SlideShare a Scribd company logo
2
Most read
4
Most read
7
Most read
Introduction to the
RDF Data Model
Sources:
Ian Davis (Talis),
Prof. Praveen Rao (UMKC),
http://rdfabout.com/

1
Introduction
•

RDF stands for Resource Description Framework

•
•

•
•

Companies developing RDF storage solutions
AllegroGraph, Virtuoso, BigOWLIM, Garlik 4store/5store, Mulgara, etc.

Companies managing data using RDF model

•
•

•

W3C spec: http://www.w3.org/RDF/

1st spec in 1999, current standard from 2004

•

•

Is a data model (like XML)

BBC, Google, Yahoo!, Best Buy, Newsweek, Pfizer, etc.
http://data.nytimes.com/home/about.html

To allow anyone to say anything about anything
2
The Relational Model

3
RDF Data Model
• RDF represents data as (s,p,o) triples
•
•

s means subject, p means predicate or property, o means object
Can represent any assertion

•

•

An assertion may or may not be a fact

Together, triples form a directed, labeled graph

4
Example

5
Example
• Relationship between entities/resources

6
Global Naming
•
•
•

•
•

URIs (!= URLs) provide the ability to identify things globally
and uniquely
RDF names things/resources with URIs
Can name infinite number of things using URIs

•

Can use the fragment identifier ‘#’

Create different URIs for different things
If two users refer to the same URI, then they are talking
about the same thing

7
RDF Graphs
• Can have named things, literals (text or numeric
values), named relations/properties, unnamed things…

8
RDF Graphs

• Subjects can be URIs or unnamed
(a.k.a blank nodes)

• Predicates are URIs
• Objects can be URIs, literals, or unnamed
9
Merging RDF Graphs
• Graphs from different sources can be merged
• Nodes with the same URI are considered identical
• Blank nodes can be kept separate
• Any RDF graph can be merged with any other RDF graph
• Any number of RDF graphs can be merged

10
Example (1/2)

11
Example (2/2)

12
RDF vs. RDBMS

• Relational (RDBMS) model
•
•
•
•

Separate databases with own schemas
Table row: assertion that relation is true for values in row
SELECT query: filter on assertions for given conditions
A relation is true (row exists) or false

• RDF model
•
•
•

(Semantic) Web: a single giant graph database
s, p, o identified uniquely with URIs across the web

A relation is true (triple exists) or is unknown

• RDF more like OO model than RDBMS
13
RDF vs. RDBMS example
foaf:name (predicate/property)
subject

object

_:personA

“John”

_:personB

“Jane”

_:personC

“Fred”

RDF triples expressed as binary relations in RDBMS

14
RDF vs XML
• Not another XML format
• XML means
•
•

Angle-brackets-slashes notation (think HTML)

Data model: tree (DAG) with different nodes
(elements, attributes)

• RDF means
•
•

Notation: RDF/XML, Turtle, N-triples etc.

Data model: directed graph, uses URIs

15
RDF Formats
• All are plain-text serialization formats
• RDF/XML: XML notation
• Notation3 (N3): superset of TTL, beyond RDF
• Turtle (TTL): subset of N3, used only for RDF
• N-Triples (NT), N-Quads (NQ): subset of TTL and N3
•
•

Simpler/minimal
Easier to parse/generate

16
Turtle

• Terse RDF Triple Language (TTL)
• Triples are terminated with a full stop
• URIs are enclosed in angle brackets (< and >)
• Literals are enclosed by double quotes
• <http://example.com/thing>
<http://example.com/relation> “Hello World" .

• Use @PREFIX to shorten URIs
•
•

@PREFIX ex: <http://example.com/> .
ex:thing ex:relation “Hello World" .
17
Turtle: Same Subject
@PREFIX ex: <http://example.com/> .
ex:thing ex:relation "Some Text" .
ex:thing ex:otherrelation ex:otherthing .

