ABOUT ML
Artificial Neural Networks
 Computational models inspired by the human
brain:
 Algorithms that try to mimic the brain.
 Massively parallel, distributed system, made up of
simple processing units (neurons)
 Synaptic connection strengths among neurons are
used to store the acquired knowledge.
 Knowledge is acquired by the network from its
environment through a learning process
History
 late-1800's - Neural Networks appear as an
analogy to biological systems
 1960's and 70's – Simple neural networks appear
 Fall out of favor because the perceptron is not
effective by itself, and there were no good algorithms
for multilayer nets
 1986 – Backpropagation algorithm appears
 Neural Networks have a resurgence in popularity
 More computationally expensive
Applications of ANNs
 ANNs have been widely used in various domains
for:
 Pattern recognition
 Function approximation
 Associative memory
Properties
 Inputs are flexible
 any real values
 Highly correlated or independent
 Target function may be discrete-valued, real-valued, or
vectors of discrete or real values
 Outputs are real numbers between 0 and 1
 Resistant to errors in the training data
 Long training time
 Fast evaluation
 The function produced can be difficult for humans to
interpret
When to consider neural networks
 Input is high-dimensional discrete or raw-valued
 Output is discrete or real-valued
 Output is a vector of values
 Possibly noisy data
 Form of target function is unknown
 Human readability of the result is not important
Examples:
 Speech phoneme recognition
 Image classification
 Financial prediction
December 24, 2024
Data Mining: Concepts and
Techniques 7
A Neuron (= a perceptron)
 The n-dimensional input vector x is mapped into variable y by
means of the scalar product and a nonlinear function mapping
t
-
f
weighted
sum
Input
vector x
output y
Activation
function
weight
vector w

w0
w1
wn
x0
x1
xn
)
sign(
y
e
For Exampl
n
0
i
t
x
w i
i 
 

Perceptron
 Basic unit in a neural network
 Linear separator
 Parts
 N inputs, x1 ... xn
 Weights for each input, w1 ... wn
 A bias input x0 (constant) and associated weight w0
 Weighted sum of inputs, y = w0x0 + w1x1 + ... + wnxn
 A threshold function or activation function,
i.e 1 if y > t, -1 if y <= t
Artificial Neural Networks (ANN)
 Model is an assembly of
inter-connected nodes
and weighted links
 Output node sums up
each of its input value
according to the weights
of its links
 Compare output node
against some threshold t

X1
X2
X3
Y
Black box
w1
t
Output
node
Input
nodes
w2
w3
)
( t
x
w
I
Y
i
i
i 
 
Perceptron Model
)
( t
x
w
sign
Y
i
i
i 
 
or
Types of connectivity
 Feedforward networks
 These compute a series of
transformations
 Typically, the first layer is the
input and the last layer is the
output.
 Recurrent networks
 These have directed cycles in their
connection graph. They can have
complicated dynamics.
 More biologically realistic.
hidden units
output units
input units
Different Network Topologies
 Single layer feed-forward networks
 Input layer projecting into the output layer
Input Output
layer layer
Single layer
network
Different Network Topologies
 Multi-layer feed-forward networks
 One or more hidden layers. Input projects only
from previous layers onto a layer.
Input Hidden Output
layer layer layer
2-layer or
1-hidden layer
fully connected
network
Different Network Topologies
 Multi-layer feed-forward networks
Input Hidden Output
layer layers layer
Different Network Topologies
 Recurrent networks
 A network with feedback, where some of its
inputs are connected to some of its outputs (discrete
time).
Input Output
layer layer
Recurrent
network
Algorithm for learning ANN
 Initialize the weights (w0, w1, …, wk)
 Adjust the weights in such a way that the output
of ANN is consistent with class labels of training
examples
 Error function:
 Find the weights wi’s that minimize the above error
function
 e.g., gradient descent, backpropagation algorithm
 2
)
,
(
 

