WIRELESS COMMUNICATIONS
Chapter 2: Channel Models
Signal losses due to three effects:
1. Large Scale:
due to distance
2. Medium Scale: due
to shadowing and
obstacles
3. Small Scale
Fading: due to
multipath
Wireless Channels
Several Effects:
• Path Loss due to dissipation of energy: it depends on distance only
• Shadowing due to obstacles such as buildings, trees, walls. Is caused by
reflection, scattering …
• Self-Interference due to Multipath.
transm
rec
P
P
10
log
10
1. Free-space loss
1.1 Path loss model
• Path loss formula
• Reference formula
• Decibel formula
5
Transmit
antenna Receive
antenna
d
1.2 Plane earth loss model (Two-ray Model)
6
7
0
0
10
log
10
}
{ L
d
d
L
E p 








 
Path loss
exponent
Reference distance
• indoor 1-10m
• outdoor 10-100m
Free space loss at reference
distance
10 0
log ( / )
d d
  0
p
E L L

10
1
10 0
10
2
10
20dB
10 Values for Exponent :
Free Space 2
Urban 2.7-3.5
Indoors (LOS) 1.6-1.8
Indoors(NLOS) 4-6

2. Medium Scale:
 Losses due to Buildings, Trees, Hills, Walls …
2.1 Log-distance Path loss models
2. Medium Scale:
 Log-normal shadowing (Log-normal distribution)
 
2
2
2
of Gaussian variable :
1 (ln )
( )
2
2
1 1
( ) exp( ) 1
2 2
2 2
( )
p p
z
p
r p
L E L
pdf
m
pdf e
x z
Q z dx erf
E L
P L Q



 

 





 

 
 
 
   
 
 
 
 

 
 
   
 
 


The Power Loss in dB is random:
2. Medium Scale:
 Log-normal shadowing
2. Medium Scale:
 Log-normal shadowing
2. Medium Scale:
 Log-normal shadowing
2. Medium Scale:
2.2 Log-normal shadowing
 Okumura model: Urban macrocells 1-100km, frequencies
0.15-1.5GHz, BS antenna 30-100m high
2.3 Empirical Models for Medium Scale Path Loss
2. Medium Scale:
• Okumura Model: Urban macrocells 1-100km, frequencies
0.15-1.5GHz, BS antenna 30-100m high
2.3 Empirical Models for Medium Scale Path Loss
• Hata model: Similar to simplified Okumura model: urban
macrocells 1-100km, frequencies 0.15-1.5GHz, BS antenna
30-100m high
2.3 Empirical Models for Medium Scale Path Loss
2. Medium Scale:
3. Small Scale Fading due to Multipath.
3.1 Spreading in Time: different paths have different lengths;
time
Transmit Receive
0
( ) ( )
x t t t

 
0
t
0
( ) ( ) ...
k k
y t h t t
 
    

1
 2
 3

0
t
2
1
3
8
100 10
sec
3 10
c
 
  

Example for 100m path difference we have a time delay
Typical values of channel time spread:
channel
0
( ) ( )
x t t t

 
1
 2
 MAX

0
t
0
t
1
Indoor 10 50 sec
Suburbs 2 10 2 sec
Urban 1 3 sec
Hilly 3-10 sec
n





 

 Transmit a narrowband pulse into the channel
 Measure replicas of the pulse that traverse different paths between
transmitter and receiver
Intersymbol Interference
Suppose that there are two paths.
The shorter path has length d1, the
longer path has length d2.
What is the difference in propagation
delay between the two paths?
3
0
1
2
Symbols
received
path 1
Received
signal
Symbols
received –
path 2

3
0
1
2
Intersymbol Interference
P t
( ) 0 t T

if
3
2








t T

( ) t 2 T


( )

if
3
2

 







t 2 T


( ) t 3 T


( )

if
3
2

 


2







t 3 T


if

Suppose we use differential phase shift keying to transmit 3 2 1 0
   
 
t
P
t
f
t
s c 
 
2
sin
3 2 1
0 1 2 3 4 5
1
0
1
1
1

f t
( )
5
0 t
0
?
Intersymbol Interference
0 0.5 1 1.5 2 2.5 3
1
0
1
1
1

f t
( )
f t
T
5







3
0 t
0 0.5 1 1.5 2 2.5 3
1
0
1
0.951
0.951

f t
( ) f t
T
5








2
3
0 t
Intersymbol Interference
Comparison of the BER for a fading
and non-fading channel
Chòm sao tin hiệu qua kênh
• Gaussian channel
• Rayleigh channel
Doppler Shift
Doppler effect
cos
2
d
v
f
t


