Apache Spark 
In-Memory Data Processing 
September 2014 Meetup 
Organized by Big Data Hyderabad Meetup Group. 
http://www.meetup.com/Big-Data-Hyderabad/ 
Rahul Jain 
@rahuldausa
Agenda 
• Why Spark 
• Introduction 
• Basics 
• Hands-on 
– Installation 
– Examples 
2
Quick Questionnaire 
How many people know/work on Scala ? 
How many people know/work on Python ? 
How many people know/heard/are using Spark ?
Why Spark ? 
• Most of Machine Learning Algorithms are iterative because each iteration 
can improve the results 
• With Disk based approach each iteration’s output is written to disk making 
it slow 
Hadoop execution flow 
Spark execution flow 
http://www.wiziq.com/blog/hype-around-apache-spark/
About Apache Spark 
• Initially started at UC Berkeley in 2009 
• Fast and general purpose cluster computing system 
• 10x (on disk) - 100x (In-Memory) faster 
• Most popular for running Iterative Machine Learning Algorithms. 
• Provides high level APIs in 
• Java 
• Scala 
• Python 
• Integration with Hadoop and its eco-system and can read existing data. 
• http://spark.apache.org/
Spark Stack 
• Spark SQL 
– For SQL and unstructured data 
processing 
• MLib 
– Machine Learning Algorithms 
• GraphX 
– Graph Processing 
• Spark Streaming 
– stream processing of live data 
streams 
http://spark.apache.org
Execution Flow 
http://spark.apache.org/docs/latest/cluster-overview.html
Terminology 
• Application Jar 
– User Program and its dependencies except Hadoop & Spark Jars bundled into a 
Jar file 
• Driver Program 
– The process to start the execution (main() function) 
• Cluster Manager 
– An external service to manage resources on the cluster (standalone manager, 
YARN, Apache Mesos) 
• Deploy Mode 
– cluster : Driver inside the cluster 
– client : Driver outside of Cluster
Terminology (contd.) 
• Worker Node : Node that run the application program in cluster 
• Executor 
– Process launched on a worker node, that runs the Tasks 
– Keep data in memory or disk storage 
• Task : A unit of work that will be sent to executor 
• Job 
– Consists multiple tasks 
– Created based on a Action 
• Stage : Each Job is divided into smaller set of tasks called Stages that is sequential 
and depend on each other 
• SparkContext : 
– represents the connection to a Spark cluster, and can be used to create RDDs, 
accumulators and broadcast variables on that cluster.
Resilient Distributed Dataset (RDD) 
• Resilient Distributed Dataset (RDD) is a basic Abstraction in Spark 
• Immutable, Partitioned collection of elements that can be operated in parallel 
• Basic Operations 
– map 
– filter 
– persist 
• Multiple Implementation 
– PairRDDFunctions : RDD of Key-Value Pairs, groupByKey, Join 
– DoubleRDDFunctions : Operation related to double values 
– SequenceFileRDDFunctions : Operation related to SequenceFiles 
• RDD main characteristics: 
– A list of partitions 
– A function for computing each split 
– A list of dependencies on other RDDs 
– Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) 
– Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file) 
• Custom RDD can be also implemented (by overriding functions)
Cluster Deployment 
• Standalone Deploy Mode 
– simplest way to deploy Spark on a private cluster 
• Amazon EC2 
– EC2 scripts are available 
– Very quick launching a new cluster 
• Apache Mesos 
• Hadoop YARN
Monitoring
Monitoring – Stages
Monitoring – Stages
Let’s try some examples…
Spark Shell 
./bin/spark-shell --master local[2] 
The --master option specifies the master URL for a distributed cluster, or local to run 
locally with one thread, or local[N] to run locally with N threads. You should start by 
using local for testing. 