i
i
i
i X
w
f
Y
E
Optimizing concave/convex function
 Maximum of a concave function = minimum of a
convex function
Gradient ascent (concave) / Gradient descent (convex)
Gradient ascent rule
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
Decision surface of a perceptron
 Decision surface is a hyperplane
 Can capture linearly separable classes
 Non-linearly separable
 Use a network of them
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
Multi-layer Networks
 Linear units inappropriate
 No more expressive than a single layer
 „ Introduce non-linearity
 Threshold not differentiable
 „ Use sigmoid function
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
December 24, 2024
Data Mining: Concepts and
Techniques 30
Backpropagation
 Iteratively process a set of training tuples & compare the network's
prediction with the actual known target value
 For each training tuple, the weights are modified to minimize the mean
squared error between the network's prediction and the actual target
value
 Modifications are made in the “backwards” direction: from the output
layer, through each hidden layer down to the first hidden layer, hence
“backpropagation”
 Steps
 Initialize weights (to small random #s) and biases in the network
 Propagate the inputs forward (by applying activation function)
 Backpropagate the error (by updating weights and biases)
 Terminating condition (when error is very small, etc.)
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
December 24, 2024
Data Mining: Concepts and
Techniques 32
How A Multi-Layer Neural Network Works?
 The inputs to the network correspond to the attributes measured for
each training tuple
 Inputs are fed simultaneously into the units making up the input layer
 They are then weighted and fed simultaneously to a hidden layer
 The number of hidden layers is arbitrary, although usually only one
 The weighted outputs of the last hidden layer are input to units making
up the output layer, which emits the network's prediction
 The network is feed-forward in that none of the weights cycles back to
an input unit or to an output unit of a previous layer
 From a statistical point of view, networks perform nonlinear regression:
Given enough hidden units and enough training samples, they can
closely approximate any function
December 24, 2024
Data Mining: Concepts and
Techniques 33
Defining a Network Topology
 First decide the network topology: # of units in the input
layer, # of hidden layers (if > 1), # of units in each hidden
layer, and # of units in the output layer
 Normalizing the input values for each attribute measured in
the training tuples to [0.0—1.0]
 One input unit per domain value, each initialized to 0
 Output, if for classification and more than two classes, one
output unit per class is used
 Once a network has been trained and its accuracy is
unacceptable, repeat the training process with a different
network topology or a different set of initial weights
December 24, 2024
Data Mining: Concepts and
Techniques 34
Backpropagation and Interpretability
 Efficiency of backpropagation: Each epoch (one interation through the
training set) takes O(|D| * w), with |D| tuples and w weights, but # of
epochs can be exponential to n, the number of inputs, in the worst case
 Rule extraction from networks: network pruning
 Simplify the network structure by removing weighted links that have the
least effect on the trained network
 Then perform link, unit, or activation value clustering
 The set of input and activation values are studied to derive rules
describing the relationship between the input and hidden unit layers
 Sensitivity analysis: assess the impact that a given input variable has on a
network output. The knowledge gained from this analysis can be
represented in rules
December 24, 2024
Data Mining: Concepts and
Techniques 35
Neural Network as a Classifier
 Weakness
 Long training time
 Require a number of parameters typically best determined empirically,
e.g., the network topology or “structure.”
 Poor interpretability: Difficult to interpret the symbolic meaning behind
the learned weights and of “hidden units” in the network
 Strength
 High tolerance to noisy data
 Ability to classify untrained patterns
 Well-suited for continuous-valued inputs and outputs
 Successful on a wide array of real-world data
 Algorithms are inherently parallel
 Techniques have recently been developed for the extraction of rules
from trained neural networks
INTRODUCTION TO ARTIFICIAL INTELLIGENCE.
Artificial Neural Networks (ANN)
X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1
X2
X3
Y
Black box
0.3
0.3
0.3 t=0.4
Output
node
Input
nodes









otherwise
0
true
is
if
1
)
(
where
)
0
4
.
0
3
.
0
3
.
0
3
.
0
( 3
2
1
z
z
I
X
X
X
I
Y
Learning Perceptrons
December 24, 2024
Data Mining: Concepts and
Techniques 39
A Multi-Layer Feed-Forward Neural Network
Output layer
Input layer
Hidden layer
Output vector
Input vector: X
wij
ij
k
i
i
k
j
k
j x
y
y
w
w )
ˆ
( )
(
)
(
)
1
(