@PREFIX ex: <http://example.com/> .
ex:thing ex:relation "Some Text" ;
ex:otherrelation ex:otherthing .
18
Turtle: Same Subject-Predicate
@PREFIX ex: <http://example.com/> .
ex:thing ex:relation "Some Text" .
ex:thing ex:relation ex:otherthing .

@PREFIX ex: <http://example.com/> .
ex:thing ex:relation "Some Text" ,
ex:otherthing .

19
Turtle: Blank Node
@PREFIX ex: <http://example.com/> .
ex:thing ex:relation _:a .
_:a ex:property "foo" .
_:a ex:property "bar” .

• Use _: followed by a label
• ‘a’ is the label – valid only within that particular RDF
document

• If _a: appears in a different document, it would refer
to a different node
20
Turtle: Literals
• Literals can have a language
@PREFIX ex: <http://example.com/> .
ex:thing ex:relation "Hello"@en .
ex:thing ex:relation "Bonjour"@fr .

• Literals can have a datatype
@PREFIX ex: <http://example.com/> .
ex:thing ex:relation "49"^^<http://www.w3.org/2001/XMLSchema#int> .

• But not both!
21
Vendor 1:

Vendors example

vendor1:productX

dc:title "Cool-O-Matic" .

vendor1:productX

retail:price

vendor1:productX

vendor1:partno

vendor1:productY

dc:title "Fluffertron" .

vendor1:productY

retail:price

vendor1:productY

vendor1:partno

"$50.75" .
"TTK583" .

"$26.50" .
"AAL132" .

Vendor 2:
vendor2:product1

dc:title "Can Closer" .

vendor2:product2

dc:title "Dust Unbuster" .

Reviewer 1:
vendor1:productX

dc:description "This product is good buy!" .

Reviewer 2:
vendor2:product2 dc:description "Who needs something to unbust dust?
A dust buster would be a better idea,
and I wish they posted the price." .
vendor2:product2 review:rating review:Excellent .

22
Links
• Government (US, UK), Wikipedia, World Bank, U.S.
Census, U.S. SEC, NYTimes, etc.

•
•
•

http://www.w3.org/wiki/DataSetRDFDumps
http://data.nytimes.com/
http://data.gov.uk/

• http://librdf.org/parse
• http://www.rdfabout.com/demo/validator/

23

More Related Content

What's hot (20)

PDF
The Parquet Format and Performance Optimization Opportunities
Databricks
 
PPTX
/path/to/content - the Apache Jackrabbit content repository
Jukka Zitting
 
PDF
DBpedia Tutorial - Feb 2015, Dublin
m_ackermann
 
PPT
SPARQL in a nutshell
Fabien Gandon
 
PPTX
SHACL by example
Jose Emilio Labra Gayo
 
ODP
Introduction to JCR and Apache Jackrabbi
Jukka Zitting
 
PDF
SPARQL 사용법
홍수 허
 
PDF
Introdução a JPA (2010)
Helder da Rocha
 
PPT
Web ontology language (owl)
Ameer Sameer
 
PDF
Linked Open Data Principles, Technologies and Examples
Open Data Support
 
PPTX
SPARQL Cheat Sheet
LeeFeigenbaum
 
ODP
ckan 2.0: Harvesting from other sources
Chengjen Lee
 
PPTX
PYTHON-Chapter 4-Plotting and Data Science PyLab - MAULIK BORSANIYA
Maulik Borsaniya
 
PDF
Apache Flink and Apache Hudi.pdf
dogma28
 
PPT
Understanding RDF: the Resource Description Framework in Context (1999)
Dan Brickley
 
PPTX
RDF data model
Jose Emilio Labra Gayo
 
PPTX
The openCypher Project - An Open Graph Query Language
Neo4j
 
PDF
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
PDF
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Philip Schwarz
 