./bin/run-example SparkPi 10 
This will run 10 iterations to calculate the value of Pi
Basic operations… 
scala> val textFile = sc.textFile("README.md") 
textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3 
scala> textFile.count() // Number of items in this RDD 
ees0: Long = 126 
scala> textFile.first() // First item in this RDD 
res1: String = # Apache Spark 
scala> val linesWithSpark = textFile.filter(line => 
line.contains("Spark")) 
linesWithSpark: spark.RDD[String] = spark.FilteredRDD@7dd4af09 
Simplier - Single liner: 
scala> textFile.filter(line => line.contains("Spark")).count() 
// How many lines contain "Spark"? 
res3: Long = 15
Map - Reduce 
scala> textFile.map(line => line.split(" ").size).reduce((a, b) 
=> if (a > b) a else b) 
res4: Long = 15 
scala> import java.lang.Math 
scala> textFile.map(line => line.split(" ").size).reduce((a, b) 
=> Math.max(a, b)) 
res5: Int = 15 
scala> val wordCounts = textFile.flatMap(line => line.split(" 
")).map(word => (word, 1)).reduceByKey((a, b) => a + b) 
wordCounts: spark.RDD[(String, Int)] = 
spark.ShuffledAggregatedRDD@71f027b8 
wordCounts.collect()
With Caching… 
scala> linesWithSpark.cache() 
res7: spark.RDD[String] = spark.FilteredRDD@17e51082 
scala> linesWithSpark.count() 
res8: Long = 15 
scala> linesWithSpark.count() 
res9: Long = 15
With HDFS… 
val lines = spark.textFile(“hdfs://...”) 
val errors = lines.filter(line => line.startsWith(“ERROR”)) 
println(Total errors: + errors.count())
Standalone (Scala) 
/* SimpleApp.scala */ 
import org.apache.spark.SparkContext 
import org.apache.spark.SparkContext._ 
import org.apache.spark.SparkConf 
object SimpleApp { 
def main(args: Array[String]) { 
val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your 
system 
val conf = new SparkConf().setAppName("Simple Application") 
.setMaster(“local") 
val sc = new SparkContext(conf) 
val logData = sc.textFile(logFile, 2).cache() 
val numAs = logData.filter(line => line.contains("a")).count() 
val numBs = logData.filter(line => line.contains("b")).count() 
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs)) 
} 
}
Standalone (Java) 
/* SimpleApp.java */ 
import org.apache.spark.api.java.*; 
import org.apache.spark.SparkConf; 
import org.apache.spark.api.java.function.Function; 
public class SimpleApp { 
public static void main(String[] args) { 
String logFile = "YOUR_SPARK_HOME/README.md"; // Should be some file on your system 
SparkConf conf = new SparkConf().setAppName("Simple Application").setMaster("local"); 
JavaSparkContext sc = new JavaSparkContext(conf); 
JavaRDD<String> logData = sc.textFile(logFile).cache(); 
long numAs = logData.filter(new Function<String, Boolean>() { 
public Boolean call(String s) { return s.contains("a"); } 
}).count(); 
long numBs = logData.filter(new Function<String, Boolean>() { 
public Boolean call(String s) { return s.contains("b"); } 
}).count(); 
System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs); 
} 
}
Standalone (Python) 
"""SimpleApp.py""" 
from pyspark import SparkContext 
logFile = "YOUR_SPARK_HOME/README.md" # Should be some file on your 
system 
sc = SparkContext("local", "Simple App") 
logData = sc.textFile(logFile).cache() 
numAs = logData.filter(lambda s: 'a' in s).count() 
numBs = logData.filter(lambda s: 'b' in s).count() 
print "Lines with a: %i, lines with b: %i" % (numAs, numBs)
Job Submission 
$SPARK_HOME/bin/spark-submit  
--class "SimpleApp"  
--master local[4]  
target/scala-2.10/simple-project_2.10-1.0.jar
Configuration 
val conf = new SparkConf() 
.setMaster("local") 
.setAppName("CountingSheep") 
.set("spark.executor.memory", "1g") 
val sc = new SparkContext(conf)
Questions ? 
