SlideShare a Scribd company logo
Wen Phan
Introduction to GPUs for
Machine Learning
Agenda
• Context and Why GPUs?
– Matrix Multiplication Example
• CUDA
• GPU and Machine Learning
– Deep Learning
– Parallel Computing: GBM, GLM
• GPU-Enabled H2O
• Getting Started
Need for More Compute
• Lots of Data
• Complex Architectures
• Many Models
Historic Ways for More Compute
• Faster Clock Rates
• Multi-Core
• Distributed Computing
CPU Trends
Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten,
dotted line extrapolations by C. Moore
Distributed Computing
Why GPUs?
GPU Accelerated Computing
GPUCPU
nVIDIA
GPUs for Parallel Tasks
Traditional CPUs are
not economically feasible
2.3 PFlops 7000 homes
7.0
Megawatts
7.0
Megawatts
CPU
Optimized for
Serial Tasks
GPU Accelerator
Optimized for Many
Parallel Tasks
10x performance/socket
> 5x energy efficiency
Era of GPU-accelerated
computing is here
nVIDIA
GPU Devotes More Transistors to Data Processing
CUDA	C	Programming	Guide
CPU VS GPU
https://videocardz.com/39721/nvidia-geforce-gtx-titan-released
Latency Versus Throughput
• Latency: Time to do a task.
• Throughput: Number of tasks per unit time.
• Fictitious Example:
– CPU
• Latency: 1 ns per task
• Throughput: (1 task per ns) x (6 cores) = 6 task per ns
– GPU
• Latency: 10 ns per task
• Throughput: (0.1 task per ns) x (2000 cores) = 200 task per ns
• CPUs are latency optimized; GPUs are throughput optimized
Intro to Machine Learning for GPUs
NVIDIA Latest GPUs
http://www.anandtech.com/show/11172/nvidia-unveils-geforce-gtx-1080-ti-next-week-699
CUDA	C	Programming	Guide
Matrix Multiplication
Matrix Multiplication
2
4 A
3
5
m ⇥ k
2
4 B
3
5
k ⇥ n
=
2
4 C
3
5
m ⇥ n
Matrix Multiplication
2
6
6
6
6
6
4
a1,1 a1,2 a1,3 . . . a1,k
a2,1 a2,2 a2,3 . . . a2,k
a3,1 a3,2 a3,3 . . . a3,k
...
...
...
...
...
am,1 am,2 am,3 . . . am,k
3
7
7
7
7
7
5
A
2
6
6
6
6
6
4
b1,1 b1,2 b1,3 . . . b1,n
b2,1 b2,2 b2,3 . . . b2,n
b3,1 b3,2 b3,3 . . . b3,n
...
...
...
...
...
bk,1 bk,2 bk,3 . . . bk,n
3
7
7
7
7
7
5
B
=
2
6
6
6
6
6
4
c1,1 c1,2 c1,3 . . . c1,n
c2,1 c2,2 c2,3 . . . c2,n
c3,1 c3,2 c3,3 . . . c3,n
...
...
...
...
...
cm,1 cm,2 cm,3 . . . cm,n
3
7
7
7
7
7
5
C
ci,j =
kX
h=1
ai,hbh,j
CUDA
CUDA
• Historically, GPUs were used for, well, graphics processing. But, people realized that the fine-
grained parallelism inherently in GPU architecture could be exploited for general purpose
computing.
• CUDA (Compute Unified Device Architecture)
– Parallel computing platform
– Programming model and API
– Allows enabled GPUs for general purpose processing
Speed Up Parallelizable Code
Application Code
GPU
Use GPU to
Parallelize
Compute-Intensive
Functions
CPU
Rest of Sequential
CPU Code
nVIDIA
Matrix Multiplication
CUDA	C	Programming	Guide
CUDA Matrix Multiplication
CUDA	C	Programming	Guide
CPU
GPU
CPU	
Memory
GPU	
Memory
Allocate Memory and Copy to GPU (Device)
CUDA	C	Programming	Guide
CPU
GPU
CPU	
Memory
GPU	
Memory
Invoke Kernel (GPU Program)
CUDA	C	Programming	Guide
CPU
GPU
CPU	
Memory
GPU	
Memory
CUDA	C	Programming	Guide
CUDA	C	Programming	Guide
CUDA	C	Programming	Guide