PDF
Querying Linked Data with SPARQL
Olaf Hartig
 
The Parquet Format and Performance Optimization Opportunities
Databricks
 
/path/to/content - the Apache Jackrabbit content repository
Jukka Zitting
 
DBpedia Tutorial - Feb 2015, Dublin
m_ackermann
 
SPARQL in a nutshell
Fabien Gandon
 
SHACL by example
Jose Emilio Labra Gayo
 
Introduction to JCR and Apache Jackrabbi
Jukka Zitting
 
SPARQL 사용법
홍수 허
 
Introdução a JPA (2010)
Helder da Rocha
 
Web ontology language (owl)
Ameer Sameer
 
Linked Open Data Principles, Technologies and Examples
Open Data Support
 
SPARQL Cheat Sheet
LeeFeigenbaum
 
ckan 2.0: Harvesting from other sources
Chengjen Lee
 
PYTHON-Chapter 4-Plotting and Data Science PyLab - MAULIK BORSANIYA
Maulik Borsaniya
 
Apache Flink and Apache Hudi.pdf
dogma28
 
Understanding RDF: the Resource Description Framework in Context (1999)
Dan Brickley
 
RDF data model
Jose Emilio Labra Gayo
 
The openCypher Project - An Open Graph Query Language
Neo4j
 
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Philip Schwarz
 
Querying Linked Data with SPARQL
Olaf Hartig
 

Similar to Introduction to RDF Data Model (20)

PPTX
Publishing and Using Linked Open Data - Day 2
Richard Urban
 
PDF
Danbri Drupalcon Export
Drupalcon Paris
 
ODP
Semantic Web introduction
Graphity
 
PDF
Graph databases & data integration v2
Dimitris Kontokostas
 
KEY
It's not rocket surgery - Linked In: ALA 2011
Ross Singer
 
PPTX
Hack U Barcelona 2011
Peter Mika
 
PPTX
First Steps in Semantic Data Modelling and Search & Analytics in the Cloud
Ontotext
 
PPTX
SWT Lecture Session 2 - RDF
Mariano Rodriguez-Muro
 
PDF
Introduction to RDF
Dr Sukhpal Singh Gill
 
PDF
Introduction to RDFa
Ivan Herman
 
PPTX
Lecture linked data cloud & sparql
Dhavalkumar Thakker
 
PDF
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Josef Petrák
 
PPTX
Bringing It All Together: Mapping Continuing Resources Vocabularies for Linke...
NASIG
 
PPTX
RDFa Tutorial
Ivan Herman
 
ZIP
SemWeb Fundamentals - Info Linking & Layering in Practice
Dan Brickley
 
PDF
Transforming Your Data with GraphDB: GraphDB Fundamentals, Jan 2018
Ontotext
 
PPT
Publishing data on the Semantic Web
Peter Mika
 
PDF
Creating Web APIs with JSON-LD and RDF
donaldlsmithjr
 
PPTX
RDFa: an introduction
Kai Li
 
PPTX
DLF 2015 Presentation, "RDF in the Real World."
Avalon Media System
 
Publishing and Using Linked Open Data - Day 2
Richard Urban
 
Danbri Drupalcon Export
Drupalcon Paris
 
Semantic Web introduction
Graphity
 
Graph databases & data integration v2
Dimitris Kontokostas
 
It's not rocket surgery - Linked In: ALA 2011
Ross Singer
 
Hack U Barcelona 2011
Peter Mika
 
First Steps in Semantic Data Modelling and Search & Analytics in the Cloud
Ontotext
 
SWT Lecture Session 2 - RDF
Mariano Rodriguez-Muro
 
Introduction to RDF
Dr Sukhpal Singh Gill
 
Introduction to RDFa
Ivan Herman
 
Lecture linked data cloud & sparql
Dhavalkumar Thakker
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Josef Petrák
 
Bringing It All Together: Mapping Continuing Resources Vocabularies for Linke...
NASIG
 