26
Thanks! 
@rahuldausa on twitter and slideshare 
http://www.linkedin.com/in/rahuldausa 
27 
Join us @ For Solr, Lucene, Elasticsearch, Machine Learning, IR 
http://www.meetup.com/Hyderabad-Apache-Solr-Lucene-Group/ 
http://www.meetup.com/DataAnalyticsGroup/ 
Join us @ For Hadoop, Spark, Cascading, Scala, NoSQL, Crawlers and all cutting edge technologies. 
http://www.meetup.com/Big-Data-Hyderabad/

Introduction to Apache Spark

  • 1.
    Apache Spark In-MemoryData Processing September 2014 Meetup Organized by Big Data Hyderabad Meetup Group. http://www.meetup.com/Big-Data-Hyderabad/ Rahul Jain @rahuldausa
  • 2.
    Agenda • WhySpark • Introduction • Basics • Hands-on – Installation – Examples 2
  • 3.
    Quick Questionnaire Howmany people know/work on Scala ? How many people know/work on Python ? How many people know/heard/are using Spark ?
  • 4.
    Why Spark ? • Most of Machine Learning Algorithms are iterative because each iteration can improve the results • With Disk based approach each iteration’s output is written to disk making it slow Hadoop execution flow Spark execution flow http://www.wiziq.com/blog/hype-around-apache-spark/
  • 5.
    About Apache Spark • Initially started at UC Berkeley in 2009 • Fast and general purpose cluster computing system • 10x (on disk) - 100x (In-Memory) faster • Most popular for running Iterative Machine Learning Algorithms. • Provides high level APIs in • Java • Scala • Python • Integration with Hadoop and its eco-system and can read existing data. • http://spark.apache.org/
  • 6.
    Spark Stack •Spark SQL – For SQL and unstructured data processing • MLib – Machine Learning Algorithms • GraphX – Graph Processing • Spark Streaming – stream processing of live data streams http://spark.apache.org
  • 7.
  • 8.
    Terminology • ApplicationJar – User Program and its dependencies except Hadoop & Spark Jars bundled into a Jar file • Driver Program – The process to start the execution (main() function) • Cluster Manager – An external service to manage resources on the cluster (standalone manager, YARN, Apache Mesos) • Deploy Mode – cluster : Driver inside the cluster – client : Driver outside of Cluster
  • 9.
    Terminology (contd.) •Worker Node : Node that run the application program in cluster • Executor – Process launched on a worker node, that runs the Tasks – Keep data in memory or disk storage • Task : A unit of work that will be sent to executor • Job – Consists multiple tasks – Created based on a Action • Stage : Each Job is divided into smaller set of tasks called Stages that is sequential and depend on each other • SparkContext : – represents the connection to a Spark cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.
  • 10.
    Resilient Distributed Dataset(RDD) • Resilient Distributed Dataset (RDD) is a basic Abstraction in Spark • Immutable, Partitioned collection of elements that can be operated in parallel • Basic Operations – map – filter – persist • Multiple Implementation – PairRDDFunctions : RDD of Key-Value Pairs, groupByKey, Join – DoubleRDDFunctions : Operation related to double values – SequenceFileRDDFunctions : Operation related to SequenceFiles • RDD main characteristics: – A list of partitions – A function for computing each split – A list of dependencies on other RDDs – Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) – Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file) • Custom RDD can be also implemented (by overriding functions)
  • 11.
    Cluster Deployment •Standalone Deploy Mode – simplest way to deploy Spark on a private cluster • Amazon EC2 – EC2 scripts are available – Very quick launching a new cluster • Apache Mesos • Hadoop YARN
  • 12.
  • 13.
  • 14.
  • 15.
    Let’s try someexamples…
  • 16.
    Spark Shell ./bin/spark-shell--master local[2] The --master option specifies the master URL for a distributed cluster, or local to run locally with one thread, or local[N] to run locally with N threads. You should start by using local for testing. ./bin/run-example SparkPi 10 This will run 10 iterations to calculate the value of Pi
  • 17.
