SlideShare a Scribd company logo
Introtobigdata
&applicationsDay -1
Oct 2020
Presented by: Parviz Vakili
parviz.vakili@gmail.com
Refences
[1]. DAMA-DMBOK (2017) Data Management Body of Knowledge (Second Edition)-DAMA
International
[2]. Data Strategy (2017) How to profit from a world of big data, analytics and the internet of things – By
Bernard Marr - Kogan Page
[3]. Big Data Analytics for Entrepreneurial Success (2019) – By Soraya Sedkaoui - IGI Global
[4]. https://www.eckerson.com/
[5]. https://www.lightsondata.com/
[6]. https://www.dataedo.com/
[7]. https://www.linkedin.com/in/denise-harders-4908a967/
[8]. http://www.fabak.ir/
CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and infographics &
images by Freepik and illustrations by Storiesplease inform me if some references was missing.
Data
Long-standing definitions of data emphasize its role in
representing facts about the world. In relation to
information technology, data is also understood as
information that has been stored in digital form (though
data is not limited to information that has been digitized
and data management principles apply to data captured
on paper as well as in databases). Still, because today we
can capture so much information electronically, we call
many things ‘data’ that would not have been called
‘data’ in earlier times – things like names, addresses,
birthdates, what one ate for dinner on Saturday, the most
recent book one purchased.
Data and Information
Much ink has been spilled over the relationship between
data and information. Data has been called the “raw
material of information” and information has been called
“data in context”. Often a layered pyramid is used to
describe the relationship between data (at the base),
information, knowledge, and wisdom (at the very top).
While the pyramid can be helpful in describing why data
needs to be well-managed, this representation presents
several challenges for data management.
BIGDATA
Early efforts to define the meaning of Big Data
characterized it in terms of the Three V’s: Volume,
Velocity, Variety (Laney, 2001). As more organizations
start to leverage the potential of Big Data, the list of V’s
has expanded
Volume
Refers to the amount of data. Big Data often has
thousands of entities or elements in billions of records.
Data storages challenges
This picture presents a visual
summary of the range of data
that has become available
through Big Data technologies
and the implications on data
storage options.
Velocity
Refers to the speed at which data is captured, generated,
or shared. Big Data is often generated and can also be
distributed and even analyzed in real-time.
Variety /Variability
Refers to the forms in which data is captured or