RDFa Tutorial
Ivan Herman
 
SemWeb Fundamentals - Info Linking & Layering in Practice
Dan Brickley
 
Transforming Your Data with GraphDB: GraphDB Fundamentals, Jan 2018
Ontotext
 
Publishing data on the Semantic Web
Peter Mika
 
Creating Web APIs with JSON-LD and RDF
donaldlsmithjr
 
RDFa: an introduction
Kai Li
 
DLF 2015 Presentation, "RDF in the Real World."
Avalon Media System
 
Ad

More from Cesar Augusto Nogueira (20)

PDF
TI para o Sucesso nos Negócios
Cesar Augusto Nogueira
 
PDF
Programa LeadingMyself - Accenture 2021
Cesar Augusto Nogueira
 
PDF
Professional Google Cloud Architect
Cesar Augusto Nogueira
 
PDF
"Se tornando um Desenvolvedor Java NINJA" - Semana Integrada da PUC Campinas ...
Cesar Augusto Nogueira
 
PDF
Minando dados de sua cidade para sua comunidade
Cesar Augusto Nogueira
 
PPTX
Se tornando um desenvolvedor Java Ninja - Trilha Java - TDC2017
Cesar Augusto Nogueira
 
PDF
Treinamento: SAP Management 4.0 (Fundamentos em SAP nas principais transações...
Cesar Augusto Nogueira
 
PDF
Palestrante OpenSource Java na Semana de Tecnologia da Informação da UFLA 2016
Cesar Augusto Nogueira
 
PPTX
OpenSource Java - Adopt a JDK e OpenJDK
Cesar Augusto Nogueira
 
PDF
Android Wear - Workshop por @cesarnogcps
Cesar Augusto Nogueira
 
PDF
Certificado de participação - Trilha Python - The Developers Conference 2016 SP
Cesar Augusto Nogueira
 
PPTX
Docker e suas tecnologias
Cesar Augusto Nogueira
 
PPTX
Docker e suas tecnologias por @cesarnog
Cesar Augusto Nogueira
 
PDF
Certificado de participação no Hackathon Globo 2016 - Cesar A. Nogueira
Cesar Augusto Nogueira
 
PDF
Certificado_Python_Brasil_11_Cesar Augusto Nogueira
Cesar Augusto Nogueira
 
PDF
First Steps with Android - An Exciting Introduction
Cesar Augusto Nogueira
 
PDF
Brazil Scientific Mobility Program guide 2013/2014
Cesar Augusto Nogueira
 
PPT
[BRAZIL] Science without Borders program description
Cesar Augusto Nogueira
 
PDF
Colégio Técnico de Campinas (COTUCA) 2013/2014
Cesar Augusto Nogueira
 
PPT
The Software Development Process
Cesar Augusto Nogueira
 
TI para o Sucesso nos Negócios
Cesar Augusto Nogueira
 
Programa LeadingMyself - Accenture 2021
Cesar Augusto Nogueira
 
Professional Google Cloud Architect
Cesar Augusto Nogueira
 
"Se tornando um Desenvolvedor Java NINJA" - Semana Integrada da PUC Campinas ...
Cesar Augusto Nogueira
 
Minando dados de sua cidade para sua comunidade
Cesar Augusto Nogueira
 
Se tornando um desenvolvedor Java Ninja - Trilha Java - TDC2017
Cesar Augusto Nogueira
 
Treinamento: SAP Management 4.0 (Fundamentos em SAP nas principais transações...
Cesar Augusto Nogueira
 
Palestrante OpenSource Java na Semana de Tecnologia da Informação da UFLA 2016
Cesar Augusto Nogueira
 
OpenSource Java - Adopt a JDK e OpenJDK
Cesar Augusto Nogueira
 
Android Wear - Workshop por @cesarnogcps
Cesar Augusto Nogueira
 
Certificado de participação - Trilha Python - The Developers Conference 2016 SP
Cesar Augusto Nogueira
 