 

 

' c d
f f f
 
3.2 Spreading in Frequency: motion causes frequency shift (Doppler)
time
time
Transmit Receive
Freq.
Doppler Shift
v
c
F
2
( ) c
j F t
T
x t X e 

 
2
( ) c
j F F t
R
y t Y e
 

for each path
c
F F

Put everything together
time
Transmit Receive
v
time
)
(t
x )
(t
y
Re{.}
t
F
j C
e 
2 t
F
j C
e 
2

)
(t
h
)
(t
gT
LPF
)
(t
gR
LPF
( )
x t
( )
y t
2 ( )( )
( )
( ) Re ( ) c
j F t
F
y t x t e
a t  
  

 
 
 
 
 


 
Each path has … …shift in time …
…shift in frequency …
… attenuation…
(this causes small scale time variations)
paths
channel
Statistical Models of Fading Channels
Several Reflectors:
Transmit
v
( )
x t
t ( )
y t
t
1

2


Statistical Models of Fading Channels
2 ( )( )
( ) Re ( )
c k
j F t
k
k
k
F
y t a e x t

 


  

 
 
  
 
 
 
 
 

 
v

( )
y t


average time delay
• each time delay
• each doppler shift
k
 


D
F F
 

cos( )
v 
 t
t
)
2 ( )( 2
2
( ) Re ( )
c k c
F
F j F j F t
j t
k
k
k
y t e e x t e
a  
 



  


 
 
  
 
 
 
 
  

 
 
2 ( )
2
( ) ( )
c k
j F F
j F t
k
k
r t a e e x t
  


  

 
 
 
 
  

 
Assume: bandwidth of signal <<
( ) ( )
k
x t x t 
  
… leading to this:
Some mathematical manipulation …




 




 

k

/
1
 
2
( ) Re ( ) c
j F t
y t r t e 

 
( ) ( ) ( )
r t c t x t 
 
  
with
 
2 ( )
2
( ) c k
j F F
j F t
k
k
c t a e e
  
   

  

 random, time varying
Complex Baseband Representation of Bandpass
Complex Baseband Representation of Bandpass
Bandpass Signal – QPSK Modulation
Bandpass Signal – QPSK Modulation
)
2 ( )( 2
2
( ) Re ( )
c k c
F
F j F j F t
j t
k
k
k
y t e e x t e
a  
 



  


 
 
  
 
 
 
 
  

 
 
2 ( )
2
( ) ( )
c k
j F F
j F t
k
k
r t a e e x t
  


  

 
 
 
 
  

 
Assume: bandwidth of signal <<
( ) ( )
k
x t x t 
  
… leading to this:
Some mathematical manipulation …




 




 

k

/
1
 
2
( ) Re ( ) c
j F t
y t r t e 

 
( ) ( ) ( )
r t c t x t 
 
  
with
 
2 ( )
2
( ) c k
j F F
j F t
k
k
c t a e e
  
   

  

 random, time varying
39
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 1 2 3 4 5

Rayleigh PDF
   

mean = 1.2533
Rayleigh vs Rician PDF
41
Rayleigh Fading



















)
(
)
(
0
0
0
)
(
2
2
2
2
r
r
e
r
r
p
r


Rayleigh distribution has the probability density function (PDF) given by:
2
is the time average power of the received signal before envelope detection.
 is the rms value of the received voltage signal before envelope detection
time
v
time
)
(t
x )
(t
y
1

1( )
c t

( )
c t

N

( )
N
c t


( )
y t

)
(t
x
… can be modeled as:
delays
1


N

time time
time
Simulation homework
43
Simulation homework
Envelope of Modulated Signal
Under Rayleigh Fading Channel
Statistical Model for the time varying coefficients
 
2 ( )
2
1
( ) c k
M
j F F
j F t
k
k
c t a e e
 

   


  


random
is gaussian, zero mean, with:
( )
c t

 
*
0
( ) ( ) (2 )
D
E c t c t t P J F t

  
  
D C
v v
F F
c 
 
with the Doppler frequency shift.
Each coefficient is complex, gaussian, WSS with autocorrelation
 
*
0
( ) ( ) (2 )
D
E c t c t t P J F t

   
  
( )
c t

and PSD
  2
0
2 1
if | |
( ) (2 ) 1 ( / )
0 otherwise
D
D
D D
F F
F
S F FT J F t F F