CUDA	C	Programming	Guide
Matrix Multiplication Kernel
CUDA	C	Programming	Guide
Free Memory
CUDA	C	Programming	Guide
CPU
GPU
CPU	
Memory
GPU	
Memory
CUDA Ecosystem
SC12	Demo:	Using	CUDA	Library	to	accelerate	applications
SC12	Demo:	Using	CUDA	Library	to	accelerate	applications
SC12	Demo:	Using	CUDA	Library	to	accelerate	applications
GPUs and Machine
Learning
GPUs and Machine Learning
• Poster Child: Deep Learning
• Parallel Computing
– Model Parallelism
– Data Parallelism
– Training Parallelism
Deep Learning
Multi-Layer Perceptron Neural Network
Efron	and	Hastie.	Computer	Age	Statistical	Inference.
MNIST
MNIST	Database
Image as a Tensor
TensorFlow
Training
TensorFlow
Supervised Learning
TensorFlow
Neuron
Activation Functions
Efron	and	Hastie.	Computer	Age	Statistical	Inference.
Layer of Neurons
Layer of Neurons
Matrix Multiplication!
Hidden Layers
Convolutional Neural Networks
• Leverages the fact that data has spatial structure
– Add idea of locality
• Tremendous success with computer vision tasks
• “Put deep learning on the map”
Frobenius Inner Product
X =
2
4
2 2 1
2 0 1
2 1 2
3
5 , K =
2
4
1 1 1
1 1 1
1 1 1
3
5
hX, KiF =
X
i,j
xi,jki,j
= (2 ⇤ 1) + (2 ⇤ 1) + (1 ⇤ 1) + (2 ⇤ 1) + (0 ⇤ 1) + (1 ⇤ 1) + (2 ⇤ 1) + (1 ⇤ 1) + (2 ⇤ 1)
= 2 + 2 + 1 2 + 0 1 2 + 1 + 2
= 3
Convolution
X =
2
6
6
6
6
6
6
6
6
4
0 0 0 0 0 0 0
0 0 2 1 0 2 0
0 1 2 2 1 0 0
0 0 2 0 1 1 0
0 1 2 1 2 1 0
0 2 0 0 2 1 0
0 0 0 0 0 0 0
3
7
7
7
7
7
7
7
7
5
K =
2
4
1 1 1
1 1 1
1 1 1
3
5
A =
2
6
6
6
6
4
1 4 0 4 1
3 4 1 4 1
4 9 3 5 0
3 0 2 5 0
5 2 3 5 2
3
7
7
7
7
5
Convolution
X
d
X
i,j
xi,j,dki,j,d
Andrej	Karpathy.	CS231n	Convolutional	Neural	Networks	for	Visual	Recognition.
Convolution Layer
Andrej	Karpathy.	CS231n	Convolutional	Neural	Networks	for	Visual	Recognition.
Convolutional Layer
w
d
h
g
0
@
X
d
X
i,j
xi,j,dki,j,d + b
1
A
X
Kf
X
d
X
i,j
xi,j,dki,j,d
¯
b
g(·)
¯
Convolutional Layer
w
d
h
X
d
X
i,j
xi,j,dki,j,d
b
g
0
@
X
d
X
i,j
xi,j,dki,j,d + b
1
A
g(·)
f
X
K
Convolutional Layer
w
d
h
X
Input Image Activation Maps
Convolution
Convolutional Layer
• f = receptive field
(filter size)
• p = padding
• s = stride
• m = number of filters
Input Volume Output Volume
Convolution
wI
hI
dI
wO
dO
hO
wO =
wI f + 2p
s
+ 1
hO =
wI f + 2p
s
+ 1
dO = m
Example: LeNet
Inception ResNet V2
ImageNet
cuDNN
cuDNN Optimization
CUDA and cuDNN Speed Up
ImageNet Results
http://kaiminghe.com/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
ImageNet Entries Using GPUs
https://devblogs.nvidia.com/parallelforall/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/
Deep Water: Next-Gen Distributed Deep Learning
One Interface - GPU Enabled - Significant Performance Gains
Inherits All H2O Properties in Scalability, Ease of Use and Deployment
Recurrent Neural Networks
enabling natural language
processing, sequences, time series,
and more
Convolutional Neural Networks
enabling Image, video, speech
recognition
Hybrid Neural Network Architectures
enabling speech to text translation,
image captioning, scene parsing and
more
H2O integrates with existing GPU
backends for significant performance
gains