delivered. Big Data requires storage of multiple formats;
data structure is often inconsistent within or across data
sets.
Structured Data
The term structured data refers to the data that is
identifiable because it is organized or structured.
Structured data concerns all data which can be stored in
database SQL in a table with rows and columns. They
have the relational key and can be easily mapped into
pre-designed fields. It refers to the data that are stored in
relational databases or corporate data warehouses. In
another word, structured data are data which we
established the functional sense and life cycle (creation
of rules, values and possible technical means of
representation). Also, this type of data is relatively
simple to enter, store, query, and analyze.
Semi-Structured Data
This comes from the speed of arrival of the data, their
volume, making structuring impossible. The messages in
your mailboxes are a good example of semi-structured
data. Semi-structured data is information that doesn’t
reside in a relational database but that does have some
organizational properties that make it easier to analyze.
So, this kind of data contains a structured part and an
unstructured part, so it combines the two types
(structured and unstructured). And due to unorganized
information, the semi-structured is difficult to retrieve,
analyze and store as compared to structured data. It
requires software framework like Apache Hadoop to
perform all this.
Unstructured Data
This is the simplest abstract form, a series of bytes.
Unstructured data is also a description of a reality but
whose codification, meaning, is not directly exploitable
by the machine, for example, audio or video file, a text
contained in a document or an email. Belong to this
category, the data from social networks (Twitter and
Facebook). Such type of data becomes difficult and
requires advanced tools and software to generate value.
Today, there is a predominance of unstructured data
(they represent, according to the big data survey
conducted by New Vantage Partner, more than 85% of
digital data), which must be tried to organize a minimum
(via metadata for example) to give them meaning.
Metadata
Describe and enrich unstructured data. In other words,
the absence of structure is mitigated by the metadata.
For example, the title and the tags to describe the videos
on Dailymotion.
BIGDATA another v’s
Viscosity: Refers to how difficult the
data is to use or integrate.
Volatility: Refers to how often data
changes occur and therefore how long
the data is useful.
Veracity: Refers to how trustworthy
the data is.
WHEREDOBIG DATA COMEFROM?
The answer is clear, they come from everywhere!
Because so much of human activity is executed
electronically, massive amounts of data are