   



with maximum Doppler frequency.
D
F
( )
S F
D
F F
This is called Jakes
spectrum.
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA

More Related Content

PDF
wireless communications
PPT
Final ppt
PDF
Calculate the bandwidth of the composite channel
PDF
Spacecraft RF Communications Course Sampler
PDF
Characterization of the Wireless Channel
PDF
Unit 2 Notes (1). .p df ppt presentation
PDF
디지털통신 7
wireless communications
Final ppt
Calculate the bandwidth of the composite channel
Spacecraft RF Communications Course Sampler
Characterization of the Wireless Channel
Unit 2 Notes (1). .p df ppt presentation
디지털통신 7

Similar to Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA (20)

PPT
Wirelesss communication networks Lecture 1.ppt
PPTX
9-MC Modulation and OFDM.pptx9-MC Modulation and OFDM.pptx9-MC Modulation and...
PDF
CS_2011_5_Digital_Modulators.pdf
PDF
UNIT 1 communication system different types of modulation
PPT
fading channels
PDF
NetSim Technology Library- Propagation models
PDF
Time reversed acoustics - Mathias Fink
PPT
Ece414 chapter3 w12
PDF
Ofdm sim-matlab-code-tutorial web for EE students
PPT
MSc Data Comms compare different modulation schemes with different values of ...
PDF
Sampling and Reconstruction DSP Material.pdf
PPTX
Sistec ppt
PPT
Frequency Modulation.ppt
PPTX
Digital Communication SPPU _Unit II.pptx
PPTX
Digital Communication SPPU Unit II.pptx
PPT
synthetic aperture radar
PDF
Spread-Spectrum2.pdf hhjji ffhjifr jjjgff
PPT
Introduction to OFDM.ppt
PDF
Ch7 noise variation of different modulation scheme pg 63
Wirelesss communication networks Lecture 1.ppt
9-MC Modulation and OFDM.pptx9-MC Modulation and OFDM.pptx9-MC Modulation and...
CS_2011_5_Digital_Modulators.pdf
UNIT 1 communication system different types of modulation
fading channels
NetSim Technology Library- Propagation models
Time reversed acoustics - Mathias Fink
Ece414 chapter3 w12
Ofdm sim-matlab-code-tutorial web for EE students
MSc Data Comms compare different modulation schemes with different values of ...
Sampling and Reconstruction DSP Material.pdf
Sistec ppt
Frequency Modulation.ppt
Digital Communication SPPU _Unit II.pptx
Digital Communication SPPU Unit II.pptx
synthetic aperture radar
Spread-Spectrum2.pdf hhjji ffhjifr jjjgff
Introduction to OFDM.ppt
Ch7 noise variation of different modulation scheme pg 63
Ad

Recently uploaded (20)

PPTX
1. Effective HSEW Induction Training - EMCO 2024, O&M.pptx
DOCX
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
PDF
electrical machines course file-anna university
PDF
Engineering Solutions for Ethical Dilemmas in Healthcare (www.kiu.ac.ug)
PPT
UNIT-I Machine Learning Essentials for 2nd years
PDF
Module 1 part 1.pdf engineering notes s7
PPTX
Software-Development-Life-Cycle-SDLC.pptx
PPTX
SC Robotics Team Safety Training Presentation
PDF
LS-6-Digital-Literacy (1) K12 CURRICULUM .pdf
PPTX
IOP Unit 1.pptx for btech 1st year students
PPTX
MODULE 02 - CLOUD COMPUTING-Virtual Machines and Virtualization of Clusters a...
PDF
ST MNCWANGO P2 WIL (MEPR302) FINAL REPORT.pdf
PPTX
quantum theory on the next future in.pptx
PPTX
INTERNET OF THINGS - EMBEDDED SYSTEMS AND INTERNET OF THINGS
PDF
B461227.pdf American Journal of Multidisciplinary Research and Review
PPTX
Unit IILATHEACCESSORSANDATTACHMENTS.pptx
PDF
Software defined netwoks is useful to learn NFV and virtual Lans
PDF
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
PPTX
chapter 1.pptx dotnet technology introduction
PDF
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
1. Effective HSEW Induction Training - EMCO 2024, O&M.pptx
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
electrical machines course file-anna university
Engineering Solutions for Ethical Dilemmas in Healthcare (www.kiu.ac.ug)
UNIT-I Machine Learning Essentials for 2nd years
Module 1 part 1.pdf engineering notes s7
Software-Development-Life-Cycle-SDLC.pptx
SC Robotics Team Safety Training Presentation
LS-6-Digital-Literacy (1) K12 CURRICULUM .pdf
IOP Unit 1.pptx for btech 1st year students
MODULE 02 - CLOUD COMPUTING-Virtual Machines and Virtualization of Clusters a...
ST MNCWANGO P2 WIL (MEPR302) FINAL REPORT.pdf
quantum theory on the next future in.pptx
INTERNET OF THINGS - EMBEDDED SYSTEMS AND INTERNET OF THINGS
B461227.pdf American Journal of Multidisciplinary Research and Review
Unit IILATHEACCESSORSANDATTACHMENTS.pptx
Software defined netwoks is useful to learn NFV and virtual Lans
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
chapter 1.pptx dotnet technology introduction
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
Ad

Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA

  • 3. Signal losses due to three effects: 1. Large Scale: due to distance 2. Medium Scale: due to shadowing and obstacles 3. Small Scale Fading: due to multipath
  • 4. Wireless Channels Several Effects: • Path Loss due to dissipation of energy: it depends on distance only • Shadowing due to obstacles such as buildings, trees, walls. Is caused by reflection, scattering … • Self-Interference due to Multipath. transm rec P P 10 log 10
  • 5. 1. Free-space loss 1.1 Path loss model • Path loss formula • Reference formula • Decibel formula 5 Transmit antenna Receive antenna d
  • 6. 1.2 Plane earth loss model (Two-ray Model) 6
  • 7. 7
  • 8. 0 0 10 log 10 } { L d d L E p            Path loss exponent Reference distance • indoor 1-10m • outdoor 10-100m Free space loss at reference distance 10 0 log ( / ) d d   0 p E L L  10 1 10 0 10 2 10 20dB 10 Values for Exponent : Free Space 2 Urban 2.7-3.5 Indoors (LOS) 1.6-1.8 Indoors(NLOS) 4-6  2. Medium Scale:  Losses due to Buildings, Trees, Hills, Walls … 2.1 Log-distance Path loss models
  • 9. 2. Medium Scale:  Log-normal shadowing (Log-normal distribution)   2 2 2 of Gaussian variable : 1 (ln ) ( ) 2 2 1 1 ( ) exp( ) 1 2 2 2 2 ( ) p p z p r p L E L pdf m pdf e x z Q z dx erf E L P L Q                                                  The Power Loss in dB is random:
  • 10. 2. Medium Scale:  Log-normal shadowing
  • 11. 2. Medium Scale:  Log-normal shadowing
  • 12. 2. Medium Scale:  Log-normal shadowing
  • 13. 2. Medium Scale: 2.2 Log-normal shadowing
  • 14.  Okumura model: Urban macrocells 1-100km, frequencies 0.15-1.5GHz, BS antenna 30-100m high 2.3 Empirical Models for Medium Scale Path Loss 2. Medium Scale:
  • 15. • Okumura Model: Urban macrocells 1-100km, frequencies 0.15-1.5GHz, BS antenna 30-100m high 2.3 Empirical Models for Medium Scale Path Loss
  • 16. • Hata model: Similar to simplified Okumura model: urban macrocells 1-100km, frequencies 0.15-1.5GHz, BS antenna 30-100m high 2.3 Empirical Models for Medium Scale Path Loss 2. Medium Scale:
  • 17. 3. Small Scale Fading due to Multipath. 3.1 Spreading in Time: different paths have different lengths; time Transmit Receive 0 ( ) ( ) x t t t    0 t 0 ( ) ( ) ... k k y t h t t         1  2  3  0 t 2 1 3 8 100 10 sec 3 10 c       Example for 100m path difference we have a time delay
  • 18. Typical values of channel time spread: channel 0 ( ) ( ) x t t t    1  2  MAX  0 t 0 t 1 Indoor 10 50 sec Suburbs 2 10 2 sec Urban 1 3 sec Hilly 3-10 sec n        
  • 19.  Transmit a narrowband pulse into the channel  Measure replicas of the pulse that traverse different paths between transmitter and receiver
  • 20. Intersymbol Interference Suppose that there are two paths. The shorter path has length d1, the longer path has length d2. What is the difference in propagation delay between the two paths? 3 0 1 2 Symbols received path 1 Received signal Symbols received – path 2  3 0 1 2
  • 21. Intersymbol Interference P t ( ) 0 t T  if 3 2         t T  ( ) t 2 T   ( )  if 3 2           t 2 T   ( ) t 3 T   ( )  if 3 2      2        t 3 T   if  Suppose we use differential phase shift keying to transmit 3 2 1 0       t P t f t s c    2 sin 3 2 1 0 1 2 3 4 5 1 0 1 1 1  f t ( ) 5 0 t 0 ?
