This document proposes using data mining techniques to develop a predictive model for forecasting crop yields. It involves collecting agricultural data on factors like rainfall, temperature, seed quality, and sowing procedures. Data preprocessing and clustering techniques like K-means are applied. Classification algorithms like Support Vector Machine and Naive Bayes are used to predict crop yield as low, medium, or high. The predictive model aims to help farmers plan cultivation for high crop yields by identifying the best combinations of agricultural factors.