This document provides an introduction to knowledge representation in artificial intelligence. It discusses how knowledge representation and reasoning forms the basis of intelligent behavior through computational means. The key types of knowledge that need to be represented are defined, including objects, events, facts, and meta-knowledge. Different types of knowledge such as declarative, procedural, structural and heuristic knowledge are explained. The importance of knowledge representation for modeling intelligent behavior in agents is highlighted. The requirements for effective knowledge representation including representational adequacy, inferential adequacy, inferential efficiency, and acquisitional efficiency are outlined. Propositional logic is introduced as the simplest form of logic using propositions.