accumulating every day as we move through the
world, interact with each other, and transact
business. Big Data is produced through email,
social media, online orders, and even online
video games. Data is generated not only by
phones and point-of-sale devices, but also by
surveillance systems, sensors in transportation
systems, medical monitoring systems, industrial
and utility monitoring systems, satellites, and
military equipment.
Bigdata is itjusta simplebuzzword?
Not at all! Our lives are already concerned in all their
aspects by the uses of big data. Big data is already in
several fields that the author lists as examples.
Companies want to understand the behaviors and
expectations of their customers to better target their
proposals. They create predictive models to anticipate
the departure of a client or sales of a product.
BIGDATA APPLICATIONS
▪ Industry
▪ Telecom
▪ Manufacturing
▪ Retail
▪ Sport and Fitness
▪ Insurance and Bank
▪ Tourism
▪ Government
▪ Health
▪ Transport
▪ Energy
▪ Agriculture
▪ Science and Research
Data asan Organizational Asset
An asset is an economic resource, that can be
owned or controlled, and that holds or produces
value. Assets can be converted to money. Data
is widely recognized as an enterprise asset,
though understanding of what it means to
manage data as an asset is still evolving.
Today’s organizations rely on their data assets
to make more effective decisions and to operate
more efficiently. Businesses use data to
understand their customers, create new
products and services, and improve operational
efficiency by cutting costs and controlling
risks.
business model
business model
business model
business model
business model
Conceptual DW/BIand BigData Architecture
UDAP
UDAPArchitucture
BigData &Digital Transformation
.1‫توصیفی‬ ‫تحلیل‬(Descriptive( )‫است‬ ‫افتاده‬ ‫اتفاقی‬ ‫چه‬)
.2‫تشخیصی‬ ‫تحلیل‬(Diagnostic( )‫است‬ ‫افتاده‬ ‫اتفاق‬ ‫چرا‬)
.3‫گویانه‬‫پیش‬ ‫تحلیل‬(Predictive( )‫افتاد‬ ‫خواهد‬ ‫اتفاقی‬ ‫چه‬)
.4‫تجویزی‬ ‫تحلیل‬(Prescriptive)(‫بیافتد‬ ‫اتفاق‬ ‫این‬ ‫تا‬ ‫دهیم‬ ‫انجام‬ ‫کاری‬‫چه‬)
‫از‬ ‫وقتی‬‫داده‬ ‫تحلیل‬‫گوییم؟‬‫می‬ ‫چه‬ ‫از‬ ‫گوییم‬‫می‬
•‫مدیریت‬ ‫تیم‬ ،‫ارشد‬ ‫مدیران‬
‫ها‬‫سیستم‬ ‫کاربران‬ ،‫استراتژیک‬‫ی‬
‫و‬ ‫استراتژیک‬...
‫استراتژیک‬
•‫و‬ ‫داخلی‬ ‫کاربران‬ ،‫میانی‬ ‫مدیران‬
‫و‬ ‫خارجی‬...
‫تاکتیکی‬
•‫کاربران‬ ،‫عملیاتی‬ ‫مدیران‬
‫ن‬ ‫برنامه‬ ،‫تراکنشی‬ ‫های‬‫سیستم‬‫ویسان‬
‫تراکنشی‬ ‫های‬‫سیستم‬
‫عملیات‬
BigData &Digital Transformation
‫بر‬‫اساس‬‫مدل‬‫ارزیابی‬20200‫ُبدگی‬‫ز‬،‫دیجیتال‬‫دو‬‫مولفه‬«‫تحلیل‬‫داده‬‫و‬‫بیگ‬‫دیتا‬»‫از‬‫ابعاد‬‫مهم‬‫سنجش‬‫بلوغ‬‫دیجی‬‫تال‬‫است‬.
bigdata and analytics criteria
‫های‬‫شاخص‬‫هشت‬‫گانه‬‫مورد‬‫بررسی‬‫در‬‫ُعد‬‫ب‬«‫تحلیل‬‫داده‬‫و‬‫بیگ‬‫دیتا‬»(‫بر‬‫اساس‬‫مدل‬‫ارزیابی‬20200‫ُبدگی‬‫ز‬‫دیجیتال‬)
.1‫استراتژی‬‫داده‬