General Structure of ANN
Activation
function
g(Si
)
Si
Oi
I1
I2
I3
wi1
wi2
wi3
Oi
Neuron i
Input Output
threshold, t
Input
Layer
Hidden
Layer
Output
Layer
x1
x2
x3
x4
x5
y
Training ANN means learning
the weights of the neurons

More Related Content

PPT
ai7 (1) Artificial Neural Network Intro .ppt
PPT
ANNs have been widely used in various domains for: Pattern recognition Funct...
PPT
ai7.ppt
PPT
ai7.ppt
PPT
ann ppt , multilayer perceptron. presentation on
PPT
ai...........................................
PPT
Machine Learning Neural Networks Artificial Intelligence
PPT
Machine Learning Neural Networks Artificial
ai7 (1) Artificial Neural Network Intro .ppt
ANNs have been widely used in various domains for: Pattern recognition Funct...
ai7.ppt
ai7.ppt
ann ppt , multilayer perceptron. presentation on
ai...........................................
Machine Learning Neural Networks Artificial Intelligence
Machine Learning Neural Networks Artificial

Similar to INTRODUCTION TO ARTIFICIAL INTELLIGENCE. (20)

PPT
Game theory.pdf textbooks content Artificical
PPTX
NEURAL NETWORK IN MACHINE LEARNING FOR STUDENTS
PPTX
Jyduydufyuyf8yfiyfiyfifiyfiyviyviyfiugiuy8f7dd64d4yrsxyfhgdhfjhvjhv
PPT
Artificial neural networks and deep learning.ppt
PPT
neural networking and factor analysis.ppt
PPT
neural1Advanced Features of Neural Network.ppt
PPT
Data mining techniques power point presentation
PPT
neural.ppt
PPT
neural.ppt
PPT
introduction to feed neural networks.ppt
PPT
neural (1).ppt
PPT
neural.ppt
PPT
neural.ppt
PPT
neural.ppt
PPTX
10 Backpropagation Algorithm for Neural Networks (1).pptx
PPTX
PPT
ann-ics320Part4.ppt
PPT
ann-ics320Part4.ppt
PPT
SET-02_SOCS_ESE-DEC23__B.Tech%20(CSE-H+NH)-AIML_5_CSAI300
Game theory.pdf textbooks content Artificical
NEURAL NETWORK IN MACHINE LEARNING FOR STUDENTS
Jyduydufyuyf8yfiyfiyfifiyfiyviyviyfiugiuy8f7dd64d4yrsxyfhgdhfjhvjhv
Artificial neural networks and deep learning.ppt
neural networking and factor analysis.ppt
neural1Advanced Features of Neural Network.ppt
Data mining techniques power point presentation
neural.ppt
neural.ppt
introduction to feed neural networks.ppt
neural (1).ppt
neural.ppt
neural.ppt
neural.ppt
10 Backpropagation Algorithm for Neural Networks (1).pptx
ann-ics320Part4.ppt
ann-ics320Part4.ppt
SET-02_SOCS_ESE-DEC23__B.Tech%20(CSE-H+NH)-AIML_5_CSAI300
Ad

Recently uploaded (20)

PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Hybrid model detection and classification of lung cancer
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Unlock new opportunities with location data.pdf
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
WOOl fibre morphology and structure.pdf for textiles
DOCX
search engine optimization ppt fir known well about this
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPTX
Modernising the Digital Integration Hub
PDF
Developing a website for English-speaking practice to English as a foreign la...
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PDF
Five Habits of High-Impact Board Members
PDF
Getting Started with Data Integration: FME Form 101
PDF
A comparative study of natural language inference in Swahili using monolingua...
Web Crawler for Trend Tracking Gen Z Insights.pptx
DP Operators-handbook-extract for the Mautical Institute
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Hybrid model detection and classification of lung cancer
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Unlock new opportunities with location data.pdf
O2C Customer Invoices to Receipt V15A.pptx
Group 1 Presentation -Planning and Decision Making .pptx
WOOl fibre morphology and structure.pdf for textiles
search engine optimization ppt fir known well about this
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Modernising the Digital Integration Hub
Developing a website for English-speaking practice to English as a foreign la...
Benefits of Physical activity for teenagers.pptx
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
sustainability-14-14877-v2.pddhzftheheeeee
Five Habits of High-Impact Board Members
Getting Started with Data Integration: FME Form 101
A comparative study of natural language inference in Swahili using monolingua...
Ad

INTRODUCTION TO ARTIFICIAL INTELLIGENCE.

