SlideShare a Scribd company logo
3
Most read
8
Most read
24
Most read
Introduction to
CMOS VLSI
Design
Design for Low Power
CMOS VLSI Design
Design for Low Power Slide 2
Outline
 Power and Energy
 Dynamic Power
 Static Power
 Low Power Design
CMOS VLSI Design
Design for Low Power Slide 3
Power and Energy
 Power is drawn from a voltage source attached to
the VDD pin(s) of a chip.
 Instantaneous Power:
 Energy:
 Average Power:
( ) ( )
DD DD
P t i t V

0 0
( ) ( )
T T
DD DD
E P t dt i t V dt
 
 
avg
0
1
( )
T
DD DD
E
P i t V dt
T T
  
CMOS VLSI Design
Design for Low Power Slide 4
Dynamic Power
 Dynamic power is required to charge and discharge
load capacitances when transistors switch.
 One cycle involves a rising and falling output.
 On rising output, charge Q = CVDD is required
 On falling output, charge is dumped to GND
 This repeats Tfsw times
over an interval of T
C
fsw
iDD
(t)
VDD
CMOS VLSI Design
Design for Low Power Slide 5
Dynamic Power Cont.
C
fsw
iDD
(t)
VDD
dynamic
P 
CMOS VLSI Design
Design for Low Power Slide 6
Dynamic Power Cont.
C
fsw
iDD
(t)
VDD
 
dynamic
0
0
sw
2
sw
1
( )
( )
T
DD DD
T
DD
DD
DD
DD
DD
P i t V dt
T
V
i t dt
T
V
Tf CV
T
CV f






CMOS VLSI Design
Design for Low Power Slide 7
Activity Factor
 Suppose the system clock frequency = f
 Let fsw = af, where a = activity factor
– If the signal is a clock, a = 1
– If the signal switches once per cycle, a = ½
– Dynamic gates:
• Switch either 0 or 2 times per cycle, a = ½
– Static gates:
• Depends on design, but typically a = 0.1
 Dynamic power:
2
dynamic DD
P CV f
a

CMOS VLSI Design
Design for Low Power Slide 8
Short Circuit Current
 When transistors switch, both nMOS and pMOS
networks may be momentarily ON at once
 Leads to a blip of “short circuit” current.
 < 10% of dynamic power if rise/fall times are
comparable for input and output
CMOS VLSI Design
Design for Low Power Slide 9
Example
 200 Mtransistor chip
– 20M logic transistors
• Average width: 12 l
– 180M memory transistors
• Average width: 4 l
– 1.2 V 100 nm process
– Cg = 2 fF/mm
CMOS VLSI Design
Design for Low Power Slide 10
Dynamic Example
 Static CMOS logic gates: activity factor = 0.1
 Memory arrays: activity factor = 0.05 (many banks!)
 Estimate dynamic power consumption per MHz.
Neglect wire capacitance and short-circuit current.
CMOS VLSI Design
Design for Low Power Slide 11
Dynamic Example
 Static CMOS logic gates: activity factor = 0.1
 Memory arrays: activity factor = 0.05 (many banks!)
 Estimate dynamic power consumption per MHz.
Neglect wire capacitance.
    
    
 
6
logic
6
mem
2
dynamic logic mem
20 10 12 0.05 / 2 / 24
180 10 4 0.05 / 2 / 72
0.1 0.05 1.2 8.6 mW/MHz
C m fF m nF
C m fF m nF
P C C f
l m l m
l m l m
  
  
 
  
 
CMOS VLSI Design
Design for Low Power Slide 12
Static Power
 Static power is consumed even when chip is
quiescent.
– Ratioed circuits burn power in fight between ON
transistors
– Leakage draws power from nominally OFF
devices
0 1
gs t ds
T T
V V V
nv v
ds ds
I I e e
 
 
 
 
 
 
 
0
t t ds s sb s
V V V V
   
    
CMOS VLSI Design
Design for Low Power Slide 13
Ratio Example
 The chip contains a 32 word x 48 bit ROM
– Uses pseudo-nMOS decoder and bitline pullups
– On average, one wordline and 24 bitlines are high
 Find static power drawn by the ROM
– b = 75 mA/V2
– Vtp = -0.4V
CMOS VLSI Design
Design for Low Power Slide 14
Ratio Example
 The chip contains a 32 word x 48 bit ROM
– Uses pseudo-nMOS decoder and bitline pullups
– On average, one wordline and 24 bitlines are high
 Find static power drawn by the ROM
– b = 75 mA/V2
– Vtp = -0.4V
 Solution:  
2
pull-up
pull-up pull-up
static pull-up
24μA
2
29μW
(31 24) 1.6 mW
DD tp
DD
V V
I
P V I
P P
b