H2O Deep Learning Algo
Intro to Machine Learning for GPUs
Parallel Computing
Parallel Computing
• Model Parallelism: Split up a single model
Random Forest
T1(x) T2(x) T3(x) TB(x)
ˆy = f(x; T1, . . . , TB)
Random Forest
T1(x) T2(x) T3(x) TB(x)
Deep Learning Model Parallelism
Large	Scale	Distributed	Deep	Networks.	J.	Dean,	et.	al.
Parallel Computing
• Model Parallelism: Split up a single model
• Data Parallelism: Split up data to train a single model
Deep Learning Data Parallelism
Large	Scale	Distributed	Deep	Networks.	J.	Dean,	et.	al.
H2O Deep Learning Architecture
Gradient Boosting Machine (GBM)
T1(x) T2(x) T3(x) TM (x)
fM (x) =
MX
i=1
Ti(x)
Gradient Boosting Machine (GBM)
T1(x) T2(x) T3(x) TM (x)
fi(x) = fi 1(x) + Ti(x; ˆ⇥i)
Gradient Boosting Machine (GBM)
T1(x) T2(x) T3(x) TM (x)
Decision Tree
R1
R2
Hastie,	Tibshirani,	Friedman.	Elements	of	Statistical	Learning
GBM Data Parallelism
{Xi; ti}?
GBM Data Parallelism
1
2
K
X = {X1, . . . , XK}
math (X1)
math (X2)
math (XK)
{Xi; ti} = f(math (X1) , . . . , math (XK))
GBM Data Parallelism
1
2
K
X = {X1, . . . , XK}
math (X1)
math (X2)
math (XK)
{Xi; ti} = f(math (X1) , . . . , math (XK))
Full	Data	Parallelism	for	Each	Level	of	Tree	Growth!
CPU Cluster
GPU Cluster
• Level GPUs to accelerate processing and fine-grain parallelism on each node
CPU
GPU
math (X1) math (X2) math (XK)math (X3)
GBM on GPU
T1(x) T2(x) T3(x) TM (x)
Application Code
GPU
Use GPU to
Compute-Intensive
Functions
CPU
Rest of Sequential
CPU Code
H2O XGBoost
Parallel Computing
• Model Parallelism: Split up a single model
• Data Parallelism: Split up data to train a single model
• Training Parallelism: Split up different parts of the training process
– Ensemble Base Learners
– Cross-Validation
– Hyperparameters
Linear Regression
Hastie,	Tibshirani,	Friedman.	Elements	of	Statistical	Learning
X =
2
6
6
6
4
x1,1 x1,2 . . . x1,p
x2,1 x2,2 . . . x2,p
...
...
...
...
xn,1 xn,2 . . . xn,p
3
7
7
7
5
minimize
nX
i=1
0
@yi 0
pX
j=1
xi,j j
1
A
2
minimize ||y X ||2
2
Ridge Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize
0,
||y X ||2
2
subject to || ||2
2  t
Ridge Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize ||y X ||2
2 + || ||2
Lasso Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize
0,
||y X ||2
2
subject to || ||1  t
Lasso Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize ||y X ||2
2 + || ||1
Elastic Net Regression
minimize ||y X ||2
2 +
✓
↵|| ||1 +
1
2
(1 ↵)|| ||2
2
◆
Single Node GPU
CPU
GPU
Single Node Multi-GPU
CPU
GPU
Elastic Net Regression Training Parallelism
J( ; , ↵) = ||y X ||2
2 +
✓
↵|| ||1 +
1
2
(1 ↵)|| ||2
2
◆
minimize J( ; i, ↵1) minimize J( ; i, ↵2) minimize J( ; i, ↵G)
GPU1 GPU2 GPUG
i 2 {0, . . . , 1}
Elastic Net Regression Training Parallelism
GPU-Enabled H2O
DGX-1
Intro to Machine Learning for GPUs
Intro to Machine Learning for GPUs
Intro to Machine Learning for GPUs
GPU Open Analytics Initiative
Intro to Machine Learning for GPUs
GTC 2017
GTC 2017
Getting Started
CUDA
https://developer.nvidia.com/cuda-downloads
cuDNN
https://developer.nvidia.com/cudnn
Try It Today
Questions?

