1
The Yotta is not Enough!
The Need for Rethinking Information Science.
Dr Bruno Jacobfeuerborn
Telekom Deutschland GmbH
“Information Science in an Age of Change”, 2nd Conference
Institute for Information Science and Book Studies, University of Warsaw
Warsaw, April 15-16th, 2013
Yotta (Y)
=
1024 or 1 000 000 000 000 000 000 000 000
2© B. Jacobfeuerborn
Metric Prefixes (ISO)
3© B. Jacobfeuerborn
Dr. Bruno Jacobfeuerborn
- Moved to Deutsche Telekom in 1989.
- Head of Radio and Transmission Department in Hanover , 1991.
- Regional Director in Leipzig, 1991.
- Regional Director Technology and later Regional Director Business, responsible for Sales,
Marketing and Technology, Hanover, 1995.
- T-Mobile; the acquisition of the GSM license in Poland, 1996.
- Technical Director T-Mobile Netherlands and Member of the Management Board, 2002.
- Head of Service Management Europe in the T-Mobile International, 2004.
- Technical Director PTC and Member of the Management Board, 2007.
- Director and Management Board Member responsible for technology (fixed and mobile)
in Germany at Telekom Deutschland GmbH, 2009.
- Invited speaker to international conferences and coach of workshops.
- MOST Foundation General Assembly member.
4
5
Contents
─ Prologue
─ Thesis
─ Big Data
─ 4 Paradigms of Science
─ Data Science
─ Epilogue
New Scientific
Paradigm
Big Data
© B. Jacobfeuerborn
6
Prologue.
© B. Jacobfeuerborn
7
Data is the raw material of the XXI century.
Credo
© B. Jacobfeuerborn
8
Thesis.
© B. Jacobfeuerborn
9
A new scientific paradigm emerges.
Information science has to face and cope with it!
Thesis
Source: Cartoonbank.com
© B. Jacobfeuerborn
10
Big Data.
© B. Jacobfeuerborn
11© B. Jacobfeuerborn
12
“Big data refers to datasets whose size is beyond the
ability of typical database software tools to capture,
store, manage, and analyze”.
--- McKinsey, 2011
Big Data
© B. Jacobfeuerborn
How Big is Big?
Today: between Exabytes (1018) and Zettabytes (1021)
Tomorrow: over Zettabytes
13© B. Jacobfeuerborn
Big Data – the Flood
Walmart drags a million hourly retail transactions into a database that
long ago passed 2.5 petabytes; Facebook processes 2.5 billion pieces of
content and 500 terabytes of data each day; and Google, whose YouTube
division alone gains 72 hours of new video every minute, accumulates 24
petabytes of data in a single day.
− David Rowan, Editor, WIRED UK,
http://www.edge.org/response-detail/23859
“Each day, according to IBM,
we collectively generate 2.5
quintillion bytes—a tsunami of
structured and unstructured
data that's growing, in IDC's
reckoning, at 60 per cent a
year.
14© B. Jacobfeuerborn
15
Four Paradigms of Science.
© B. Jacobfeuerborn
Scientific Revolutions
T.S. Kuhn
1922 - 1996
16© B. Jacobfeuerborn
17
Science has been developing
from idea-centricity to data-centricity.
Data leverage ideas!
My Addendum to Kuhn’s Claim
Data
Idea
© B. Jacobfeuerborn
The School of Athens, Raphael, 1509
18© B. Jacobfeuerborn
1. Platonic Approach
In the Greek language science means
knowledge. According to Aristotle and
Plato science/knowledge is:
universal, necessary, certain, and
timeless. Deduction is the only
allowed way of reasoning.
Mathematics is a prototype (model) of
science and a language of nature.
19© B. Jacobfeuerborn
2. Baconian Approach
Francis Bacon’s new methodology of
science and knowledge, empiricism,
that relayed on observation,
collection of data, and experimenting,
along with accepting induction as a
legal inference method for scientific
endeavors can be characterized as
data-centric.
20© B. Jacobfeuerborn
Francis Bacon, 1561 - 1626
3. Computers at Work (Simulation, Modelling)
−J.P. Rini
“The idea is to use a computer program
to perform lengthy computations, and to
provide a proof that the result of these
computations implies the given theorem.
In 1976, the four color theorem was the
first major theorem to be verified using a
computer program.”
http://en.wikipedia.org/wiki/Computer-assisted_proof
21© B. Jacobfeuerborn
22
“It is a capital mistake to
theorize before one has
data.”
− Sherlock Holmes,
A Study in Scarlett
(Arthur Conan Doyle)
The Role of Data
© B. Jacobfeuerborn
23
“We can stop looking for models. We
can analyze the data without
hypotheses about what it might show.
We can throw the numbers into the
biggest computing clusters the world
has ever seen and let algorithms find
patterns where science cannot.”
–Chris Anderson
4. Big Data at Work
© B. Jacobfeuerborn
24
Data Science.
© B. Jacobfeuerborn
25
Data science is a set of scientific theories, methods, tools, and best
practices (including hacking!) aimed to analyse and explore big
datasets in order to discover hidden knowledge thru inference.
Data Science
source: Data Science: An Introduction,
http://en.wikibooks.org/wiki/Data_Science:_An_Introduction
© B. Jacobfeuerborn
!
26© B. Jacobfeuerborn
27
My Vision
Information
Science
Data
Science
© B. Jacobfeuerborn
28
− Definitions of data, information, and knowledge.
− Data structures and databases.
− Big data and analytics trends.
− Elements of logics and non-standard inference mechanisms for big data.
− Assorted methods of knowledge representation.
− Elements of machine learning and artificial intelligence.
− Methods of browsing and retrieval of big data, with a focus on methods to fast delivery of the retrieved
hits.
− Methods and tools to create metadata.
− Data integration.
− Deep data analysis: statistics and data mining technologies.
− Architecture of scalable big data systems.
− Cloud computing; methods of physical storage of big data; virtualization technologies for sharing
processing power and memory.
− Security and privacy within big data infrastructures.
− Big data case studies (e.g. social networking, governance, marketing, health).
Data Science Curriculum for Information Science Students
© B. Jacobfeuerborn
29
Epilogue.
© B. Jacobfeuerborn
30
“With too little data, you won’t be
able to make any conclusions
that you trust. …
Big data isn’t about bits, it’s
about talent.”
–Douglas Merrill
http://www.forbes.com/sites/douglasmerrill/
2012/05/01/r-is-not-enough-for-big-data/
To Remember
© B. Jacobfeuerborn
Thank you for listening!