 
 
  
CMOS VLSI Design
Design for Low Power Slide 15
Leakage Example
 The process has two threshold voltages and two
oxide thicknesses.
 Subthreshold leakage:
– 20 nA/mm for low Vt
– 0.02 nA/mm for high Vt
 Gate leakage:
– 3 nA/mm for thin oxide
– 0.002 nA/mm for thick oxide
 Memories use low-leakage transistors everywhere
 Gates use low-leakage transistors on 80% of logic
CMOS VLSI Design
Design for Low Power Slide 16
Leakage Example Cont.
 Estimate static power:
CMOS VLSI Design
Design for Low Power Slide 17
Leakage Example Cont.
 Estimate static power:
– High leakage:
– Low leakage:
    
6 6
20 10 0.2 12 0.05 / 2.4 10
m m
l m l m
  
    
   
6
6 6
20 10 0.8 12 0.05 /
180 10 4 0.05 / 45.6 10
m
m m
l m l
l m l m
 
  
     
     
6
6
2.4 10 20 / / 2 3 /
45.6 10 0.02 / / 2 0.002 /
32
38
static
static static DD
I m nA m nA m
m nA m nA m
mA
P I V mW
m m m
m m m
   
 
 
 
 
 

 
CMOS VLSI Design
Design for Low Power Slide 18
Leakage Example Cont.
 Estimate static power:
– High leakage:
– Low leakage:
 If no low leakage devices, Pstatic = 749 mW (!)
    
6 6
20 10 0.2 12 0.05 / 2.4 10
m m
l m l m
  
    
   
6
6 6
20 10 0.8 12 0.05 /
180 10 4 0.05 / 45.6 10
m
m m
l m l
l m l m
 
  
     
     
6
6
2.4 10 20 / / 2 3 /
45.6 10 0.02 / / 2 0.002 /
32
38
static
static static DD
I m nA m nA m
m nA m nA m
mA
P I V mW
m m m
m m m
   
 
 
 
 
 

 
CMOS VLSI Design
Design for Low Power Slide 19
Low Power Design
 Reduce dynamic power
– a:
– C:
– VDD:
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 20
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C:
– VDD:
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 21
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD:
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 22
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD: lowest suitable voltage
– f:
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 23
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD: lowest suitable voltage
– f: lowest suitable frequency
 Reduce static power
CMOS VLSI Design
Design for Low Power Slide 24
Low Power Design
 Reduce dynamic power
– a: clock gating, sleep mode
– C: small transistors (esp. on clock), short wires
– VDD: lowest suitable voltage
– f: lowest suitable frequency
 Reduce static power
– Selectively use ratioed circuits
– Selectively use low Vt devices
– Leakage reduction:
stacked devices, body bias, low temperature

More Related Content

PPT
Power
AnimSarker
 
PPT
Lecture 9.ppt
TimePresents
 
PPT
Introduction to CMOS VLSI design Stick diagram.ppt
MuhammedAsimA
 
PPT
lecture 1 layout presentation of very large scale integration in digital elec...
mhatesyou777
 
PPT
RobertPresentation.ppt
RevathiMohan14
 
PPT
Lecture 10.ppt
TimePresents
 
PPT
lecture 5_DC and Transient Response_VLSI.ppt
mashlit841
 
PPT
Dc Transfer characteristics in VLSI design
Manjunath852579
 
Power
AnimSarker
 
Lecture 9.ppt
TimePresents
 
Introduction to CMOS VLSI design Stick diagram.ppt
MuhammedAsimA
 
lecture 1 layout presentation of very large scale integration in digital elec...
mhatesyou777
 
RobertPresentation.ppt
RevathiMohan14
 
Lecture 10.ppt
TimePresents
 
lecture 5_DC and Transient Response_VLSI.ppt
mashlit841
 
Dc Transfer characteristics in VLSI design
Manjunath852579
 

Similar to Introduction to CMOS VLSI Design for Low Power (20)