.2‫مدیریت‬‫داده‬
.3‫حاکمیت‬‫داده‬
.4‫تیم‬‫تخصصی‬‫تحلیل‬‫داده‬
.5‫یکپارچگی‬‫داده‬
.6‫گستردگی‬‫تحلیل‬‫داده‬‫در‬‫سازمان‬
.7‫داشبوردهای‬‫سازمانی‬
.8‫امنیت‬‫و‬‫محرمانگی‬‫داده‬
Data Governance
‫حاکمیت‬‫داده‬‫یک‬‫برنامه‬‫مدیریتی‬‫چندین‬‫وظیفه‬‫ای‬‫است‬‫که‬‫مه‬‫مترین‬
‫هدف‬‫آن‬‫برخورد‬‫با‬‫داده‬‫به‬‫عنوان‬‫یک‬‫سرمایه‬‫سازمانی‬‫است‬.‫این‬‫کار‬
‫از‬‫طریق‬‫بکارگیری‬‫مجموعه‬‫ای‬‫از‬‫سیاست‬‫ها‬،‫استانداردها‬‫،فرآی‬،‫ندها‬
‫افراد‬‫و‬‫فناوری‬‫که‬‫برای‬‫مدیریت‬‫داده‬‫حیاتی‬‫است‬،‫دنبال‬‫می‬‫شو‬‫د‬.
‫حاکمیت‬‫داده‬‫در‬‫مرکز‬‫های‬‫فعالیت‬‫مدیریت‬‫داده‬‫قرار‬‫شده‬‫داده‬‫است‬،
‫چراکه‬‫حاکمیت‬‫داده‬‫برای‬‫برقراری‬‫ثبات‬‫بین‬‫اجزاء‬‫و‬‫ایجاد‬‫تعادل‬‫بین‬
‫توابع‬‫الزم‬‫هست‬.‫دیگر‬‫های‬‫حوزه‬‫دانش‬‫در‬‫اطراف‬‫چرخ‬‫قرار‬
‫اند‬‫شده‬‫داده‬‫که‬‫نوعی‬‫به‬‫بیانگر‬‫تمام‬‫های‬‫بخش‬‫ضروری‬‫یک‬‫عملی‬‫ات‬
‫مدیریت‬‫داده‬‫بالغ‬‫هست‬.
Data strategy
‫استراتژی‬‫داده‬‫چشم‬‫انداز‬‫سازمان‬‫شما‬‫برای‬‫مدیریت‬‫داده‬‫به‬
‫عنوان‬‫یک‬‫سرمایه‬‫و‬‫تالش‬‫هدفمند‬‫برای‬‫تقویت‬‫آن‬‫در‬‫ج‬‫هت‬
‫ایجاد‬‫یک‬‫مزیت‬‫رقابتی‬‫است‬.‫استراتژی‬‫داده‬‫یک‬‫برنام‬‫ه‬‫و‬‫یا‬
‫طرح‬‫بلندمدت‬‫و‬‫یا‬‫میان‬‫مدت‬‫برای‬،‫بهبود‬‫مدیریت‬‫و‬‫بهر‬‫ه‬
‫برداری‬‫از‬‫داده‬‫در‬‫کسب‬‫و‬‫کار‬‫و‬‫نحوه‬‫تحقق‬‫آنها‬‫است‬.‫داده‬
‫یکی‬‫از‬‫منابع‬‫حیاتی‬‫هر‬‫سازمان‬‫است‬‫که‬‫با‬‫مدیریت‬‫صح‬‫یح‬‫و‬
‫تبعیت‬‫از‬‫یک‬‫استراتژی‬‫مدون‬‫می‬‫توان‬‫آن‬‫را‬‫به‬‫یک‬‫مزی‬‫ت‬
‫رقابتی‬‫برای‬‫کسب‬‫و‬‫کار‬‫تبدیل‬‫کرد‬.
Data Management
‫مدیریت‬‫ها‬‫داده‬‫عبارت‬‫است‬‫از‬،‫توسعه‬‫اجرا‬‫و‬‫نظارت‬‫بر‬
،‫ها‬‫برنامه‬،‫ها‬‫سیاست‬‫ها‬‫طرح‬‫و‬‫هایی‬‫شیوه‬‫است‬‫که‬‫در‬‫طول‬
‫چرخه‬‫عمر‬،‫خود‬‫ارزش‬‫های‬‫دارایی‬‫از‬‫جنس‬‫داده‬‫و‬‫اطالعات‬‫را‬
،‫تحویل‬،‫کنترل‬‫پشتیبانی‬‫و‬‫تقویت‬‫کند‬‫می‬.
‫به‬‫طور‬‫معمول‬،‫یک‬‫استراتژی‬‫داده‬‫نیاز‬‫به‬‫یک‬‫برنامه‬‫مد‬‫یریت‬
‫داده‬‫پشتیبانی‬‫دارد‬‫که‬‫شامل‬‫طرحی‬‫برای‬‫حفظ‬‫و‬‫بهبود‬‫ک‬‫یفیت‬
‫داده‬‫ها‬،‫یکپارچگی‬‫داده‬‫ها‬،‫دسترسی‬‫و‬‫امنیت‬‫در‬‫حالی‬‫ک‬‫ه‬
‫خطرات‬‫شناخته‬‫شده‬‫و‬‫ضمنی‬‫را‬‫کاهش‬‫می‬‫دهد‬‫است‬.‫مدیری‬‫ت‬
‫داده‬‫باید‬‫کلیه‬‫حوزه‬‫های‬‫دانش‬‫دانش‬‫چارچوب‬‫مدیریت‬‫داده‬
‫های‬DAMA‫را‬‫که‬‫مربوط‬‫به‬‫سازمان‬‫است‬‫را‬‫شامل‬‫شود‬.
Data Governance
‫حاکمیت‬‫داده‬‫یک‬‫برنامه‬‫مدیریتی‬‫چندین‬‫وظیفه‬‫ای‬‫است‬‫که‬‫مه‬‫مترین‬
‫هدف‬‫آن‬‫برخورد‬‫با‬‫داده‬‫به‬‫عنوان‬‫یک‬‫سرمایه‬‫سازمانی‬‫است‬.‫این‬‫کار‬
‫از‬‫طریق‬‫بکارگیری‬‫مجموعه‬‫ای‬‫از‬‫سیاست‬‫ها‬،‫استانداردها‬‫،فرآی‬،‫ندها‬
‫افراد‬‫و‬‫فناوری‬‫که‬‫برای‬‫مدیریت‬‫داده‬‫حیاتی‬‫است‬،‫دنبال‬‫می‬‫شو‬‫د‬.
‫حاکمیت‬‫داده‬‫در‬‫مرکز‬‫های‬‫فعالیت‬‫مدیریت‬‫داده‬‫قرار‬‫شده‬‫داده‬‫است‬،
‫چراکه‬‫حاکمیت‬‫داده‬‫برای‬‫برقراری‬‫ثبات‬‫بین‬‫اجزاء‬‫و‬‫ایجاد‬‫تعادل‬‫بین‬
‫توابع‬‫الزم‬‫هست‬.‫دیگر‬‫های‬‫حوزه‬‫دانش‬‫در‬‫اطراف‬‫چرخ‬‫قرار‬
‫اند‬‫شده‬‫داده‬‫که‬‫نوعی‬‫به‬‫بیانگر‬‫تمام‬‫های‬‫بخش‬‫ضروری‬‫یک‬‫عملی‬‫ات‬
‫مدیریت‬‫داده‬‫بالغ‬‫هست‬.
THANKS
Does anyone have any questions?
parviz.vakili@gmail.com
+98 912 444 2418
https://www.linkedin.com/in/parvizvakili/

