techniques for optimizing database queries.pptx
aky52024
 
2025 Laurence Sigler - Advancing Decision Support. Content Management Ecommer...
Francisco Javier Mora Serrano
 
Civil Engineering Practices_BY Sh.JP Mishra 23.09.pptx
bineetmishra1990
 
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
Zero Carbon Building Performance standard
BassemOsman1
 
STUDY OF NOVEL CHANNEL MATERIALS USING III-V COMPOUNDS WITH VARIOUS GATE DIEL...
ijoejnl
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
MSME 4.0 Template idea hackathon pdf to understand
alaudeenaarish
 
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 

Interpolation

  • 1. Government Engineering College, Bhavnagar. Civil Engineering Department
  • 2. Topic:- Interpolation NUMERICAL AND STATISTICAL METHODS FOR CIVIL ENGINEERING (2140606).
  • 3. Contents  Introduction  Newton’s Divided-Difference Interpolating Polynomials  Error Estimation in Newton’s Interpolating Polynomials  Lagrange Interpolating Polynomials  Image Interpolation - Theory
  • 4. Introduction Interpolation : Estimation of a function value at an intermediate point that lie between precise data points.  There is one and only one nth-order polynomial that perfectly fits n+1 data points:  There are several methods to find the fitting polynomial: the Newton polynomial and the Lagrange polynomial (unequal interval)
  • 5. Newton’s Divided-Difference Interpolating Polynomials Linear Interpolation Connecting two data points with a straight line f1(x) designates a first-order interpolating polynomial. )()()()( 01 01 0 01 xx xfxf xx xfxf      Linear- interpolation formula Slope )( )()( )()( 0 01 01 01 xx xx xfxf xfxf    
  • 6. Quadratic Interpolation • If three (3) data points are available, the estimate is improved by introducing some curvature into the line connecting the points. A second-order polynomial (parabola) can be used for this purpose • A simple procedure can be used to determine the values of the coefficients ))(()()( 1020102 xxxxbxxbbxf  )( 000 xfbxx  Could you figure out how to derive this using the above equation? Represents a second order polynomial )()( 01 01 11 xx xfxf bxx    02 01 01 12 12 22 xx xx xfxf xx xfxf bxx        )()()()(
  • 7. ))(()()( 102010 xxxxbxxbbxf  ))(( )( )()( )()( ))(( )()()( )()( )( 1202 02 01 01 02 2 1202 02102 22 01 01 100 xxxx xx xx xfxf xfxf b xxxx xxbxfxf bxx xx xfxf bxfb             ))(( )( )))(()(( )( )))(()(( 1202 01 1201 12 1212 2 xxxx xx xxxfxf xx xxxfxf b        )( )( )()( )( )()( 02 01 01 12 12 2 xx xx xfxf xx xfxf b        ))(( )( )))(()(()))(()(( ))()(( )( )))(()(( 1202 01 01011201 01 12 1212 2 xxxx xx xxxfxfxxxfxf xfxf xx xxxfxf b        ))(( )( )))(()(( )( )))(()()()(( 1202 01 011201 12 120112 22 xxxx xx xxxxxfxf xx xxxfxfxfxf bxx       
  • 8. General Form of Newton’s Interpolating Polynomials )()( ],[ ji ji ji xx xfxf xxf    Bracketed function evaluations are finite divided differences ],,,,[],,[],[)( )())(())(()()( 011012201100 110102010 xxxxfbxxxfbxxfbxfb xxxxxxbxxxxbxxbbxf nnn nnn       ],[],[ ],,[ ki kjji kji xx xxfxxf xxxf    0 02111 011 xx xxxfxxxf xxxxf n nnnn nn      ],,,[],,,[ ],,,,[   