PDF
2016 ch4 delay
hdainghia194
 
PDF
CMOS Topic 6 -_designing_combinational_logic_circuits
Ikhwan_Fakrudin
 
PPT
CMOS VLSI Design.312313131312pp3213123213313123t
HoangAnhTuan45
 
PPT
Introduction to cmos in vlsi to seek for knowledge
RAviTiwaRi537420
 
PDF
vlsi4unitpptfinal-240723145755-36f08a74.pdf
Himabindu905359
 
PDF
VLSI _4_UNIT PPT FINAL.pdf ppt for design
Himabindu905359
 
PPT
lect1-circuits and layout.ppt
ssuserf7da1a
 
PPT
Lect 1 - cktlay.ppt
AnimSarker
 
PPT
lect1-cktlay 12345678901222222222222222222222222
ME8M
 
PPT
CMOS VLSI Design: Lecture 1: Circuit & Layout
maileviethoang
 
PPT
lect1-Circuits and Layout_design and testing of VLSI.ppt
mashlit841
 
PPT
Circuits layouts design in VLSI design and Testing
Manjunath852579
 
PPT
lec23Concl.ppt
BhuvanaEshwari1
 
PPT
EEE 4157_Lecture_10_11_12_13.ppt
OmarFaruqe23
 
PDF
Lecture on Introduction to VLSI circuits and layouts
ahsentahir
 
PPT
CMOS Transistor
SubhamMukherjee33
 
PPT
Circuit Elements CMOS Devices VLSI Technology.ppt
jawig83977
 
PPT
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
VijaySathappan
 
PPTX
cmos vlsi design for b.tech 4th year students
KUNTALADAS5
 
PPT
lecture 3-CMOS Transistor Theory_VLSI1.ppt
mashlit841
 
2016 ch4 delay
hdainghia194
 
CMOS Topic 6 -_designing_combinational_logic_circuits
Ikhwan_Fakrudin
 
CMOS VLSI Design.312313131312pp3213123213313123t
HoangAnhTuan45
 
Introduction to cmos in vlsi to seek for knowledge
RAviTiwaRi537420
 
vlsi4unitpptfinal-240723145755-36f08a74.pdf
Himabindu905359
 
VLSI _4_UNIT PPT FINAL.pdf ppt for design
Himabindu905359
 
lect1-circuits and layout.ppt
ssuserf7da1a
 
Lect 1 - cktlay.ppt
AnimSarker
 
lect1-cktlay 12345678901222222222222222222222222
ME8M
 
CMOS VLSI Design: Lecture 1: Circuit & Layout
maileviethoang
 
lect1-Circuits and Layout_design and testing of VLSI.ppt
mashlit841
 
Circuits layouts design in VLSI design and Testing
Manjunath852579
 
lec23Concl.ppt
BhuvanaEshwari1
 
EEE 4157_Lecture_10_11_12_13.ppt
OmarFaruqe23
 
Lecture on Introduction to VLSI circuits and layouts
ahsentahir
 
CMOS Transistor
SubhamMukherjee33
 
Circuit Elements CMOS Devices VLSI Technology.ppt
jawig83977
 
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
VijaySathappan
 
cmos vlsi design for b.tech 4th year students
KUNTALADAS5
 
lecture 3-CMOS Transistor Theory_VLSI1.ppt
mashlit841
 
Ad

Recently uploaded (20)

PDF
Interior design technology LECTURE 28.pdf
SasidharReddyPlannin
 
PDF
Fashion project1 kebaya reimagined slideshow
reysultane
 
PPTX
Engagement for marriage life ethics b.pptx
SyedBabar19
 
PDF
Zidane ben hmida _ Portfolio
Zidane Ben Hmida
 
PPTX
CRP 2025 pnsib jis. Iis k. Konks jnwpt.pptx
bookfilmfusion
 
PDF
Unlimited G+12 Dubai DM exam questions for contractor
saniyashaik2089
 
PDF
neurons-1hhdbbbsjndjnnbbdjndnnndj30501.pdf
Rahul954607
 
PPTX
DISS-Group-5_110345.pptx Basic Concepts of the major social science
mattygido
 
PPTX
Landscape assignment for landscape architecture
aditikoshley2
 
PPTX
United Nation - CoUnited Nation - CoUnited Nation - Copy (2).pptx
mangalindanjerremyjh
 
PDF
10 Best UI UX Design Company in UK for User-Centric Solutions
Tenet UI UX
 
PDF
MARIJA CVITKOVAC - GRAPHIC DESIGN PORTFOLIO 2025
marijacvdesign
 
PPTX
Style and aesthetic about fashion lifestyle
Khushi Bera
 
DOCX
Personalized Jewellery Guide: Engraved Rings, Initial Necklaces & Birthstones...
Dishis jewels
 
PPTX
MALURI KISHORE-.pptxdsrhbcdsfvvghhhggggfff
sakthick46
 
PDF
Find Your Target Audience A 6-Step Framework to Grow Your Business.pdf
Zinavo Pvt Ltd
 