More Related Content

PPT
Nigel Shadbolt-Government Transparency-Keynote Presentation
PPT
The Dawn of the Internet in Brazil
PDF
From Digital Enterprise to Insight(s) - Stefan Decker
PPTX
Nigel Shadbolt - Transparency and Open Data Beyond 2010
PDF
The persistent environmental digital divide(s) -RGS-IBG 2018
PPTX
Copyright Reform and Open Data
PPTX
JISC: Supporting The Future of Research
PDF
02 apps4 energy erik mannens what if we need open data, linked and big data t...
Nigel Shadbolt-Government Transparency-Keynote Presentation
The Dawn of the Internet in Brazil
From Digital Enterprise to Insight(s) - Stefan Decker
Nigel Shadbolt - Transparency and Open Data Beyond 2010
The persistent environmental digital divide(s) -RGS-IBG 2018
Copyright Reform and Open Data
JISC: Supporting The Future of Research
02 apps4 energy erik mannens what if we need open data, linked and big data t...

What's hot (19)

PPT
ADED 7330 Introduction
PPT
Digitisation Infrastructure - June 2007
PPTX
Prescottimperialbigdata
PPTX
Philipine internet
PPTX
InfoFest Kent 2017: Panel discussion - combating fake news
PPTX
Supercomputing and the cloud - the next big paradigm shift?
PPTX
Internet
PPTX
Health and clinical research - data futures, NIHR accelerating digital programme
PPTX
Introduction to Big Data and Data Science
PPTX
Assignment1.final version
PPTX
Open Data - a goldmine (JavaZone 2009)
PPTX
Aula 4 27032015 sii-v1
PPT
Science and Culture in the EU‘s Digital Agenda
PPT
Polinter01
PPT
Polinter01
PDF
Setting the Scene for Big Data in Europe, Looking Ahead to the Case Studies
DOCX
Internet
PDF
Moldova ICT Summit Open Data Session
ADED 7330 Introduction
Digitisation Infrastructure - June 2007
Prescottimperialbigdata
Philipine internet
InfoFest Kent 2017: Panel discussion - combating fake news
Supercomputing and the cloud - the next big paradigm shift?
Internet
Health and clinical research - data futures, NIHR accelerating digital programme
Introduction to Big Data and Data Science
Assignment1.final version
Open Data - a goldmine (JavaZone 2009)
Aula 4 27032015 sii-v1
Science and Culture in the EU‘s Digital Agenda
Polinter01
Polinter01
Setting the Scene for Big Data in Europe, Looking Ahead to the Case Studies
Internet
Moldova ICT Summit Open Data Session
Ad