  • 2. Artificial Neural Networks  Computational models inspired by the human brain:  Algorithms that try to mimic the brain.  Massively parallel, distributed system, made up of simple processing units (neurons)  Synaptic connection strengths among neurons are used to store the acquired knowledge.  Knowledge is acquired by the network from its environment through a learning process
  • 3. History  late-1800's - Neural Networks appear as an analogy to biological systems  1960's and 70's – Simple neural networks appear  Fall out of favor because the perceptron is not effective by itself, and there were no good algorithms for multilayer nets  1986 – Backpropagation algorithm appears  Neural Networks have a resurgence in popularity  More computationally expensive
  • 4. Applications of ANNs  ANNs have been widely used in various domains for:  Pattern recognition  Function approximation  Associative memory
  • 5. Properties  Inputs are flexible  any real values  Highly correlated or independent  Target function may be discrete-valued, real-valued, or vectors of discrete or real values  Outputs are real numbers between 0 and 1  Resistant to errors in the training data  Long training time  Fast evaluation  The function produced can be difficult for humans to interpret
  • 6. When to consider neural networks  Input is high-dimensional discrete or raw-valued  Output is discrete or real-valued  Output is a vector of values  Possibly noisy data  Form of target function is unknown  Human readability of the result is not important Examples:  Speech phoneme recognition  Image classification  Financial prediction
  • 7. December 24, 2024 Data Mining: Concepts and Techniques 7 A Neuron (= a perceptron)  The n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping t - f weighted sum Input vector x output y Activation function weight vector w  w0 w1 wn x0 x1 xn ) sign( y e For Exampl n 0 i t x w i i    
  • 8. Perceptron  Basic unit in a neural network  Linear separator  Parts  N inputs, x1 ... xn  Weights for each input, w1 ... wn  A bias input x0 (constant) and associated weight w0  Weighted sum of inputs, y = w0x0 + w1x1 + ... + wnxn  A threshold function or activation function, i.e 1 if y > t, -1 if y <= t
  • 9. Artificial Neural Networks (ANN)  Model is an assembly of inter-connected nodes and weighted links  Output node sums up each of its input value according to the weights of its links  Compare output node against some threshold t  X1 X2 X3 Y Black box w1 t Output node Input nodes w2 w3 ) ( t x w I Y i i i    Perceptron Model ) ( t x w sign Y i i i    or
  • 10. Types of connectivity  Feedforward networks  These compute a series of transformations  Typically, the first layer is the input and the last layer is the output.  Recurrent networks  These have directed cycles in their connection graph. They can have complicated dynamics.  More biologically realistic. hidden units output units input units
  • 11. Different Network Topologies  Single layer feed-forward networks  Input layer projecting into the output layer Input Output layer layer Single layer network
  • 12. Different Network Topologies  Multi-layer feed-forward networks  One or more hidden layers. Input projects only from previous layers onto a layer. Input Hidden Output layer layer layer 2-layer or 1-hidden layer fully connected network
  • 13. Different Network Topologies  Multi-layer feed-forward networks Input Hidden Output layer layers layer
  • 14. Different Network Topologies  Recurrent networks  A network with feedback, where some of its inputs are connected to some of its outputs (discrete time). Input Output layer layer Recurrent network
  • 15. Algorithm for learning ANN  Initialize the weights (w0, w1, …, wk)  Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples  Error function:  Find the weights wi’s that minimize the above error function  e.g., gradient descent, backpropagation algorithm  2 ) , (    i i i i X w f Y E
  • 16. Optimizing concave/convex function  Maximum of a concave function = minimum of a convex function Gradient ascent (concave) / Gradient descent (convex) Gradient ascent rule
  • 24. Decision surface of a perceptron  Decision surface is a hyperplane  Can capture linearly separable classes  Non-linearly separable  Use a network of them
  • 26. Multi-layer Networks  Linear units inappropriate  No more expressive than a single layer  „ Introduce non-linearity  Threshold not differentiable  „ Use sigmoid function
  • 30. December 24, 2024 Data Mining: Concepts and Techniques 30 Backpropagation  Iteratively process a set of training tuples & compare the network's prediction with the actual known target value  For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value  Modifications are made in the “backwards” direction: from the output layer, through each hidden layer down to the first hidden layer, hence “backpropagation”  Steps  Initialize weights (to small random #s) and biases in the network  Propagate the inputs forward (by applying activation function)  Backpropagate the error (by updating weights and biases)  Terminating condition (when error is very small, etc.)
  • 32. December 24, 2024 Data Mining: Concepts and Techniques 32 How A Multi-Layer Neural Network Works?  The inputs to the network correspond to the attributes measured for each training tuple  Inputs are fed simultaneously into the units making up the input layer  They are then weighted and fed simultaneously to a hidden layer  The number of hidden layers is arbitrary, although usually only one  The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction  The network is feed-forward in that none of the weights cycles back to an input unit or to an output unit of a previous layer  From a statistical point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any function
  • 33. December 24, 2024 Data Mining: Concepts and Techniques 33 Defining a Network Topology  First decide the network topology: # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer  Normalizing the input values for each attribute measured in the training tuples to [0.0—1.0]  One input unit per domain value, each initialized to 0  Output, if for classification and more than two classes, one output unit per class is used  Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights
  • 34. December 24, 2024 Data Mining: Concepts and Techniques 34 Backpropagation and Interpretability  Efficiency of backpropagation: Each epoch (one interation through the training set) takes O(|D| * w), with |D| tuples and w weights, but # of epochs can be exponential to n, the number of inputs, in the worst case  Rule extraction from networks: network pruning  Simplify the network structure by removing weighted links that have the least effect on the trained network  Then perform link, unit, or activation value clustering  The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers  Sensitivity analysis: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules
  • 35. December 24, 2024 Data Mining: Concepts and Techniques 35 Neural Network as a Classifier  Weakness  Long training time  Require a number of parameters typically best determined empirically, e.g., the network topology or “structure.”  Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of “hidden units” in the network  Strength  High tolerance to noisy data  Ability to classify untrained patterns  Well-suited for continuous-valued inputs and outputs  Successful on a wide array of real-world data  Algorithms are inherently parallel  Techniques have recently been developed for the extraction of rules from trained neural networks
  • 37. Artificial Neural Networks (ANN) X1 X2 X3 Y 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0  X1 X2 X3 Y Black box 0.3 0.3 0.3 t=0.4 Output node Input nodes          otherwise 0 true is if 1 ) ( where ) 0 4 . 0 3 . 0 3 . 0 3 . 0 ( 3 2 1 z z I X X X I Y
  • 39. December 24, 2024 Data Mining: Concepts and Techniques 39 A Multi-Layer Feed-Forward Neural Network Output layer Input layer Hidden layer Output vector Input vector: X wij ij k i i k j k j x y y w w ) ˆ ( ) ( ) ( ) 1 (     
  • 40. General Structure of ANN Activation function g(Si ) Si Oi I1 I2 I3 wi1 wi2 wi3 Oi Neuron i Input Output threshold, t Input Layer Hidden Layer Output Layer x1 x2 x3 x4 x5 y Training ANN means learning the weights of the neurons