PPTX
Design & Thinking for Engineering graduates
NEELAMRAWAT48
 
PDF
Shape Language for Character Design by Adhec Saputra
Adhec Saputra
 
PPTX
Blended Wing Body y jet engines Aircrafts.pptx
anshul9051
 
PPTX
UCSP-Quarter 1-Week 5-Powerpoint Presentation
EmyMaquiling1
 
Interior design technology LECTURE 28.pdf
SasidharReddyPlannin
 
Fashion project1 kebaya reimagined slideshow
reysultane
 
Engagement for marriage life ethics b.pptx
SyedBabar19
 
Zidane ben hmida _ Portfolio
Zidane Ben Hmida
 
CRP 2025 pnsib jis. Iis k. Konks jnwpt.pptx
bookfilmfusion
 
Unlimited G+12 Dubai DM exam questions for contractor
saniyashaik2089
 
neurons-1hhdbbbsjndjnnbbdjndnnndj30501.pdf
Rahul954607
 
DISS-Group-5_110345.pptx Basic Concepts of the major social science
mattygido
 
Landscape assignment for landscape architecture
aditikoshley2
 
United Nation - CoUnited Nation - CoUnited Nation - Copy (2).pptx
mangalindanjerremyjh
 
10 Best UI UX Design Company in UK for User-Centric Solutions
Tenet UI UX
 
MARIJA CVITKOVAC - GRAPHIC DESIGN PORTFOLIO 2025
marijacvdesign
 
Style and aesthetic about fashion lifestyle
Khushi Bera
 
Personalized Jewellery Guide: Engraved Rings, Initial Necklaces & Birthstones...
Dishis jewels
 
MALURI KISHORE-.pptxdsrhbcdsfvvghhhggggfff
sakthick46
 
Find Your Target Audience A 6-Step Framework to Grow Your Business.pdf
Zinavo Pvt Ltd
 