Docker e suas tecnologias
Cesar Augusto Nogueira
 
Docker e suas tecnologias por @cesarnog
Cesar Augusto Nogueira
 
Certificado de participação no Hackathon Globo 2016 - Cesar A. Nogueira
Cesar Augusto Nogueira
 
Certificado_Python_Brasil_11_Cesar Augusto Nogueira
Cesar Augusto Nogueira
 
First Steps with Android - An Exciting Introduction
Cesar Augusto Nogueira
 
Brazil Scientific Mobility Program guide 2013/2014
Cesar Augusto Nogueira
 
[BRAZIL] Science without Borders program description
Cesar Augusto Nogueira
 
Colégio Técnico de Campinas (COTUCA) 2013/2014
Cesar Augusto Nogueira
 
The Software Development Process
Cesar Augusto Nogueira
 
Ad

Recently uploaded (20)

PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
PDF
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
PDF
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
PPT
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
PDF
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
PDF
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PPTX
Digital Circuits, important subject in CS
contactparinay1
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PDF
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
PDF
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PDF
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PDF
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Digital Circuits, important subject in CS
contactparinay1
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 

Introduction to RDF Data Model

  • 1. Introduction to the RDF Data Model Sources: Ian Davis (Talis), Prof. Praveen Rao (UMKC), http://rdfabout.com/ 1
  • 2. Introduction • RDF stands for Resource Description Framework • • • • Companies developing RDF storage solutions AllegroGraph, Virtuoso, BigOWLIM, Garlik 4store/5store, Mulgara, etc. Companies managing data using RDF model • • • W3C spec: http://www.w3.org/RDF/ 1st spec in 1999, current standard from 2004 • • Is a data model (like XML) BBC, Google, Yahoo!, Best Buy, Newsweek, Pfizer, etc. http://data.nytimes.com/home/about.html To allow anyone to say anything about anything 2
  • 4. RDF Data Model • RDF represents data as (s,p,o) triples • • s means subject, p means predicate or property, o means object Can represent any assertion • • An assertion may or may not be a fact Together, triples form a directed, labeled graph 4
  • 6. Example • Relationship between entities/resources 6
  • 7. Global Naming • • • • • URIs (!= URLs) provide the ability to identify things globally and uniquely RDF names things/resources with URIs Can name infinite number of things using URIs • Can use the fragment identifier ‘#’ Create different URIs for different things If two users refer to the same URI, then they are talking about the same thing 7
  • 8. RDF Graphs • Can have named things, literals (text or numeric values), named relations/properties, unnamed things… 8
  • 9. RDF Graphs • Subjects can be URIs or unnamed (a.k.a blank nodes) • Predicates are URIs • Objects can be URIs, literals, or unnamed 9
  • 10. Merging RDF Graphs • Graphs from different sources can be merged • Nodes with the same URI are considered identical • Blank nodes can be kept separate • Any RDF graph can be merged with any other RDF graph • Any number of RDF graphs can be merged 10
  • 13. RDF vs. RDBMS • Relational (RDBMS) model • • • • Separate databases with own schemas Table row: assertion that relation is true for values in row SELECT query: filter on assertions for given conditions A relation is true (row exists) or false • RDF model • • • (Semantic) Web: a single giant graph database s, p, o identified uniquely with URIs across the web A relation is true (triple exists) or is unknown • RDF more like OO model than RDBMS 13
  • 14. RDF vs. RDBMS example foaf:name (predicate/property) subject object _:personA “John” _:personB “Jane” _:personC “Fred” RDF triples expressed as binary relations in RDBMS 14
