This document discusses algorithms for detecting brain tumors in MRI images. It begins with an abstract that outlines the key stages of brain tumor detection using image processing techniques: pre-processing, segmentation, feature extraction, and classification. It then reviews several existing techniques for brain tumor segmentation and classification, noting their advantages and limitations. Specifically, it examines algorithms using Bayesian techniques, neural networks, clustering, and deep learning. The document proposes using a Spearman algorithm for segmentation combined with a convolutional neural network classifier to overcome limitations of other methods and provide more accurate tumor detection.