This document presents a survey of previous research on vision-based hand gesture recognition. It discusses various methods that have been used, including discrete wavelet transforms, skin color segmentation, orientation histograms, and neural networks. The document proposes a new methodology using webcam image capture, static and dynamic gesture definition, image processing techniques like localization, enhancement, segmentation, and morphological filtering, and a convolutional neural network for classification. The goal is to develop a more efficient and accurate system for hand gesture recognition and human-computer interaction.