Similar to The Yotta is not Enough! / Bruno Jacobfeuerborn (20)

PDF
Big data to big understanding
PPTX
Data science innovations
PPTX
Data science Innovations January 2018
PPTX
What is Data Science
PDF
Frontiers in Data Science 1st Edition Matthias Dehmer
PPTX
Alexander Sokolov “How Data Science and Big Data are changing the World”
PPTX
Introduction to Big Data
PPT
Philosophy of Big Data
PPTX
Big Data and the Art of Data Science
PPTX
Unit 1 (DSBDA) PD.pptx
PPTX
Cloud Programming Models: eScience, Big Data, etc.
PPTX
Big Data in NATO and Your Role
PDF
How it works- Data Science
PPTX
Big Data and Data Science: The Technologies Shaping Our Lives
PPTX
Data Science Innovations : Democratisation of Data and Data Science
PDF
Big Data Scotland
PDF
Frontiers In Data Science 1st Edition Matthias Dehmer Frank Emmertstreib
PDF
data science history / data science @ NYT
PDF
Dia sds2015 web version
PDF
Introduction on Data Science
Big data to big understanding
Data science innovations
Data science Innovations January 2018
What is Data Science
Frontiers in Data Science 1st Edition Matthias Dehmer
Alexander Sokolov “How Data Science and Big Data are changing the World”
Introduction to Big Data
Philosophy of Big Data
Big Data and the Art of Data Science
Unit 1 (DSBDA) PD.pptx
Cloud Programming Models: eScience, Big Data, etc.
Big Data in NATO and Your Role
How it works- Data Science
Big Data and Data Science: The Technologies Shaping Our Lives
Data Science Innovations : Democratisation of Data and Data Science
Big Data Scotland
Frontiers In Data Science 1st Edition Matthias Dehmer Frank Emmertstreib
data science history / data science @ NYT
Dia sds2015 web version
Introduction on Data Science
Ad

More from Zakład Systemów Informacyjnych, Instytut Informacji Naukowej i Studiów Bibliologicznych (UW) (20)

PDF
O postaci książek w bibliotekach cyfrowych / Zdzisław Dobrowolski
PPSX
Współautorstwo publikacji naukowych jako wyznacznik współpracy między naukowc...
PPT
Zachowania informacyjne humanistów – badanie potrzeb informacyjnych pracownik...
PPTX
Zachowania związane z indywidualnym zarządzaniem wiedzą i informacją – w świe...
PPTX
Koncepcje trwałej ochrony polskich zasobów cyfrowych /Aneta Januszko-Szakiel
PPTX
Publikowanie naukowe jako proces organizacji wiedzy. Zarys koncepcji / Marek ...
PPTX
JHP BN – rekonfiguracja modelu chwd i dekonstrukcja jiw. Zmiany organizacji t...
PPTX
e-Urząd-Biblioteka-Obywatel. Biblioteki jako pośrednicy w dostępie do informa...
PPT
Metodologia badań w nauce o informacji – brakujący element / Arkadiusz Puliko...
PPT
Transitioning from Technical Services to Center for Digital Scholarship and S...
PPT
Information culture as a social cultural practice: (re)defining the concept i...
PPTX
Digitization for Access and Preservation: The Evolving Debate in the Cultural...
PPTX
Collaborative platformin the agricultural sectorin Algeria. Towards a Knowled...
PPTX
The road to providing access to Iran’s heritage resources: Iranian Consortium...
PPTX
Information Overload and Information Science / Mieczysław Muraszkiewicz
PPTX
Zachowania informacyjne humanistów – badanie potrzeb informacyjnych pracownik...
PPT
Naukowe systemy informacyjno-wyszukiwawcze – ogólne lub specjalistyczne – pro...
O postaci książek w bibliotekach cyfrowych / Zdzisław Dobrowolski
Współautorstwo publikacji naukowych jako wyznacznik współpracy między naukowc...
Zachowania informacyjne humanistów – badanie potrzeb informacyjnych pracownik...
Zachowania związane z indywidualnym zarządzaniem wiedzą i informacją – w świe...
Koncepcje trwałej ochrony polskich zasobów cyfrowych /Aneta Januszko-Szakiel
Publikowanie naukowe jako proces organizacji wiedzy. Zarys koncepcji / Marek ...
JHP BN – rekonfiguracja modelu chwd i dekonstrukcja jiw. Zmiany organizacji t...
e-Urząd-Biblioteka-Obywatel. Biblioteki jako pośrednicy w dostępie do informa...
Metodologia badań w nauce o informacji – brakujący element / Arkadiusz Puliko...
Transitioning from Technical Services to Center for Digital Scholarship and S...
Information culture as a social cultural practice: (re)defining the concept i...
Digitization for Access and Preservation: The Evolving Debate in the Cultural...
Collaborative platformin the agricultural sectorin Algeria. Towards a Knowled...
The road to providing access to Iran’s heritage resources: Iranian Consortium...
Information Overload and Information Science / Mieczysław Muraszkiewicz
Zachowania informacyjne humanistów – badanie potrzeb informacyjnych pracownik...
Naukowe systemy informacyjno-wyszukiwawcze – ogólne lub specjalistyczne – pro...