More Related Content

What's hot (20)

PDF
한컴MDS_NVIDIA Jetson Platform
HANCOM MDS
 
PPTX
Nvidia (History, GPU Architecture and New Pascal Architecture)
Saksham Tanwar
 
PDF
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
PPTX
Gpu
hashim102
 
PDF
If AMD Adopted OMI in their EPYC Architecture
Allan Cantle
 
PDF
KI und Predictive Maintenance am Beispiel von DB Cargo
Inspirient
 
PDF
GPU - An Introduction
Dhan V Sagar
 
PPTX
Graphics processing unit (GPU)
Amal R
 
PPTX
Performance Optimizations in Apache Impala
Cloudera, Inc.
 
PDF
Delivering the Future of High-Performance Computing
AMD
 
PPTX
Tensor Processing Unit (TPU)
Antonios Katsarakis
 
PDF
GPU Programming
William Cunningham
 
PDF
GPU
Hamid Bluri
 
PDF
7nm "Navi" GPU - A GPU Built For Performance
AMD
 
PPTX
GPU Computing
Khan Mostafa
 
PPTX
GPU Architecture NVIDIA (GTX GeForce 480)
Fatima Qayyum
 
PPTX
Snapdragon
Kaushal Kabra
 
PPTX
Graphic Processing Unit
Kamran Ashraf
 
PPTX
GRAPHICS PROCESSING UNIT (GPU)
self employed
 
한컴MDS_NVIDIA Jetson Platform
HANCOM MDS
 
Nvidia (History, GPU Architecture and New Pascal Architecture)
Saksham Tanwar
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
If AMD Adopted OMI in their EPYC Architecture
Allan Cantle
 
KI und Predictive Maintenance am Beispiel von DB Cargo
Inspirient
 
GPU - An Introduction
Dhan V Sagar
 
Graphics processing unit (GPU)
Amal R
 
Performance Optimizations in Apache Impala
Cloudera, Inc.
 
Delivering the Future of High-Performance Computing
AMD
 
Tensor Processing Unit (TPU)
Antonios Katsarakis
 
GPU Programming
William Cunningham
 
7nm "Navi" GPU - A GPU Built For Performance
AMD
 
GPU Computing
Khan Mostafa
 
GPU Architecture NVIDIA (GTX GeForce 480)
Fatima Qayyum
 
Snapdragon
Kaushal Kabra
 
Graphic Processing Unit
Kamran Ashraf
 
GRAPHICS PROCESSING UNIT (GPU)
self employed
 

Viewers also liked (7)

PPT
GPU Accelerated Machine Learning
Sri Ambati
 
PDF
Using H2O AutoML for Kaggle Competitions
Sri Ambati
 
PPTX
Get Competitive with Driverless AI
Sri Ambati
 
PDF
H2O.ai's Driverless AI
Sri Ambati
 
PDF
Scalable Automatic Machine Learning in H2O
Sri Ambati
 
PPTX
AI Development with H2O.ai
Yalçın Yenigün
 
PDF
スタディサプリを支えるデータ分析基盤 ~設計の勘所と利活用事例~
Tetsuo Yamabe
 
GPU Accelerated Machine Learning
Sri Ambati
 
Using H2O AutoML for Kaggle Competitions
Sri Ambati
 
Get Competitive with Driverless AI
Sri Ambati
 
H2O.ai's Driverless AI
Sri Ambati
 
Scalable Automatic Machine Learning in H2O
Sri Ambati
 
AI Development with H2O.ai
Yalçın Yenigün
 
スタディサプリを支えるデータ分析基盤 ~設計の勘所と利活用事例~
Tetsuo Yamabe
 
Ad

Similar to Intro to Machine Learning for GPUs (20)

