This document discusses various interpolation methods used in numerical analysis and civil engineering. It describes Newton's divided difference interpolation polynomials which use higher order polynomials to fit additional data points. Lagrange interpolation polynomials are also covered, which avoid divided differences by reformulating Newton's method. The document provides examples of applying these techniques. It concludes with an overview of image interpolation theory, describing how the Radon transform maps spatial data to projections that can be reconstructed.