    Basic operations… scala>val textFile = sc.textFile("README.md") textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3 scala> textFile.count() // Number of items in this RDD ees0: Long = 126 scala> textFile.first() // First item in this RDD res1: String = # Apache Spark scala> val linesWithSpark = textFile.filter(line => line.contains("Spark")) linesWithSpark: spark.RDD[String] = spark.FilteredRDD@7dd4af09 Simplier - Single liner: scala> textFile.filter(line => line.contains("Spark")).count() // How many lines contain "Spark"? res3: Long = 15
  • 18.
    Map - Reduce scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b) res4: Long = 15 scala> import java.lang.Math scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b)) res5: Int = 15 scala> val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b) wordCounts: spark.RDD[(String, Int)] = spark.ShuffledAggregatedRDD@71f027b8 wordCounts.collect()
  • 19.
    With Caching… scala>linesWithSpark.cache() res7: spark.RDD[String] = spark.FilteredRDD@17e51082 scala> linesWithSpark.count() res8: Long = 15 scala> linesWithSpark.count() res9: Long = 15
  • 20.
    With HDFS… vallines = spark.textFile(“hdfs://...”) val errors = lines.filter(line => line.startsWith(“ERROR”)) println(Total errors: + errors.count())
  • 21.
    Standalone (Scala) /*SimpleApp.scala */ import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf object SimpleApp { def main(args: Array[String]) { val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system val conf = new SparkConf().setAppName("Simple Application") .setMaster(“local") val sc = new SparkContext(conf) val logData = sc.textFile(logFile, 2).cache() val numAs = logData.filter(line => line.contains("a")).count() val numBs = logData.filter(line => line.contains("b")).count() println("Lines with a: %s, Lines with b: %s".format(numAs, numBs)) } }
  • 22.
    Standalone (Java) /*SimpleApp.java */ import org.apache.spark.api.java.*; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.Function; public class SimpleApp { public static void main(String[] args) { String logFile = "YOUR_SPARK_HOME/README.md"; // Should be some file on your system SparkConf conf = new SparkConf().setAppName("Simple Application").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD<String> logData = sc.textFile(logFile).cache(); long numAs = logData.filter(new Function<String, Boolean>() { public Boolean call(String s) { return s.contains("a"); } }).count(); long numBs = logData.filter(new Function<String, Boolean>() { public Boolean call(String s) { return s.contains("b"); } }).count(); System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs); } }
  • 23.
    Standalone (Python) """SimpleApp.py""" from pyspark import SparkContext logFile = "YOUR_SPARK_HOME/README.md" # Should be some file on your system sc = SparkContext("local", "Simple App") logData = sc.textFile(logFile).cache() numAs = logData.filter(lambda s: 'a' in s).count() numBs = logData.filter(lambda s: 'b' in s).count() print "Lines with a: %i, lines with b: %i" % (numAs, numBs)
  • 24.
    Job Submission $SPARK_HOME/bin/spark-submit --class "SimpleApp" --master local[4] target/scala-2.10/simple-project_2.10-1.0.jar
  • 25.
    Configuration val conf= new SparkConf() .setMaster("local") .setAppName("CountingSheep") .set("spark.executor.memory", "1g") val sc = new SparkContext(conf)
  • 26.
  • 27.
    Thanks! @rahuldausa ontwitter and slideshare http://www.linkedin.com/in/rahuldausa 27 Join us @ For Solr, Lucene, Elasticsearch, Machine Learning, IR http://www.meetup.com/Hyderabad-Apache-Solr-Lucene-Group/ http://www.meetup.com/DataAnalyticsGroup/ Join us @ For Hadoop, Spark, Cascading, Scala, NoSQL, Crawlers and all cutting edge technologies. http://www.meetup.com/Big-Data-Hyderabad/