PDF
Introduction to GPUs for Machine Learning
Sri Ambati
 
PDF
GPU Accelerated Deep Learning for CUDNN V2
NVIDIA
 
PDF
Invited Lecture on GPUs and Distributed Deep Learning at Uppsala University
Jim Dowling
 
PPTX
GPU and Deep learning best practices
Lior Sidi
 
PPTX
Jeff Johnson, Research Engineer, Facebook at MLconf NYC
MLconf
 
PDF
Dl2 computing gpu
Armando Vieira
 
PDF
Introduction to multi gpu deep learning with DIGITS 2 - Mike Wang
PAPIs.io
 
PDF
Raul sena - Apresentação Analiticsemtudo - Scientific Applications using GPU
Eduardo Gaspar
 
PDF
Netflix machine learning
Amer Ather
 
PDF
[db analytics showcase Sapporo 2018] B33 H2O4GPU and GoAI: harnessing the pow...
Insight Technology, Inc.
 
PDF
A Platform for Accelerating Machine Learning Applications
NVIDIA Taiwan
 
PDF
CUDA-Python and RAPIDS for blazing fast scientific computing
inside-BigData.com
 
PDF
Tutorial on Deep Learning
inside-BigData.com
 
PDF
State-Of-The Art Machine Learning Algorithms and How They Are Affected By Nea...
inside-BigData.com
 
PDF
Hardware for Deep Learning AI ML CNN.pdf
AhmedSaeed115917
 
PDF
GPU Computing for Data Science
Domino Data Lab
 
PPTX
Intro to GPGPU with CUDA (DevLink)
Rob Gillen
 
PPTX
Deep Learning
Büşra İçöz
 
PDF
Using GPUs to handle Big Data with Java by Adam Roberts.
J On The Beach
 
PDF
Enabling Artificial Intelligence - Alison B. Lowndes
WithTheBest
 
Introduction to GPUs for Machine Learning
Sri Ambati
 
GPU Accelerated Deep Learning for CUDNN V2
NVIDIA
 
Invited Lecture on GPUs and Distributed Deep Learning at Uppsala University
Jim Dowling
 
GPU and Deep learning best practices
Lior Sidi
 
Jeff Johnson, Research Engineer, Facebook at MLconf NYC
MLconf
 
Dl2 computing gpu
Armando Vieira
 
Introduction to multi gpu deep learning with DIGITS 2 - Mike Wang
PAPIs.io
 
Raul sena - Apresentação Analiticsemtudo - Scientific Applications using GPU
Eduardo Gaspar
 
Netflix machine learning
Amer Ather
 
[db analytics showcase Sapporo 2018] B33 H2O4GPU and GoAI: harnessing the pow...
Insight Technology, Inc.
 
A Platform for Accelerating Machine Learning Applications
NVIDIA Taiwan
 
CUDA-Python and RAPIDS for blazing fast scientific computing
inside-BigData.com
 
Tutorial on Deep Learning
inside-BigData.com
 
State-Of-The Art Machine Learning Algorithms and How They Are Affected By Nea...
inside-BigData.com
 
Hardware for Deep Learning AI ML CNN.pdf
AhmedSaeed115917
 
GPU Computing for Data Science
Domino Data Lab
 
Intro to GPGPU with CUDA (DevLink)
Rob Gillen
 
Deep Learning
Büşra İçöz
 
Using GPUs to handle Big Data with Java by Adam Roberts.
J On The Beach
 
Enabling Artificial Intelligence - Alison B. Lowndes
WithTheBest
 
Ad

More from Sri Ambati (20)