  • 22. Intersymbol Interference 0 0.5 1 1.5 2 2.5 3 1 0 1 1 1  f t ( ) f t T 5        3 0 t 0 0.5 1 1.5 2 2.5 3 1 0 1 0.951 0.951  f t ( ) f t T 5         2 3 0 t
  • 24. Comparison of the BER for a fading and non-fading channel
  • 25. Chòm sao tin hiệu qua kênh • Gaussian channel • Rayleigh channel
  • 28. 3.2 Spreading in Frequency: motion causes frequency shift (Doppler) time time Transmit Receive Freq. Doppler Shift v c F 2 ( ) c j F t T x t X e     2 ( ) c j F F t R y t Y e    for each path c F F 
  • 29. Put everything together time Transmit Receive v time ) (t x ) (t y
  • 30. Re{.} t F j C e  2 t F j C e  2  ) (t h ) (t gT LPF ) (t gR LPF ( ) x t ( ) y t 2 ( )( ) ( ) ( ) Re ( ) c j F t F y t x t e a t                     Each path has … …shift in time … …shift in frequency … … attenuation… (this causes small scale time variations) paths channel
  • 31. Statistical Models of Fading Channels Several Reflectors: Transmit v ( ) x t t ( ) y t t 1  2  
  • 32. Statistical Models of Fading Channels 2 ( )( ) ( ) Re ( ) c k j F t k k k F y t a e x t                              v  ( ) y t   average time delay • each time delay • each doppler shift k     D F F    cos( ) v   t t
  • 33. ) 2 ( )( 2 2 ( ) Re ( ) c k c F F j F j F t j t k k k y t e e x t e a                                    2 ( ) 2 ( ) ( ) c k j F F j F t k k r t a e e x t                        Assume: bandwidth of signal << ( ) ( ) k x t x t     … leading to this: Some mathematical manipulation …              k  / 1   2 ( ) Re ( ) c j F t y t r t e     ( ) ( ) ( ) r t c t x t       with   2 ( ) 2 ( ) c k j F F j F t k k c t a e e              random, time varying
  • 36. Bandpass Signal – QPSK Modulation
  • 37. Bandpass Signal – QPSK Modulation
  • 38. ) 2 ( )( 2 2 ( ) Re ( ) c k c F F j F j F t j t k k k y t e e x t e a                                    2 ( ) 2 ( ) ( ) c k j F F j F t k k r t a e e x t                        Assume: bandwidth of signal << ( ) ( ) k x t x t     … leading to this: Some mathematical manipulation …              k  / 1   2 ( ) Re ( ) c j F t y t r t e     ( ) ( ) ( ) r t c t x t       with   2 ( ) 2 ( ) c k j F F j F t k k c t a e e              random, time varying
  • 39. 39 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5  Rayleigh PDF      mean = 1.2533
  • 41. 41 Rayleigh Fading                    ) ( ) ( 0 0 0 ) ( 2 2 2 2 r r e r r p r   Rayleigh distribution has the probability density function (PDF) given by: 2 is the time average power of the received signal before envelope detection.  is the rms value of the received voltage signal before envelope detection
  • 42. time v time ) (t x ) (t y 1  1( ) c t  ( ) c t  N  ( ) N c t   ( ) y t  ) (t x … can be modeled as: delays 1   N  time time time Simulation homework
  • 43. 43 Simulation homework Envelope of Modulated Signal Under Rayleigh Fading Channel
  • 44. Statistical Model for the time varying coefficients   2 ( ) 2 1 ( ) c k M j F F j F t k k c t a e e               random is gaussian, zero mean, with: ( ) c t    * 0 ( ) ( ) (2 ) D E c t c t t P J F t        D C v v F F c    with the Doppler frequency shift.
  • 45. Each coefficient is complex, gaussian, WSS with autocorrelation   * 0 ( ) ( ) (2 ) D E c t c t t P J F t         ( ) c t  and PSD   2 0 2 1 if | | ( ) (2 ) 1 ( / ) 0 otherwise D D D D F F F S F FT J F t F F             with maximum Doppler frequency. D F ( ) S F D F F This is called Jakes spectrum.