  • 15. RDF vs XML • Not another XML format • XML means • • Angle-brackets-slashes notation (think HTML) Data model: tree (DAG) with different nodes (elements, attributes) • RDF means • • Notation: RDF/XML, Turtle, N-triples etc. Data model: directed graph, uses URIs 15
  • 16. RDF Formats • All are plain-text serialization formats • RDF/XML: XML notation • Notation3 (N3): superset of TTL, beyond RDF • Turtle (TTL): subset of N3, used only for RDF • N-Triples (NT), N-Quads (NQ): subset of TTL and N3 • • Simpler/minimal Easier to parse/generate 16
  • 17. Turtle • Terse RDF Triple Language (TTL) • Triples are terminated with a full stop • URIs are enclosed in angle brackets (< and >) • Literals are enclosed by double quotes • <http://example.com/thing> <http://example.com/relation> “Hello World" . • Use @PREFIX to shorten URIs • • @PREFIX ex: <http://example.com/> . ex:thing ex:relation “Hello World" . 17
  • 18. Turtle: Same Subject @PREFIX ex: <http://example.com/> . ex:thing ex:relation "Some Text" . ex:thing ex:otherrelation ex:otherthing . @PREFIX ex: <http://example.com/> . ex:thing ex:relation "Some Text" ; ex:otherrelation ex:otherthing . 18
  • 19. Turtle: Same Subject-Predicate @PREFIX ex: <http://example.com/> . ex:thing ex:relation "Some Text" . ex:thing ex:relation ex:otherthing . @PREFIX ex: <http://example.com/> . ex:thing ex:relation "Some Text" , ex:otherthing . 19
  • 20. Turtle: Blank Node @PREFIX ex: <http://example.com/> . ex:thing ex:relation _:a . _:a ex:property "foo" . _:a ex:property "bar” . • Use _: followed by a label • ‘a’ is the label – valid only within that particular RDF document • If _a: appears in a different document, it would refer to a different node 20
  • 21. Turtle: Literals • Literals can have a language @PREFIX ex: <http://example.com/> . ex:thing ex:relation "Hello"@en . ex:thing ex:relation "Bonjour"@fr . • Literals can have a datatype @PREFIX ex: <http://example.com/> . ex:thing ex:relation "49"^^<http://www.w3.org/2001/XMLSchema#int> . • But not both! 21
  • 22. Vendor 1: Vendors example vendor1:productX dc:title "Cool-O-Matic" . vendor1:productX retail:price vendor1:productX vendor1:partno vendor1:productY dc:title "Fluffertron" . vendor1:productY retail:price vendor1:productY vendor1:partno "$50.75" . "TTK583" . "$26.50" . "AAL132" . Vendor 2: vendor2:product1 dc:title "Can Closer" . vendor2:product2 dc:title "Dust Unbuster" . Reviewer 1: vendor1:productX dc:description "This product is good buy!" . Reviewer 2: vendor2:product2 dc:description "Who needs something to unbust dust? A dust buster would be a better idea, and I wish they posted the price." . vendor2:product2 review:rating review:Excellent . 22
  • 23. Links • Government (US, UK), Wikipedia, World Bank, U.S. Census, U.S. SEC, NYTimes, etc. • • • http://www.w3.org/wiki/DataSetRDFDumps http://data.nytimes.com/ http://data.gov.uk/ • http://librdf.org/parse • http://www.rdfabout.com/demo/validator/ 23

Editor's Notes

  • #3: Represent information about resources in the WWW and the relationships b/w themDesigned to represent knowledge in a distributed worldParticularly concerned with meaning
  • #4: Relation = tableTuple = rowAttribute = column
  • #8: URIs you see in RDF documents are merely verbose names for entities, nothing more
  • #9: As a set of statements (triples) vs. as a graph
  • #17: All (other than RDF/XML) are non-XML and are designed with human-readability in mindS,p,o,c
  • #18: RDF/XML, notation3, triples, turtle, ntriples, nquads
  • #23: RDF allows the vendors and reviewers to agree on what they need to agree on, without forcing anyone to use one particular vocabulary.Unconstraining while allowing the application to relate information together.Interoperability: v1’s format is interoperable with v2 even though didn’t have to agree on common meanings