More Related Content

What's hot (20)

PPTX
Big Data Analytics
Ghulam Imaduddin
 
PPT
Active directory
deshvikas
 
PPTX
Data warehousing
Vigneshwaar Ponnuswamy
 
PPTX
Azure Data Engineering.pptx
priyadharshini626440
 
PPTX
Active Directory
Small World Group L.L.C
 
PDF
Data Architecture Best Practices for Advanced Analytics
DATAVERSITY
 
PPTX
Overview of Big data(ppt)
Shatavisha Roy Chowdhury
 
PPTX
Big Data - Applications and Technologies Overview
Sivashankar Ganapathy
 
PPT
Introduction to Business Intelligence
Ronan Soares
 
PDF
ETL Process & Data Warehouse Fundamentals
SOMASUNDARAM T
 
PPTX
Big data
Ami Redwan Haq
 
PPT
4.2 spatial data mining
Krish_ver2
 
PPTX
Cloud Security
AWS User Group Bengaluru
 
PDF
Lecture2 big data life cycle
hktripathy
 
PDF
Data integration
Umar Alharaky
 
PDF
Data Science Introduction
Gang Tao
 
PDF
Social media with big data analytics
Universiti Technologi Malaysia (UTM)
 
PPT
5.1 mining data streams
Krish_ver2
 
PDF
Introduction to dataset
datamantra
 
PPTX
OLAP & DATA WAREHOUSE
Zalpa Rathod
 
Big Data Analytics
Ghulam Imaduddin
 
Active directory
deshvikas
 
Data warehousing
Vigneshwaar Ponnuswamy
 
Azure Data Engineering.pptx
priyadharshini626440
 
Active Directory
Small World Group L.L.C
 
Data Architecture Best Practices for Advanced Analytics
DATAVERSITY
 
Overview of Big data(ppt)
Shatavisha Roy Chowdhury
 
Big Data - Applications and Technologies Overview
Sivashankar Ganapathy
 
Introduction to Business Intelligence
Ronan Soares
 
ETL Process & Data Warehouse Fundamentals
SOMASUNDARAM T
 
Big data
Ami Redwan Haq
 
4.2 spatial data mining
Krish_ver2
 
Cloud Security
AWS User Group Bengaluru
 
Lecture2 big data life cycle
hktripathy
 
Data integration
Umar Alharaky
 
Data Science Introduction
Gang Tao
 
Social media with big data analytics
Universiti Technologi Malaysia (UTM)
 
5.1 mining data streams
Krish_ver2
 
Introduction to dataset
datamantra
 
OLAP & DATA WAREHOUSE
Zalpa Rathod
 

Similar to Intro to big data and applications - day 1 (20)

PPTX
Introduction to Big Data
Akshata Humbe
 
PPTX
BIG DATA INTRO , bigdata_intro , Hadoop PPT
johnnyripper
 
PPTX
Chapter 1 big data
Prof .Pragati Khade
 
DOCX
BIGDATAPrepared ByMuhammad Abrar UddinIntrodu.docx
tangyechloe
 
DOCX
Data and Information.docx
swarna627082
 
PPTX
ppt final.pptx
kalai75
 
PDF
What's the Big Deal About Big Data?
Logi Analytics
 
DOCX
Content1. Introduction2. What is Big Data3. Characte.docx
dickonsondorris
 
PPTX
Big data ppt
Nasrin Hussain
 
PPTX
bigdata introduction for students pg msc
DharaniMani4
 
PDF
Introduction to Big Data Analytics Unit 1 .pdf
MadhumithaN28
 
PPTX
Big Data
Rohit Jain
 
PPTX
Introduction to Big Data
Umair Shafique
 
PPTX
Lecture #03
Konpal Darakshan
 
PDF
Unit No2 Introduction to big data.pdf
Ranjeet Bhalshankar
 
PPTX
Big data
RameshwariPatil3
 
DOCX
Introduction to big data – convergences.
saranya270513
 
PDF
Bigdatappt 140225061440-phpapp01
nayanbhatia2
 
PPTX
Big data Presentation
Aswadmehar
 
PPTX
Big Data Analytics
MrsSSumathiIT
 
Introduction to Big Data
Akshata Humbe
 
BIG DATA INTRO , bigdata_intro , Hadoop PPT
johnnyripper
 
Chapter 1 big data
Prof .Pragati Khade
 
BIGDATAPrepared ByMuhammad Abrar UddinIntrodu.docx
tangyechloe
 
Data and Information.docx
swarna627082
 
ppt final.pptx
kalai75
 
What's the Big Deal About Big Data?
Logi Analytics
 
Content1. Introduction2. What is Big Data3. Characte.docx
dickonsondorris
 
Big data ppt
Nasrin Hussain
 
bigdata introduction for students pg msc
DharaniMani4
 
Introduction to Big Data Analytics Unit 1 .pdf
MadhumithaN28
 
Big Data
Rohit Jain
 
Introduction to Big Data
Umair Shafique
 
Lecture #03
Konpal Darakshan
 
Unit No2 Introduction to big data.pdf
Ranjeet Bhalshankar
 
Introduction to big data – convergences.
saranya270513
 
Bigdatappt 140225061440-phpapp01
nayanbhatia2
 
Big data Presentation
Aswadmehar
 
Big Data Analytics
MrsSSumathiIT
 
Ad

Recently uploaded (20)

PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PPT
Growth of Public Expendituuure_55423.ppt
NavyaDeora
 
PDF
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
PPTX
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PDF
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
PDF
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
PPTX
b6057ea5-8e8c-4415-90c0-ed8e9666ffcd.pptx
Anees487379
 
PPTX
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PDF
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
PDF
Copia de Strategic Roadmap Infographics by Slidesgo.pptx (1).pdf
ssuserd4c6911
 
PDF
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
PPTX
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
PDF
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
PDF
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PPTX
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
PPTX
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
PPTX
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
Growth of Public Expendituuure_55423.ppt
NavyaDeora
 
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
b6057ea5-8e8c-4415-90c0-ed8e9666ffcd.pptx
Anees487379
 
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
Copia de Strategic Roadmap Infographics by Slidesgo.pptx (1).pdf
ssuserd4c6911
 
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
Ad

Intro to big data and applications - day 1