Recently uploaded (20)

PPTX
Build Your First AI Agent with UiPath.pptx
PPTX
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
PDF
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
PDF
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
PPTX
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
PPTX
MuleSoft-Compete-Deck for midddleware integrations
PDF
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
PDF
Early detection and classification of bone marrow changes in lumbar vertebrae...
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PDF
Co-training pseudo-labeling for text classification with support vector machi...
PPTX
Microsoft User Copilot Training Slide Deck
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PDF
Improvisation in detection of pomegranate leaf disease using transfer learni...
PDF
Statistics on Ai - sourced from AIPRM.pdf
PDF
Enhancing plagiarism detection using data pre-processing and machine learning...
PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
PDF
giants, standing on the shoulders of - by Daniel Stenberg
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
PDF
Auditboard EB SOX Playbook 2023 edition.
PDF
The-2025-Engineering-Revolution-AI-Quality-and-DevOps-Convergence.pdf
Build Your First AI Agent with UiPath.pptx
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
MuleSoft-Compete-Deck for midddleware integrations
Transform-Quality-Engineering-with-AI-A-60-Day-Blueprint-for-Digital-Success.pdf
Early detection and classification of bone marrow changes in lumbar vertebrae...
Convolutional neural network based encoder-decoder for efficient real-time ob...
Co-training pseudo-labeling for text classification with support vector machi...
Microsoft User Copilot Training Slide Deck
The influence of sentiment analysis in enhancing early warning system model f...
Improvisation in detection of pomegranate leaf disease using transfer learni...
Statistics on Ai - sourced from AIPRM.pdf
Enhancing plagiarism detection using data pre-processing and machine learning...
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
giants, standing on the shoulders of - by Daniel Stenberg
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
Auditboard EB SOX Playbook 2023 edition.
The-2025-Engineering-Revolution-AI-Quality-and-DevOps-Convergence.pdf