PDF
H2O Label Genie Starter Track - Support Presentation
Sri Ambati
 
PDF
H2O.ai Agents : From Theory to Practice - Support Presentation
Sri Ambati
 
PDF
H2O Generative AI Starter Track - Support Presentation Slides.pdf
Sri Ambati
 
PDF
H2O Gen AI Ecosystem Overview - Level 1 - Slide Deck
Sri Ambati
 
PDF
An In-depth Exploration of Enterprise h2oGPTe Slide Deck
Sri Ambati
 
PDF
Intro to Enterprise h2oGPTe Presentation Slides
Sri Ambati
 
PDF
Enterprise h2o GPTe Learning Path Slide Deck
Sri Ambati
 
PDF
H2O Wave Course Starter - Presentation Slides
Sri Ambati
 
PDF
Large Language Models (LLMs) - Level 3 Slides
Sri Ambati
 
PDF
Data Science and Machine Learning Platforms (2024) Slides
Sri Ambati
 
PDF
Data Prep for H2O Driverless AI - Slides
Sri Ambati
 
PDF
H2O Cloud AI Developer Services - Slides (2024)
Sri Ambati
 
PDF
LLM Learning Path Level 2 - Presentation Slides
Sri Ambati
 
PDF
LLM Learning Path Level 1 - Presentation Slides
Sri Ambati
 
PDF
Hydrogen Torch - Starter Course - Presentation Slides
Sri Ambati
 
PDF
Presentation Resources - H2O Gen AI Ecosystem Overview - Level 2
Sri Ambati
 
PDF
H2O Driverless AI Starter Course - Slides and Assignments
Sri Ambati
 
PPTX
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
PDF
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
Sri Ambati
 
PPTX
Generative AI Masterclass - Model Risk Management.pptx
Sri Ambati
 
H2O Label Genie Starter Track - Support Presentation
Sri Ambati
 
H2O.ai Agents : From Theory to Practice - Support Presentation
Sri Ambati
 
H2O Generative AI Starter Track - Support Presentation Slides.pdf
Sri Ambati
 
H2O Gen AI Ecosystem Overview - Level 1 - Slide Deck
Sri Ambati
 
An In-depth Exploration of Enterprise h2oGPTe Slide Deck
Sri Ambati
 
Intro to Enterprise h2oGPTe Presentation Slides
Sri Ambati
 
Enterprise h2o GPTe Learning Path Slide Deck
Sri Ambati
 
H2O Wave Course Starter - Presentation Slides
Sri Ambati
 
Large Language Models (LLMs) - Level 3 Slides
Sri Ambati
 
Data Science and Machine Learning Platforms (2024) Slides
Sri Ambati
 
Data Prep for H2O Driverless AI - Slides
Sri Ambati
 
H2O Cloud AI Developer Services - Slides (2024)
Sri Ambati
 
LLM Learning Path Level 2 - Presentation Slides
Sri Ambati
 
LLM Learning Path Level 1 - Presentation Slides
Sri Ambati
 
Hydrogen Torch - Starter Course - Presentation Slides
Sri Ambati
 
Presentation Resources - H2O Gen AI Ecosystem Overview - Level 2
Sri Ambati
 
H2O Driverless AI Starter Course - Slides and Assignments
Sri Ambati
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
Sri Ambati
 
Generative AI Masterclass - Model Risk Management.pptx
Sri Ambati
 

Recently uploaded (20)

PPTX
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PDF
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PDF
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
PDF
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
July Patch Tuesday
Ivanti
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PPTX
MSP360 Backup Scheduling and Retention Best Practices.pptx
MSP360
 
PDF
Python basic programing language for automation
DanialHabibi2
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PPTX
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
July Patch Tuesday
Ivanti
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
MSP360 Backup Scheduling and Retention Best Practices.pptx
MSP360
 
Python basic programing language for automation
DanialHabibi2
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 

Intro to Machine Learning for GPUs