Design & Thinking for Engineering graduates
NEELAMRAWAT48
 
Shape Language for Character Design by Adhec Saputra
Adhec Saputra
 
Blended Wing Body y jet engines Aircrafts.pptx
anshul9051
 
UCSP-Quarter 1-Week 5-Powerpoint Presentation
EmyMaquiling1
 
Ad

Introduction to CMOS VLSI Design for Low Power

  • 2. CMOS VLSI Design Design for Low Power Slide 2 Outline  Power and Energy  Dynamic Power  Static Power  Low Power Design
  • 3. CMOS VLSI Design Design for Low Power Slide 3 Power and Energy  Power is drawn from a voltage source attached to the VDD pin(s) of a chip.  Instantaneous Power:  Energy:  Average Power: ( ) ( ) DD DD P t i t V  0 0 ( ) ( ) T T DD DD E P t dt i t V dt     avg 0 1 ( ) T DD DD E P i t V dt T T   
  • 4. CMOS VLSI Design Design for Low Power Slide 4 Dynamic Power  Dynamic power is required to charge and discharge load capacitances when transistors switch.  One cycle involves a rising and falling output.  On rising output, charge Q = CVDD is required  On falling output, charge is dumped to GND  This repeats Tfsw times over an interval of T C fsw iDD (t) VDD
  • 5. CMOS VLSI Design Design for Low Power Slide 5 Dynamic Power Cont. C fsw iDD (t) VDD dynamic P 
  • 6. CMOS VLSI Design Design for Low Power Slide 6 Dynamic Power Cont. C fsw iDD (t) VDD   dynamic 0 0 sw 2 sw 1 ( ) ( ) T DD DD T DD DD DD DD DD P i t V dt T V i t dt T V Tf CV T CV f      
  • 7. CMOS VLSI Design Design for Low Power Slide 7 Activity Factor  Suppose the system clock frequency = f  Let fsw = af, where a = activity factor – If the signal is a clock, a = 1 – If the signal switches once per cycle, a = ½ – Dynamic gates: • Switch either 0 or 2 times per cycle, a = ½ – Static gates: • Depends on design, but typically a = 0.1  Dynamic power: 2 dynamic DD P CV f a 
  • 8. CMOS VLSI Design Design for Low Power Slide 8 Short Circuit Current  When transistors switch, both nMOS and pMOS networks may be momentarily ON at once  Leads to a blip of “short circuit” current.  < 10% of dynamic power if rise/fall times are comparable for input and output
  • 9. CMOS VLSI Design Design for Low Power Slide 9 Example  200 Mtransistor chip – 20M logic transistors • Average width: 12 l – 180M memory transistors • Average width: 4 l – 1.2 V 100 nm process – Cg = 2 fF/mm
  • 10. CMOS VLSI Design Design for Low Power Slide 10 Dynamic Example  Static CMOS logic gates: activity factor = 0.1  Memory arrays: activity factor = 0.05 (many banks!)  Estimate dynamic power consumption per MHz. Neglect wire capacitance and short-circuit current.
  • 11. CMOS VLSI Design Design for Low Power Slide 11 Dynamic Example  Static CMOS logic gates: activity factor = 0.1  Memory arrays: activity factor = 0.05 (many banks!)  Estimate dynamic power consumption per MHz. Neglect wire capacitance.             6 logic 6 mem 2 dynamic logic mem 20 10 12 0.05 / 2 / 24 180 10 4 0.05 / 2 / 72 0.1 0.05 1.2 8.6 mW/MHz C m fF m nF C m fF m nF P C C f l m l m l m l m             
  • 12. CMOS VLSI Design Design for Low Power Slide 12 Static Power  Static power is consumed even when chip is quiescent. – Ratioed circuits burn power in fight between ON transistors – Leakage draws power from nominally OFF devices 0 1 gs t ds T T V V V nv v ds ds I I e e               0 t t ds s sb s V V V V         
  • 13. CMOS VLSI Design Design for Low Power Slide 13 Ratio Example  The chip contains a 32 word x 48 bit ROM – Uses pseudo-nMOS decoder and bitline pullups – On average, one wordline and 24 bitlines are high  Find static power drawn by the ROM – b = 75 mA/V2 – Vtp = -0.4V
  • 14. CMOS VLSI Design Design for Low Power Slide 14 Ratio Example  The chip contains a 32 word x 48 bit ROM – Uses pseudo-nMOS decoder and bitline pullups – On average, one wordline and 24 bitlines are high  Find static power drawn by the ROM – b = 75 mA/V2 – Vtp = -0.4V  Solution:   2 pull-up pull-up pull-up static pull-up 24μA 2 29μW (31 24) 1.6 mW DD tp DD V V I P V I P P b        
  • 15. CMOS VLSI Design Design for Low Power Slide 15 Leakage Example  The process has two threshold voltages and two oxide thicknesses.  Subthreshold leakage: – 20 nA/mm for low Vt – 0.02 nA/mm for high Vt  Gate leakage: – 3 nA/mm for thin oxide – 0.002 nA/mm for thick oxide  Memories use low-leakage transistors everywhere  Gates use low-leakage transistors on 80% of logic
  • 16. CMOS VLSI Design Design for Low Power Slide 16 Leakage Example Cont.  Estimate static power:
  • 17. CMOS VLSI Design Design for Low Power Slide 17 Leakage Example Cont.  Estimate static power: – High leakage: – Low leakage:      6 6 20 10 0.2 12 0.05 / 2.4 10 m m l m l m             6 6 6 20 10 0.8 12 0.05 / 180 10 4 0.05 / 45.6 10 m m m l m l l m l m                  6 6 2.4 10 20 / / 2 3 / 45.6 10 0.02 / / 2 0.002 / 32 38 static static static DD I m nA m nA m m nA m nA m mA P I V mW m m m m m m                 
  • 18. CMOS VLSI Design Design for Low Power Slide 18 Leakage Example Cont.  Estimate static power: – High leakage: – Low leakage:  If no low leakage devices, Pstatic = 749 mW (!)      6 6 20 10 0.2 12 0.05 / 2.4 10 m m l m l m             6 6 6 20 10 0.8 12 0.05 / 180 10 4 0.05 / 45.6 10 m m m l m l l m l m                  6 6 2.4 10 20 / / 2 3 / 45.6 10 0.02 / / 2 0.002 / 32 38 static static static DD I m nA m nA m m nA m nA m mA P I V mW m m m m m m                 
  • 19. CMOS VLSI Design Design for Low Power Slide 19 Low Power Design  Reduce dynamic power – a: – C: – VDD: – f:  Reduce static power
  • 20. CMOS VLSI Design Design for Low Power Slide 20 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: – VDD: – f:  Reduce static power
  • 21. CMOS VLSI Design Design for Low Power Slide 21 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: – f:  Reduce static power
  • 22. CMOS VLSI Design Design for Low Power Slide 22 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: lowest suitable voltage – f:  Reduce static power
  • 23. CMOS VLSI Design Design for Low Power Slide 23 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: lowest suitable voltage – f: lowest suitable frequency  Reduce static power
  • 24. CMOS VLSI Design Design for Low Power Slide 24 Low Power Design  Reduce dynamic power – a: clock gating, sleep mode – C: small transistors (esp. on clock), short wires – VDD: lowest suitable voltage – f: lowest suitable frequency  Reduce static power – Selectively use ratioed circuits – Selectively use low Vt devices – Leakage reduction: stacked devices, body bias, low temperature