This document presents a singular identification procedure for identifying the parameters of a constrained rigid robot model. It begins with describing the constrained robot model and how it can be represented as a singular system. It then discusses singular equivalency, in particular strong equivalency, which transforms the original singular system into an equivalent regular state space model. This is important to reduce the number of initial conditions and improve identification. The document proposes using recursive least squares identification on the strongly equivalent model to identify the robot parameters. Simulation results on a robot arm model show that this approach provides significantly better parameter estimation convergence and output tracking compared to previous identification techniques for constrained robot models.