  • 9. xi f(xi) x0 f(x0) x1 f(x1) x2 f(x2) x3 f(x3) x4 f(x4) xi f(xi) x0=0 2 x1=2 14 x2=3 74 x3=4 242 x4=5 602 f1(x) = 2 + 6*(x-0) (based on x0 and x1) f2(x) = 2 + 6*(x-0)+18(x-0)(x-2) (based on x0, x1 and x2) f3(x) = 2 + 6*(x-0)+18(x-0)(x-2)+9(x-0)(x-2)(x-3) (based on x0, x1, x2, and x3) f4(x) = 2 + 6x +18x(x-2) +9x(x-2)(x-3) +1x(x-2)(x-3)(x-4) (based on x0, x1, x2, x3, and x4) = x4 – x2 + 2 EXAMPLEDIVIDED DIFFERENCE TABLE f[xi,xj] 6 60 168 360 f[xi,xj,xk] 18 54 96 f[x,x,x,x] 9 14 f[x...x] 1 f[xi,xj] f[x1,x0] f[x2,x1] f[x3,x2] f[x4,x3] f[xi,xj,xk] f[x2,x1,x0] f[x3,x2,x1] f[x4,x3,x2] f[x,x,x,x] f[x3,x2,x1,x0] f[x4,x3,x2,x1]
  • 10. Given: x0=1 f(x0)=ln(1) = 0 x1=e f(x1)=ln(2.72) = 1 x2=e2 f(x2)=ln(7.39) = 2 Estimate ln(2) = ? using interpolation Find f(x) first xi f(xi) x0=1 0 x1=2.72 1 x2=7.39 2 f[xi,xj] .58 .214 f[xi,xj xk] -.057 f(x) = 0.58(x-1) -0.057(x-1)(x- 2.72) Then calculate f(2)=0.58(2-1)-0.057(2-1)(2- 2.72) = 0.621 [ TRUE ln(2) = 0.6931 ] Example
  • 11. Lagrange Interpolating Polynomials • The Lagrange interpolating polynomial is simply a reformulation of the Newton’s polynomial that avoids the computation of divided differences: • Above formula can be easily verified by plugging in x0, x1…in the equation one at a time and checking if the equality is satisfied.          n ij j ji j i n i iin xx xx xL xfxLxf 0 0 )( )()()( )()()( 1 01 0 0 10 1 1 xf xx xx xf xx xx xf                         )( )( )()( 2 1202 10 1 2101 20 0 2010 21 2 xf xxxx xxxx xf xxxx xxxx xf xxxx xxxx xf         
  • 12. A visual depiction of the rationale behind the Lagrange polynomial . The figure shows a second order case: Each of the three terms passes through one of the data points and zero at the other two. The summation of the three terms must, therefore, be unique second order polynomial f2(x) that passes exactly through three points.                   )( )( )()( 2 1202 10 1 2101 20 0 2010 21 2 xf xxxx xxxx xf xxxx xxxx xf xxxx xxxx xf         
  • 13. Image Interpolation - Theory  [IDEA]  In order to provide a richer environment we are thinking of using interpolation methods that will generate “artificial images” thus revealing hidden information.  [RADON RECONSTRUCTION]  Radon reconstruction is the technique in which the object is reconstructed from its projections. This reconstruction method is based on approximating the inverse Radon Transform.  [RADON Transform]  The 2-D Radon transform is the mathematical relationship which maps the spatial domain (x,y) to the Radon domain (p,phi). The Radon transform consists of taking a line integral along a line (ray) which passes through the object space. The radon transform is expressed mathematically as:     dxdypyxyxpR )sincos(),(),}({ 
  • 14. Image Interpolation - Graphical Representation (I)      l z dy y z dxzyxyR dyzyxxR 0 0 0 ),,()0,( ),,()90,( 0 0 0 0  
  • 15. Image Interpolation - Graphical Representation (II)
  • 16. BHAVIK SHAH – 130210106049 DIGVIJAY SOLANKI – 130210106055 KARTIK HINGOL – 130210106030 NITIN CHAREL – 130210106011 Thank You For Bearing