The Yotta is not Enough! / Bruno Jacobfeuerborn

  • 1. 1 The Yotta is not Enough! The Need for Rethinking Information Science. Dr Bruno Jacobfeuerborn Telekom Deutschland GmbH “Information Science in an Age of Change”, 2nd Conference Institute for Information Science and Book Studies, University of Warsaw Warsaw, April 15-16th, 2013
  • 2. Yotta (Y) = 1024 or 1 000 000 000 000 000 000 000 000 2© B. Jacobfeuerborn
  • 3. Metric Prefixes (ISO) 3© B. Jacobfeuerborn
  • 4. Dr. Bruno Jacobfeuerborn - Moved to Deutsche Telekom in 1989. - Head of Radio and Transmission Department in Hanover , 1991. - Regional Director in Leipzig, 1991. - Regional Director Technology and later Regional Director Business, responsible for Sales, Marketing and Technology, Hanover, 1995. - T-Mobile; the acquisition of the GSM license in Poland, 1996. - Technical Director T-Mobile Netherlands and Member of the Management Board, 2002. - Head of Service Management Europe in the T-Mobile International, 2004. - Technical Director PTC and Member of the Management Board, 2007. - Director and Management Board Member responsible for technology (fixed and mobile) in Germany at Telekom Deutschland GmbH, 2009. - Invited speaker to international conferences and coach of workshops. - MOST Foundation General Assembly member. 4
  • 5. 5 Contents ─ Prologue ─ Thesis ─ Big Data ─ 4 Paradigms of Science ─ Data Science ─ Epilogue New Scientific Paradigm Big Data © B. Jacobfeuerborn
  • 7. 7 Data is the raw material of the XXI century. Credo © B. Jacobfeuerborn
  • 9. 9 A new scientific paradigm emerges. Information science has to face and cope with it! Thesis Source: Cartoonbank.com © B. Jacobfeuerborn
  • 10. 10 Big Data. © B. Jacobfeuerborn
  • 12. 12 “Big data refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze”. --- McKinsey, 2011 Big Data © B. Jacobfeuerborn
  • 13. How Big is Big? Today: between Exabytes (1018) and Zettabytes (1021) Tomorrow: over Zettabytes 13© B. Jacobfeuerborn
  • 14. Big Data – the Flood Walmart drags a million hourly retail transactions into a database that long ago passed 2.5 petabytes; Facebook processes 2.5 billion pieces of content and 500 terabytes of data each day; and Google, whose YouTube division alone gains 72 hours of new video every minute, accumulates 24 petabytes of data in a single day. − David Rowan, Editor, WIRED UK, http://www.edge.org/response-detail/23859 “Each day, according to IBM, we collectively generate 2.5 quintillion bytes—a tsunami of structured and unstructured data that's growing, in IDC's reckoning, at 60 per cent a year. 14© B. Jacobfeuerborn
  • 15. 15 Four Paradigms of Science. © B. Jacobfeuerborn
  • 16. Scientific Revolutions T.S. Kuhn 1922 - 1996 16© B. Jacobfeuerborn
  • 17. 17 Science has been developing from idea-centricity to data-centricity. Data leverage ideas! My Addendum to Kuhn’s Claim Data Idea © B. Jacobfeuerborn
  • 18. The School of Athens, Raphael, 1509 18© B. Jacobfeuerborn
  • 19. 1. Platonic Approach In the Greek language science means knowledge. According to Aristotle and Plato science/knowledge is: universal, necessary, certain, and timeless. Deduction is the only allowed way of reasoning. Mathematics is a prototype (model) of science and a language of nature. 19© B. Jacobfeuerborn
  • 20. 2. Baconian Approach Francis Bacon’s new methodology of science and knowledge, empiricism, that relayed on observation, collection of data, and experimenting, along with accepting induction as a legal inference method for scientific endeavors can be characterized as data-centric. 20© B. Jacobfeuerborn Francis Bacon, 1561 - 1626
  • 21. 3. Computers at Work (Simulation, Modelling) −J.P. Rini “The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these computations implies the given theorem. In 1976, the four color theorem was the first major theorem to be verified using a computer program.” http://en.wikipedia.org/wiki/Computer-assisted_proof 21© B. Jacobfeuerborn
  • 22. 22 “It is a capital mistake to theorize before one has data.” − Sherlock Holmes, A Study in Scarlett (Arthur Conan Doyle) The Role of Data © B. Jacobfeuerborn
  • 23. 23 “We can stop looking for models. We can analyze the data without hypotheses about what it might show. We can throw the numbers into the biggest computing clusters the world has ever seen and let algorithms find patterns where science cannot.” –Chris Anderson 4. Big Data at Work © B. Jacobfeuerborn
  • 24. 24 Data Science. © B. Jacobfeuerborn
  • 25. 25 Data science is a set of scientific theories, methods, tools, and best practices (including hacking!) aimed to analyse and explore big datasets in order to discover hidden knowledge thru inference. Data Science source: Data Science: An Introduction, http://en.wikibooks.org/wiki/Data_Science:_An_Introduction © B. Jacobfeuerborn !
  • 28. 28 − Definitions of data, information, and knowledge. − Data structures and databases. − Big data and analytics trends. − Elements of logics and non-standard inference mechanisms for big data. − Assorted methods of knowledge representation. − Elements of machine learning and artificial intelligence. − Methods of browsing and retrieval of big data, with a focus on methods to fast delivery of the retrieved hits. − Methods and tools to create metadata. − Data integration. − Deep data analysis: statistics and data mining technologies. − Architecture of scalable big data systems. − Cloud computing; methods of physical storage of big data; virtualization technologies for sharing processing power and memory. − Security and privacy within big data infrastructures. − Big data case studies (e.g. social networking, governance, marketing, health). Data Science Curriculum for Information Science Students © B. Jacobfeuerborn
  • 30. 30 “With too little data, you won’t be able to make any conclusions that you trust. … Big data isn’t about bits, it’s about talent.” –Douglas Merrill http://www.forbes.com/sites/douglasmerrill/ 2012/05/01/r-is-not-enough-for-big-data/ To Remember © B. Jacobfeuerborn
  • 31. Thank you for listening!